Nature of Light

Light can be described as a traveling electromagnetic wave

$$
\begin{array}{rlrl}
E(r, t) & =E_{0} \sin (k \cdot x-\omega \cdot t+\phi) \\
\omega & =2 \pi \cdot f & & \text { angular frequency } \\
f & =1 / T & & \text { frequency } \\
k & =2 \pi / \lambda & & \text { wave number }
\end{array}
$$

Nature of Light

Light can be described as a traveling electromagnetic wave
$E(r, t)=E_{o} \sin (k \cdot x-\omega \cdot t+\phi)$

$$
\begin{aligned}
\omega & =2 \pi \cdot f & & \text { angular frequency } \\
f & =1 / T & & \text { frequency } \\
k & =2 \pi / \lambda & & \text { wave number }
\end{aligned}
$$

which is a solution to the wave equation:

$$
\frac{\partial^{2} E}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}
$$

$c=$ speed of light in vacuum

$$
c=f \cdot \lambda=\omega / k
$$

$$
\mathrm{I}=\text { Intensity }=\left(\mathrm{C} \cdot \varepsilon_{0} \cdot \mathrm{n} / 2\right) \cdot|E|^{2}
$$

Nature of Light

Light can be described as a traveling electromagnetic wave

$$
\begin{array}{rlrl}
E(r, t) & =E_{o} \sin (k \cdot x-\omega \cdot t+\phi) \\
\omega & =2 \pi \cdot f & & \text { angular frequency } \\
f & =1 / T & & \text { frequency } \\
k & =2 \pi / \lambda & & \text { wave number }
\end{array}
$$

Single-slit diffraction pattern

Nature of Light

Light can be described as an traveling electromagnetic wave

Single-slit pattern

Double Slit
Diffraction Experiment

Nature of Light

Light can be described as discrete particles (photons)

Light photons

Photoelectric Effect

Albert Einstein, 1905
(Nobel Prize 1921)
(Image taken from LLNL website)

Nature of Light

Wave - Particle Duality

Light photons

Photoelectric Effect
Albert Einstein, 1905
(Nobel Prize 1921)
(Image taken from LLNL website)

Young's
Double Slit Experiment

Light is an Electromagnetic Field

 We will discuss electromagnetic fields in more detail when we cover Ch. 24
direction of
light propogation

For now, the important point is that we can treat light as a transverse wave: as the light propogates forward, the electric field oscillates perpendicular to that direction of oscillation.

We will deal only with the electric field and completely ignore the magnetic field for now.

Huygen's Principle (from ch.25)

A conceptual way to look at wave propogation

Huygen's Principle (from ch.25)

A conceptual way to look at wave propogation

Huygen's Principle (from ch.25)

A conceptual way to look at wave propogation

Huygen's Principle (from ch.25)

A conceptual way to look at wave propogation

Huygen's Principle (from ch.25)

A conceptual way to look at wave propogation

Huygen's Principle (from ch.25)

A conceptual way to look at wave propogation

Huygen's Principle (from ch.25)

A conceptual way to look at wave propogation
Huygen's Principle:
Every point on a particular wavefront can be considered a "new source" of small spherical "wavelets".

Huygen's Principle (from ch.25)

A conceptual way to look at wave propogation
Huygen's Principle:
Every point on a particular wavefront can be considered a "new source" of small spherical "wavelets".

Huygen's Principle (from ch.25)

A conceptual way to look at wave propogation

Huygen's Principle:
Every point on a particular wavefront can be considered a "new source" of small spherical "wavelets".

Huygen's Principle (from ch.25)

A conceptual way to look at wave propogation

Huygen's Principle:
Every point on a particular wavefront can be considered a "new source" of small spherical "wavelets".

Huygen's Principle (from ch.25)

A conceptual way to look at wave propogation

Huygen's Principle:
Every point on a particular wavefront can be considered a "new source" of small spherical "wavelets".

Huygen's Principle (from ch.25)

A conceptual way to look at wave propogation

Huygen's Principle:
Every point on a particular wavefront can be considered a "new source" of small spherical "wavelets".
As the wavelets propogate outward, the curve that runs tangent to these wavelets defines the new wavefront.

