Nature of Light

Light can be described as a traveling electromagnetic wave

E(r,t) = E;sin(kex-w-t+¢)

w = 2w-f angular frequency
f =1/T frequency
k = 2w /A  wave number
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Nature of Light

Light can be described as a traveling electromagnetic wave

E(r,t) = Egsin(kex-w-t+¢) which is a solution to the wave equation:
w = 2x-f  angular frequency VE 1 O*E
f =1/T frequency —=——
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Nature of Light

Light can be described as a traveling electromagnetic wave

E(r,t) = E;sin(k+x-w-t+¢)

w = 2w-f angular frequency
f =1/T frequency
k = 2w/ A  wave number
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Nature of Light

Light can be described as an traveling electromagnetic wave

Light Intensity Single-slit pattern

Double-slit pattern

Double Slit
Diffraction Experiment



Nature of Light

Light can be described as discrete particles (photons)

Light photons
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Photoelectric Effect
Albert Einstein, 1905
(Nobel Prize 1921)

(Image taken from LLNL website)



Nature of Light

Wave - Particle Duality

Light photons
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Albert Einstein, 1905
(Nobel Prize 1921)

(Image taken from LLNL website)
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Light is an Electromagnetic Field

We will discuss electromagnetic fields
in more detail when we cover Ch. 24

Electric
Field

Magnetic - .
Field direction of

light propogation

For now, the important point is that we can treat light
as a transverse wave : as the light propogates forward,
the electric field oscillates perpendicular to that
direction of oscillation.

We will deal only with the electric field and completely ignore
the magnetic field for now.
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Huygens Principle (from ch.25)
A conceptual way to look at wave propogation

Huygen's Principle:

Every point on a particular wavefront
can be considered a “"new source” of
small spherical "wavelets”.

As the wavelets propogate outward,
the curve that runs tangent to these
wavelets defines the new wavefront.

Note : A wavefront

is defined by the line
(or curve) that connects
the points of constant phase

in a wave. k example : a line through
the peaks of a set of sine waves

2222%2222

wavefront




Huygens Principle (from ch.25)
A conceptual way to look at wave propogation

Huygen's Principle:

Every point on a particular wavefront
can be considered a “"new source” of
small spherical "wavelets”.

As the wavelets propogate outward,
the curve that runs tangent to these
wavelets defines the new wavefront.

Note : A wavefront

s defined by the line NN
(or curve) that connects /7 \/|[\/\o—
wavefront

the points of constant phase
This may seem like a lot of effort to get |n a wave. & example . a line ’rhrough

a trivial result, but this same method will )
allows us to examine situations like diffraction the peaks of a set of sine waves
andrefraction at an interface (Ch 25)
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Huygens Principle (from ch.25)
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Consider if we (somehow) have a wavefront
that is completely straight? (We call this

an “infinite plane wave” because in 3D space
the straight wavefront is a giant flat sheet.
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Huygens Principle (from ch.25)
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Consider if we (somehow) have a wavefront
that is completely straight? (We call this

an “infinite plane wave” because in 3D space
the straight wavefront is a giant flat sheet.
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Huygen’s Principle (from ch.25)

Consider if we (somehow) have a wavefront
that is completely straight? (We call this

an “infinite plane wave” because in 3D space
the straight wavefront is a giant flat sheet.
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Huygen’s Principle (from ch.25)

Consider if we (somehow) have a wavefront
that is completely straight? (We call this

an “infinite plane wave” because in 3D space
the straight wavefront is a giant flat sheet.
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Huygens Principle (from ch.25)

Consider if we (somehow) have a wavefront
that is completely straight? (We call this

an “infinite plane wave” because in 3D space
the straight wavefront is a giant flat sheet.
traces out another infinite plane wavefront.

The tangent to the Huygen wavelets
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Huygens Principle (from ch.25)

Consider if we (somehow) have a wavefront
that is completely straight? (We call this

an “infinite plane wave” because in 3D space
the straight wavefront is a giant flat sheet.

The tangent to the Huygen wavelets
traces out another infinite plane wavefront.

How do we get an "infinite plane wave” to
start with? Well, in reality we can never
really get a truly infinite plane wave, but if
we look at the light from a distant star,

the radius of curvature of the wavefront

is so large, that over any small area

(say, this room), the wavefront appears flat,
and seems to extend to infinity
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Diffraction

When we pass an [infinite] wave past a
barrier (for example, through a hole)
we break the symmetry of the Huygen
wavelets near the edges.

