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The “simple” microscope

Leeuwenhoek 
Microscope
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Thick lens from Melles Griot Optics Guide – link here:
http://www.astro.caltech.edu/~lah/ay105/pdf/Fundamental-Optics.pdf
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essential optical layout of a modern microscope…



For building systems, and the lens spacing
in infinity corrected (or other) systems, 
“telecentricity” is a nice design goal.  If you
look at the rays, you can see the central line
are parallel to the optical axis, and this means 
When things move or blur, you don’t see lateral
shifts.  Also, it means you see the same view, not 
A perspective view…

Can you put the tube lens anywhere?  Yes, but…



Magnification is different from resolution. Magnification describes the apparent size of 
an object, and can be made arbitrarily large

Resolution describes the ability to distinguish two nearby objects and is fixed by the 
wavelength of light and the numerical aperture of the objective*
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How do we see things?  
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Darkfield illumination
•Direct light through sample at only 
oblique angles, and block direct light
•Only light scattered, refracted, or 
reflected by sample makes it into the 
objective
•Bright object on dark background –
sensitive to edges, outlines, and 
boundaries
•Sizes of features are not reliable



Fourier Transform…  see https://en.wikipedia.org/wiki/Fourier_transform



Fourier transform pairs…
Image on left, FT on right.  Spatial description – you see sine waves of intensity.
The FT “image” shows you the frequency of the sine waves (two dots because + and - freq)
***  Why don’t you see the middle dot, like on my demo scope?  Because in these pictures, 
I compute it for a “real” sine wave, meaning goes from -1 to 1, so average intensity is 0.  In an 
Optical system, *some* light is always propagated, so you would see a middle dot.

Also note that this is just showing the 
Amplitude^2 of the transform, and doesn’t
show the phase.  The phase part contains 
most of the information, re: where these 
frequency components match up in space…
See next slide…



Matlab/imageJ

Under imagej/process/fft, can do ffts.  What you see is the log scale image of the 
“power spectrum”.  That is it is the intensity of the particular frequency in the image.
Each intensity would correspond to the coefficient in front of that freq in the 
Fourier decomposition of the image.  The *phase* is NOT shown by default.  
Under fft options, you can have it displayed.  Check it out….



Fourier Optics (thin lens)
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Fourier Optics (thin lens)



Why does a lens do a transform?  Well, from Maxwell’s Eq. and
A bunch of approximations, we see that that math works…

See http://web.mit.edu/2.710/Fall06/2.710-wk10-a-sl.pdf

Good ref book, but pretty technical
https://www.macmillanlearning.com/college/us/product/Introduction-to-Fourier-Optics/p/1319119166

http://web.mit.edu/2.710/Fall06/2.710-wk10-a-sl.pdf


Why does NA affect resolution?  If you imagine the diffraction of a small feature, 
this leads to wide angle scattering.  If you don’t capture those rays, you can’t send
them down your optical system.  In terms of Fourier Optics, you don’t capture the 
high frequency components in the fourier plane, so you are effectively doing a low-pass
filter of the image.

This light is lost 
No frequencies above here…





Transform pairs.  
Airy disk is the transform of a 
Circular disk.  Other shapes have 
Different transforms…See next slide
Nothing inherently fundamental about 
Airy disk in microscopy per se… it 
is just convenient to build circularly 
symmetric systems – both mechanically, and
conceptually…













Aberrations…



Chromatic Aberrations – because refractive index depends on 
Frequency (wavelength), lenses have different focal lengths for each color.





We fix that by making complex lenses that have multiple
components, and we choose the shape and material so that
the chromatic errors cancel out…



Plenty of other aberrations too.
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Image of a sub-resolution fluorescent object
50 µm within the slice

Slice severely aberrates the PSF











Spatial Light Modulator (SLM)

Liquid crystal array Microelectromechanical Mirror Array

Flexible control of the phase of light – programmable diffraction



SLM limitations?



SLM Phase Pattern – mimics an arbitrary glass surface

Controlling light, flexibly
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SLM Phase Pattern – mimics an arbitrary glass surface

Controlling light, flexibly
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Spatial Light Modulators: arbitrary shaping of light 3D

XZ view
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Fluorescence





 



Increasing energy



Principle of Fluorescence
1. Energy is absorbed by the molecule which 
becomes excited.
2. The electron jumps to a higher energy level.
3. Soon, the electron drops back to the ground state, 
emitting a photon (or a packet of light) - the 
molecule is fluorescing.



Fluorescence Stoke’s shift

• Fluorescence emission peak wavelength is red-shifted with 
respect to absorption peak wavelength

• This shift may vary typically from 5 to more than 100 nm, 
depending on the electronic structure of the molecule









In fluorescence, signal has inherent noise because you 
are counting discrete events – the arrival of  photons.  
This noise is governed by Poisson  statistics.

. .

Signal N

Std Dev N

=

=

Only 63% of the measurements are in the range

N N±



Practical Implications?

fractional 
fluorescence change 
per unit activity

Required number of 
detected photons

0.1% 16,000,000

1% 160,000

10% 1,600

100% 16

To reliably detect activity with a S/N of 4…

Required signal decreases with the square of the modulation!



Practical Implications
1- Increase the signal to noise ratio: 

- optimize the excitation

- collect as many photons as possible 

- decrease the noise to the shot-noise limit

2- Optimize the % of fluorescence modulation:

- avoid non-modulated signals (like tissue 
fluorescence or out-of focus fluorescence)

- resolve optically compartments with large 
signal dynamics
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How do you make filters?
See https://www.alluxa.com/learning-center/what-are-thin-film-optical-filters/

https://www.photonics.com/Articles/Thin-Film_Optical_Filters_for_Phase_Control/a58006
https://www.photonics.com/Articles/Thin-Film_Coatings_A_Buyers_Guide/a42399

https://www.alluxa.com/learning-center/what-are-thin-film-optical-filters/
https://www.photonics.com/Articles/Thin-Film_Optical_Filters_for_Phase_Control/a58006


$$$
NIH BRAIN
NIMH, NEI,NINDS
Kavli Foundation
Zuckerman Institute

Thank you!!

We are hiring
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