Huygen's Principle (from ch.25)

A conceptual way to look at wave propogation

Huygen's Principle:
Every point on a particular wavefront can be considered a "new source" of small spherical "wavelets".
As the wavelets propogate outward, the curve that runs tangent to these wavelets defines the new wavefront.

Huygen's Principle (from ch.25)

A conceptual way to look at wave propogation

Note: A wavefront is defined by the line (or curve) that connects the points of constant phase in a wave.

Huygen's Principle (from ch.25)

A conceptual way to look at wave propogation

This may seem like a lot of effort to get a trivial result, but this same method will allows us to examine situations like diffraction andrefraction at an interface (Ch 25)

Huygen's Principle:
Every point on a particular wavefront can be considered a "new source" of small spherical "wavelets".
As the wavelets propogate outward, the curve that runs tangent to these wavelets defines the new wavefront.

Note: A wavefront is defined by the line (or curve) that connects the points of constant phase in a wave.

example: a line through the peaks of a set of sine waves

Huygen's Principle (from ch.25)

Consider if we (somehow) have a wavefront that is completely straight? (We call this an "infinite plane wave" because in 3D space the straight wavefront is a giant flat sheet.

Huygen's Principle (from ch.25)

Consider if we (somehow) have a wavefront that is completely straight? (We call this an "infinite plane wave" because in 3D space the straight wavefront is a giant flat sheet.

Huygen's Principle (from ch.25)

Consider if we (somehow) have a wavefront that is completely straight? (We call this an "infinite plane wave" because in 3D space the straight wavefront is a giant flat sheet.

Huygen's Principle (from ch.25)

Consider if we (somehow) have a wavefront that is completely straight? (We call this an "infinite plane wave" because in 3D space the straight wavefront is a giant flat sheet.

Huygen's Principle (from ch.25)

Consider if we (somehow) have a wavefront that is completely straight? (We call this an "infinite plane wave" because in 3D space the straight wavefront is a giant flat sheet.

Huygen's Principle (from ch.25)

Consider if we (somehow) have a wavefront that is completely straight? (We call this an "infinite plane wave" because in 3D space the straight wavefront is a giant flat sheet.

Huygen's Principle (from ch.25)

Consider if we (somehow) have a wavefront that is completely straight? (We call this an "infinite plane wave" because in 3D space the straight wavefront is a giant flat sheet.

Huygen's Principle (from ch.25)

Consider if we (somehow) have a wavefront that is completely straight? (We call this an "infinite plane wave" because in 3D space the straight wavefront is a giant flat sheet.

The tangent to the Huygen wavelets traces out another infinite plane wavefront.

Huygen's Principle (from ch.25)

Consider if we (somehow) have a wavefront that is completely straight? (We call this an "infinite plane wave" because in 3D space the straight wavefront is a giant flat sheet.

The tangent to the Huygen wavelets traces out another infinite plane wavefront.

How do we get an "infinite plane wave" to start with? Well, in reality we can never really get a truly infinite plane wave, but if we look at the light from a distant star, the radius of curvature of the wavefront is so large, that over any small area (say, this room), the wavefront appears flat, and seems to extend to infinity

Diffraction

When we pass an [infinite] wave past a barrier (for example, through a hole) we break the symmetry of the Huygen wavelets near the edges.

As a result, waves diffract (bend) as they pass through small openings.

How small is small?
Diffraction becomes appreciable when the opening get to be approximately the same size or smaller than a wavelength of the wave passing through it.

Index of Refraction

Light travels slower in materials with higher refractive index

$$
\text { Index of Refraction : } \mathrm{n}=\frac{\text { speed of light in vacuum }}{\text { speed of light in medium }}=\frac{c}{v}
$$

Huygen's Principle

air glass

Plane waves incident at an angle on an
interface

Huygen
Wavelets in air

Huygen's Principle

air glass

Plane waves incident at an angle on an interface

Huygen
Wavelets in air

Huygen's Principle

air glass

Plane waves incident at an angle on an interface

Huygen
Wavelets in air

Huygen's Principle

air glass

Plane waves incident at an angle on an interface

Huygen
Wavelets in air

Huygen's Principle

 air glassTilted plane waves transmitted into the second medium

Huygen
Wavelets
in glass
(shorter wavelength)