As a result, waves diffract (bend)
as they pass through small openings.

How small is small?

Diffraction becomes appreciable when
the opening get to be approximately the
same size or smaller than a wavelength
of the wave passing through it.



Index of Refraction

Light travels slower in materials with higher refractive index
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Huygens Principle

air  glass

Plane waves
incident at an

angle on an /
interface
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Approximations

Brutalizing optics into 4 limiting regimes

® Ray (GeometricOptics) : A 20
® Paraxial Approximation : 0 « T/,
® Thin Lens Approximation : lens thickness = 0

® | ossless Approximation :  scatter, absorption = 0

CSHL Imaging Course 2016 Philbert Tsai Lectures



Ray Model / Geometric Optics

Assumes that (A <« d ) so that we can ignore diffraction effects

We will take our electromagnetic

wave and strip it down to the —
ray (arrow) that points in the

direction of the wave propogation.

The light rays are straight lines
that are perpendicular to the wave fronts

]
]

N/

Wave fronts

Plane Wave Fronts

Spherical Wave Fronts

~

Direction of
Light Propogation

(Ray)

When A << d, the rays continue
in a straight-line path and the
ray approximation remains valid.
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In the ray optics limit,
we ignore diffraction.



Rays : The Rules

e A geometric ray will move in a straight line as long as the medium
does not change.

* When a geometric ray arrives at an interface between two
different materials, it can reflect or refract fo a new angle

* When dealing with inferfaces, the angle of a geometric ray is
always taken with respect to the “normal to the surface”
(an imaginary line that is perpendicular to the surface)

normal

normal
to surface
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Laws of Reflection and Refraction
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Laws of Reflection : 0,, =0,

Snell’s Law : n,sin(6;) = n,sin(6,)



Snells Law

Fermat's Principle Derivation : Principle of Least Time

What path should the
lifeguard take to minimize
the ftime to reach

the drownng victim?
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Fermat's Principle Derivation : Principle of Least Time

Image Credit : DC Comics
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Fermat's Principle Derivation : Principle of Least Time

Image Credit : DC Comics InFinH‘ely slower

in water




Snells Law

Fermat's Principle Derivation : Principle of Least Time

Photo Credit : DC Comics

Infinitely
slower
in air
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Snells Law

Fermat's Principle Derivation : Principle of Least Time

Photo Credit :
Marvel Entertainment
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Fermat's Principle Derivation : Principle of Least Time

Photo Credit :
Marvel Entertainment
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in air vy




Snells Law

Fermat's Principle Derivation : Principle of Least Time

normal
to the
surface
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Snell’'s Law : n;sin(6;) = n,sin(6,)



Snells Law

Fermat's Principle Derivation : Principle of Least Time

What path should the
lifeguard take to minimize
the time to reach

the drownng victim?

) Infinitely slower
Infinitely % in water
slower ,
in air running on the beach

v (through the air)

swimming in the ocean
(through water)




Snells Law

One final (easy way) to think about (and remember) Snells law

Consider a dumbell or car axle rolling on pavement
at an angle towards a patch of of mud.

When the first wheel
hits the mud, it slows
down, but the other
wheel is still on the \1 fast
fast pavement, and 4 slow
causes the trajectory
of the axle to tilt
towards the normal
to the interface.
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Circularly Polarized Light
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Fresnel Equations for Partial Reflection
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p - polarization

s - polarization




Fresnel Equations for Partial Reflection

p - polarization

s - polarization
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Reflectance

Fresnel Equations for Partial Reflection

Air - to - glass interface

(n1=1.0,n2=1.5)

— s - polarization
— unpolarized -
—— p - polarization

o —— 1 1

10 20 30 40 50 60 70 80 90

Incident angle (degrees)



Reflectance

Fresnel Equations for Partial Reflection

Air - to - glass interface
(n1 =1.0,n2=1.5)

— s - polarization
— unpolarized
—— p - polarization

Brewster’s
Angle

56.3°
(air-to-glass)

| | 1 ———

10 20 30 40 50 60 70 80 90

Incident angle (degrees)



Reflectance

Fresnel Equations for Partial Reflection

Air - to - glass interface
(n1 =1.0,n2=1.5)

— s - polarization
— unpolarized
—— p - polarization

Brewster’s
Angle

56.3°
(air-to-glass)

| | 1 ———

10 20 30 40 50 60 70 80 90

Incident angle (degrees)



Oh Photon, How do I miss thee?
Let me count the ways?

