Detecting light

• How do we detect light?

Detecting light

Eyes

Chemical change

Thermal sensor

Daguerre

Thorlabs

Photoelectric effect

Anatomy of a Charge Coupled Device (CCD)

National high magnetic field lab

Photodiodes - Wikipedia

What do we care about in a detector?

- Quantum efficiency
- Gain
- Noise amplitude
- Noise spectrum
- Dark current
- Response time
- Linearity
- Spectral response

Photomultiplier tubes

1 photoelectron multiplied in a cascading series of dynodes

Large amplification of signal High temporal resolution

Pictures from Hamamatsu website/PMT guide

PMT characteristics

High signal to noise (allows for photon counting) Fast Large active area

© 2007 HAMAMATSU PHOTONICS K. K

Picutres from Hamamatsu PMT guide

Different output configurations

Configuring your PMT

Set the voltage drop 'gain' with a voltage divider. Amplify the output with a current to voltage amplifier. Record the output with an analog to digital converter.

PMT efficiency

PMT efficiency

WAVELENGTH (nm)

Spatial uniformity

Dark current

- Thermionic emission
- Leakage
- Noise from cosmic rays

Dark current vs supply voltage

THBV3_0438EA

Figure 4-38: Typical dark current vs. supply voltage characteristic

Control of laser intensity

Control of laser light intensity using a beamsplitter

Thorlabs polarizing beamsplitter

Half-wave ($\lambda/2$) plate

Birefringence: dependence of refractive index on polarization angle

Polarization out

Power cycles every quarter rotation of the half wave plate.

Pockels cells operate on similar principles

Light passes through a crystal whose birefringence is modulated by an applied electric field.

Allows fast switching down to <1 microsecond

Galvanometer scanners

- Tilt mirror to different positions
- Closed loop control
- Fast, arbitrary positioning
- XY configuration

www.elm-chan.org

Resonant scanners

Pros: Low power Fast (3000-12000 Hz)

Cons: Fixed frequency No control over position Non linear scan

Cambridge Technology

Uneven pixel dwell times

microscopyu.com

Other configurations

Resonance-galvo-galvo

• Combines fast scanning and arbitrary positioning

AOD-based scanning

• Ultrafast positioning of beam (see Stephane's lecture)

Labrigger.com

Basics of a scanning microscope

Scanning optics

3 In Vivo Two-Photon Laser Scanning Microscopy with Concurrent Plasma-Mediated Ablation *Principles and Hardware Realization*

Philbert S. Tsai and David Kleinfeld