Huygen Wavelets
in air

Huygen's Principle

air glass

Plane waves incident at an angle on an interface

Approximations

Brutalizing optics into 4 limiting regimes

- Ray (Geometric Optics) $: \lambda \rightarrow 0$
- Paraxial Approximation : $\theta<\pi / 2$
- Thin Lens Approximation : lens thickness $\rightarrow 0$
- Lossless Approximation : scatter, absorption $\rightarrow 0$

Ray Model / Geometric Optics

 Assumes that $(\lambda \ll d)$ so that we can ignore diffraction effectsWe will take our electromagnetic wave and strip it down to the ray (arrow) that points in the direction of the wave propogation.

The light rays are straight lines that are perpendicular to the wave fronts

Plane Wave Fronts

When $\lambda \ll d$, the rays continue in a straight-line path and the ray approximation remains valid.

Spherical Wave Fronts

In the ray optics limit, we ignore diffraction.

Rays: The Rules

- A geometric ray will move in a straight line as long as the medium does not change.
- When a geometric ray arrives at an interface between two different materials, it can reflect or refract to a new angle
- When dealing with interfaces, the angle of a geometric ray is always taken with respect to the "normal to the surface" (an imaginary line that is perpendicular to the surface)

Laws of Reflection and Refraction

Laws of Reflection : $\theta_{\text {in }}=\theta_{\text {out }}$

Snell's Law: $\mathrm{n}_{1} \sin \left(\theta_{1}\right)=\mathrm{n}_{2} \sin \left(\theta_{2}\right)$

Snell's Law

Fermat's Principle Derivation : Principle of Least Time

What path should the lifeguard take to minimize the time to reach the drownng victim?

Snell's Law

Fermat's Principle Derivation : Principle of Least Time

What path should the lifeguard take to minimize the time to reach the drownng victim?

Snell's Law

Fermat's Principle Derivation : Principle of Least Time

What path should the lifeguard take to minimize the time to reach the drownng victim?

Snell's Law

Fermat's Principle Derivation : Principle of Least Time

Snell's Law

Fermat's Principle Derivation : Principle of Least Time

Image Credit: DC Comics

Snell's Law

Fermat's Principle Derivation : Principle of Least Time

Snell's Law
Fermat's Principle Derivation : Principle of Least Time

Snell's Law

Fermat's Principle Derivation : Principle of Least Time

Snell's Law

Fermat's Principle Derivation : Principle of Least Time

Snell's Law

Fermat's Principle Derivation : Principle of Least Time

Snell's Law

Fermat's Principle Derivation : Principle of Least Time

Snell's Law

Fermat's Principle Derivation : Principle of Least Time

Snell's Law

One final (easy way) to think about (and remember) Snell's law
Consider a dumbell or car axle rolling on pavement at an angle towards a patch of of mud.

When the first wheel hits the mud, it slows down, but the other wheel is still on the fast pavement, and causes the trajectory of the axle to tilt towards the normal to the interface.

Linearly Polarized Light

Linearly Polarized Light

Linearly Polarized Light

Linearly Polarized Light

Linearly Polarized Light

Linearly Polarized Light

Circularly Polarized Light

Circularly Polarized Light

Circularly Polarized Light

Circularly Polarized Light

Circularly Polarized Light

Circularly Polarized Light

Circularly Polarized Light

Reflection \& Refraction

Reflection \& Refraction

Fresnel Equations for Partial Reflection

Fresnel Equations for Partial Reflection

$$
\begin{aligned}
& R_{\mathrm{s}}=\left|\frac{n_{1} \cos \theta_{\mathrm{i}}-n_{2} \cos \theta_{\mathrm{t}}}{n_{1} \cos \theta_{\mathrm{i}}+n_{2} \cos \theta_{\mathrm{t}}}\right|^{2}=\left|\frac{n_{1} \cos \theta_{\mathrm{i}}-n_{2} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{\mathrm{i}}\right)^{2}}}{n_{1} \cos \theta_{\mathrm{i}}+n_{2} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{\mathrm{i}}\right)^{2}}}\right|^{2} \\
& R_{\mathrm{p}}=\left|\frac{n_{1} \cos \theta_{\mathrm{t}}-n_{2} \cos \theta_{\mathrm{i}}}{n_{1} \cos \theta_{\mathrm{t}}+n_{2} \cos \theta_{\mathrm{i}}}\right|^{2}=\left|\frac{n_{1} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{\mathrm{i}}\right)^{2}}-n_{2} \cos \theta_{\mathrm{i}}}{n_{1} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{\mathrm{i}}\right)^{2}}+n_{2} \cos \theta_{\mathrm{i}}}\right|^{2}
\end{aligned}
$$