High Performance Confocal Microscope Objective
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Magnification - :
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Color Code : Thickness
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Front Lens Lens Element



Oh Photon, How do I miss thee?
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Oh Photon, How do I miss thee?
Let me count the ways?
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Oh Photon, How do I miss thee?
Let me count the ways?

Percent Transmitted

B LA1207

E LA1207-A N-BK7 Plano-Convex Lens, @1/2", f = 100.0 mm, AR Coating: 350-700 nm
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Reflectance

Fresnel Equations for Partial Reflection

Air - to - water interface

(n1 =1.0,n2=1.33)

— s - polarization
— unpolarized :
—— p - polarization
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Reflectance

Fresnel Equations for Partial Reflection

Air - to - water interface
(n1 = 10, Ny = 133)

— s - polarization
— unpolarized
—— p - polarization

Brewster’s
Angle
53.06°

(air-to-water)
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Reflectance

Fresnel Equations for Partial Reflection

Air - to - water interface
(n1 = 10, Ny = 133)

— s - polarization
— unpolarized
—— p - polarization

Brewster’s
Angle
53.06°

(air-to-water)
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Incident angle (degrees)
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Reflection & Refraction

|
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Rs = 0.031(3.1%)
Rave = 0.021 (2.1%)
Rp = 0.012(1.2%)
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Ts = 0.969 (96.9%)
Tave =0.979 (97.9%)
Tp = 0.988(98.8%)

N,ip = 1 .00

Nwater = 1.33

Rs = 0.031(3.1%)
Rave = 0.021 (2.1%)
Rp = 0.012(1.2%)
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Reflectance

Fresnel Equations for Partial Reflection

Air - to - water interface
(n1 = 10, Ny = 133)

— s - polarization
— unpolarized
—— p - polarization

Brewster’s
Angle
53.06°

(air-to-water)

10 20 30 40 50 60 70 80 90

Incident angle (degrees)
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Reflection & Refraction

Rs = 0.114(11.4%)
Rave =0.059 (5.90/0)
Rp = 0.004 (0.4%)
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N,ir = 1.00

Nwater = 1.33

Ts = 0.886 (88.6%)
Tave =0.941 (94.10/0)
Tp = 0.996 (99.6%)
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Reflection & Refraction

Ts = 0.886(88.6%)
Tave = 0.941 (94.1%)
Tp = 0.996 (99.6%) 60°

N,ir = 1.00

Nwater = 1.33

Re = 0.114(11.4%)
Rave = 0.059 (5.9%)
Rp = 0.004 (0.4%)
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Reflectance

Fresnel Equations for Partial Reflection

Air - to - water interface
(n1 = 1.0,n2: 133)

— s - polarization
— unpolarized
— p - polarization

Angle
53.06°
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Water - to - air interface
(n1 = 1.33,”2: 10)

— s - polarization
— unpolarized
— p - polarization
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Reflectance

Fresnel Equations for Partial Reflection

Air - to - water interface
(n1 = 1.0,n2: 133)

— s - polarization
— unpolarized
— p - polarization

Angle
53.06°

T
1
1
1
1
]
1
1
1
I
1
1
]
1
I
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1
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1
Brewster’s |
1
1
:
1
(air-to-water) !
I

1

1

1

1

1

1

]

1

1

1

I

20

30 40 50 60

Incident angle (degrees)

70

80

Water - to - air interface
(n1 = 1.33,”2: 10)

— s - polarization
— unpolarized
— p - polarization

Critical
Angle

48.75°
(water-to-air)

10 20 30 40 50 60 70 80

Incident angle (degrees)
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Total Internal Reflection

N

________________________>

evanescent wave @ -
exponentially decaying in z-direction @ <—————————

N,ir = 1.00

nwater — 1 .33

____________________‘_J
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N, = 1.00

Nywater = 1.33

Ocritical = 48.75° (water-air)

ecritical = 42° (glass-air)
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Apply Snell’s Law in piece-wise linear fashion
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Refraction at a Curved Surface