Fresnel Equations for Partial Reflection

Fresnel Equations for Partial Reflection

Fresnel Equations for Partial Reflection

Oh Photon, How do I miss thee? Let me count the ways?

High Performance Confocal Microscope Objective

Oh Photon, How do I miss thee? Let me count the ways?

Oh Photon, How do I miss thee? Let me count the ways?

High Performance Confocal Microscope Objective

Oh Photon, How do I miss thee? Let me count the ways?

High Performance Confocal Microscope Objective

Oh Photon, How do I miss thee? Let me count the ways?

Oh Photon, How do I miss thee? Let me count the ways?

艮 LA1207 N-BK7 Plano-Convex Lens, $\varnothing 1 / 2^{\prime \prime}, f=100.0 \mathrm{~mm}$, Uncoated
\$18.87
管 LA1207-A N-BK7 Plano-Convex Lens, $\emptyset 1 / 2 \mathrm{~L}$, $\mathrm{f}=100.0 \mathrm{~mm}$, AR Coating: 350-700 nm

Oh Photon，How do I miss thee？ Let me count the ways？

＋1昌	目	LA1207	N－BK7 Plano－Convex Lens，$\varnothing 1 / 2{ }^{\prime \prime}, \mathrm{f}=100$
＋1昌	首	LA1207－A	N－BK7 Plano－Convex Lens，$\varnothing 1 / 2{ }^{\prime \prime}, \mathrm{f}=100$
AR Coating Range			350－700 nm（－A Coating）
Reflectance over Coating Range（Avg．）			＜0．50\％

Oh Photon，How do I miss thee？ Let me count the ways？

＋1止	夏	LA1207	N－BK7 Plano－Convex Lens，$\varnothing_{1 / 2}{ }^{\prime \prime}, \mathrm{f}=100$
＋1吕	目	LA1207－A	N－BK7 Plano－Convex Lens，$\varnothing_{1 / 2 ", ~}^{\text {f }}=100$
AR Coating Range			350－700 nm（－A Coating）
Reflectance over Coating Range（Avg．）			＜0．50\％

Fresnel Equations for Partial Reflection

Fresnel Equations for Partial Reflection

Fresnel Equations for Partial Reflection

Reflection \& Refraction

Reflection \& Refraction

Reflection \& Refraction

Reflection \& Refraction

Reflection \& Refraction

Fresnel Equations for Partial Reflection

Reflection \& Refraction

Reflection \& Refraction

Reflection \& Refraction

Reflection \& Refraction

Reflection \& Refraction

Reflection \& Refraction

Total Internal Reflection

Fresnel Equations for Partial Reflection

Fresnel Equations for Partial Reflection

Total Internal Reflection

Total Internal Reflection

Total Internal Reflection

Refraction at a Curved Surface

Apply Snell's Law in piece-wise linear fashion

Refraction at a Curved Surface
Apply Snell's Law in piece-wise linear fashion

Refraction at a Curved Surface

Apply Snell's Law in piece-wise linear fashion

Refraction at a Curved Surface

Apply Snell's Law in piece-wise linear fashion

Refraction at a Curved Surface

Apply Snell's Law in piece-wise linear fashion

Refraction at a Curved Surface

Apply Snell's Law in piece-wise linear fashion

Refraction at a Curved Surface

Apply Snell's Law in piece-wise linear fashion

Refraction at a Curved Surface

Apply Snell's Law in piece-wise linear fashion

Refraction at a Curved Surface

Apply Snell's Law in piece-wise linear fashion

Refraction at a Curved Surface

Apply Snell's Law in piece-wise linear fashion

Refraction at a Curved Surface

Apply Snell's Law in piece-wise linear fashion

Refraction at a Curved Surface

Apply Snell's Law in piece-wise linear fashion

Refraction at a Curved Surface

Apply Snell's Law in piece-wise linear fashion

Refraction at a Curved Surface

Apply Snell's Law in piece-wise linear fashion

THIS PAGE INTENTIONALLY LEFT BLANK

 (with the exception of the text declaring this page to be blank)
Approximations

Brutalizing optics into 4 limiting regimes

- Ray (Geometric Optics) $: \lambda \rightarrow 0$
- Paraxial Approximation : $\theta<\pi / 2$
- Thin Lens Approximation : lens thickness $\rightarrow 0$
- Lossless Approximation : scatter, absorption $\rightarrow 0$

Focal Point, Focal Length, Focal Plane

$R_{1} \quad R_{2}$

Principal Axis

Focal Point, Focal Length, Focal Plane

Lens Equation

Gaussian Formulation: $1 / \mathrm{f}=\left(1 / \mathrm{d}_{1}\right)+\left(1 / \mathrm{d}_{2}\right)$
Newtonian Formulation : $\mathrm{f}^{2}=\mathrm{x}_{1}{ }^{*} \mathrm{x}_{2}$

Ray Tracing Rules: Real Images

Positive lens, Object outside the focal point

In: Parallel to optical axis
In: Through front focal point
In: Through center of lens

Out: Through back focal point
Out: Parallel to optical axis
Out: Undeviated

Ray Tracing Rules:Virtual Images

Positive lens, Object inisde the focal point

In: Parallel to optical axis
In: Through front focal point
In: Through center of lens

Out: Through back focal point
Out: Parallel to optical axis
Out: Undeviated

Ray Tracing Rules:Virtual Images

Positive lens, Object inisde the focal point

In: Parallel to optical axis
In: Through front focal point
In: Through center of lens

Out: Through back focal point
Out: Parallel to optical axis
Out: Undeviated

Ray Tracing Rules:Virtual Images

Positive lens, Object inisde the focal point

In: Parallel to optical axis
In: Through front focal point
In: Through center of lens

Out: Through back focal point
Out: Parallel to optical axis
Out: Undeviated

Ray Tracing Rules:Virtual Images

Positive lens, Object inisde the focal point

In: Parallel to optical axis
In: Through front focal point
In: Through center of lens

Out: Through back focal point
Out: Parallel to optical axis
Out: Undeviated

Ray Tracing Rules:Virtual Images

Positive lens, Object inisde the focal point

In: Parallel to optical axis
In: Through front focal point
In: Through center of lens

Out: Through back focal point
Out: Parallel to optical axis
Out: Undeviated

Ray Tracing Rules:Virtual Images

Positive lens, Object inisde the focal point

In: Parallel to optical axis
In: Through front focal point
In: Through center of lens

Out: Through back focal point
Out: Parallel to optical axis
Out: Undeviated

Ray Tracing Rules:Virtual Images

Negative Lens

In: Parallel to optical axis
In: Through front focal point
In: Through center of lens

Out: Through back focal point Out: Parallel to optical axis Out: Undeviated

Ray Tracing Rules:Virtual Images

In: Parallel to optical axis
In: Through front focal point
In: Through center of lens

Out: Through back focal point
Out: Parallel to optical axis
Out: Undeviated

Ray Tracing Rules:Virtual Images

In: Parallel to optical axis
In: Through front focal point
In: Through center of lens

Out: Through back focal point Out: Parallel to optical axis Out: Undeviated

Ray Tracing Rules:Virtual Images

In: Parallel to optical axis
In: Through front focal point In: Through center of lens

Out: Through back focal point
Out: Parallel to optical axis
Out: Undeviated

Ray Tracing Rules:Virtual Images

In: Parallel to optical axis
In: Through front focal point In: Through center of lens

Out: Through back focal point
Out: Parallel to optical axis
Out: Undeviated

Ray Tracing Rules:Virtual Images

Real \& Virtual Images

Human
Observer

Real \& Virtual Images

Real \& Virtual Images

Real \& Virtual Images

Real \& Virtual Images

OBJECT FAR
AWAY FROM LENS

For a real image, the light rays

If we did not realize that
there was a lens in the path, we would think that the light rays came from a point back here

Imaging Conditions: d_{2} vs d_{1}