Apply Snell’s Law in piece-wise linear fashion
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Approximations

Brutalizing optics into 4 limiting regimes

® Ray (GeometricOptics) : A 20
® Paraxial Approximation : 0 « T/,
® Thin Lens Approximation : lens thickness = 0

® | ossless Approximation :  scatter, absorption = 0
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Focal Point , Focal Length, Focal Plane
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Lens Equation

magnification = ‘dz/d1

ds

Thin Lens

|
|
d2|
I
|

X1

15

Gaussian Formulation : 1/ = (1/d4) + (1/d>)

Newtonian Formulation : f2 = x1 * x2
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Ray Tracing Rules : Real Images

Positive lens, Object outside the focal point

1.5f

Real Image

Object f

* Optical AXIS

3f

|
|
4
|
|
|
D
|
|
|
g
|
|
|
|
y
Thin Lens

In: Parallel to optical axis Out: Through back focal point
In: Through front focal point Out: Parallel to optical axis
In: Through center of lens Out: Undeviated
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Ray Tracing Rules : Virtual Images

Positive lens, Object inisde the focal point

——

A
L I ]

s

Optical Axis
Object 0.75 f

\:/ Thin Lens
In: Parallel to optical axis Out: Through back focal point
In: Through front focal point Out: Parallel to optical axis

In: Through center of lens Out: Undeviated
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Ray Tracing Rules : Virtual Images

Positive lens, Object inisde the focal point

”?

=~

Optical Axis

In: Parallel to optical axis
In: Through front focal point
In: Through center of lens

CSHL Imaging Course 2016

v Thin Lens

Out: Through back focal point
Out: Parallel to optical axis
Out: Undeviated
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Ray Tracing Rules : Virtual Images

Positive lens, Object inisde the focal point

. Q\I\T

Optical Axis < >

\l/ Thin Lens

In: Parallel to optical axis Out: Through back focal point
In: Through front focal point Out: Parallel to optical axis
In: Through center of lens Out: Undeviated
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Ray Tracing Rules : Virtual Images

Positive lens, Object inisde the focal point

Optical Axis / - g
// obee 075 | | f
/ I
/ I
|
I
|
I
\U Thin Lens
In: Parallel to optical axis Out: Through back focal point
In: Through front focal point Out: Parallel to optical axis
In: Through center of lens Out: Undeviated
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Ray Tracing Rules : Virtual Images

Positive lens, Object inisde the focal point

. é\I\‘T

Optical Axis < >

\l/ Thin Lens

In: Parallel to optical axis Out: Through back focal point
In: Through front focal point Out: Parallel to optical axis
In: Through center of lens Out: Undeviated
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Ray Tracing Rules : Virtual Images

Positive lens, Object inisde the focal point

Optical Axis

‘>
Virtual Image f

-

Thin Lens

In: Parallel to optical axis Out: Through back focal point
In: Through front focal point Out: Parallel to optical axis
In: Through center of lens Out: Undeviated
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Ray Tracing Rules : Virtual Images

Negative Lens

2.00f

Optical Axis

In: Parallel to optical axis Out: Through back focal point
In: Through front focal point Out: Parallel to optical axis
In: Through center of lens Out: Undeviated
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Ray Tracing Rules : Virtual Image

Negative Lens

2.00f

Optical Axis

In: Parallel to optical axis Out: Through back focal point
In: Through front focal point Out: Parallel to optical axis
In: Through center of lens Out: Undeviated
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Ray Tracing Rules : Virtual Image

Negative Lens

2.00f

Optical Axis

In: Parallel to optical axis Out: Through back focal point
In: Through front focal point Out: Parallel to optical axis
In: Through center of lens Out: Undeviated
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Ray Tracing Rules : Virtual Image

Negative Lens

2.00 f r >V
|

Optical Axis

In: Parallel to optical axis Out: Through back focal point
In: Through front focal point Out: Parallel to optical axis
In: Through center of lens Out: Undeviated
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Ray Tracing Rules : Virtual Image

Negative Lens

2.00f

Optical Axis

In: Parallel to optical axis Out: Through back focal point
In: Through front focal point Out: Parallel to optical axis
In: Through center of lens Out: Undeviated
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Ray Tracing Rules : Virtual Image

Negative Lens

2.00f

Optical Axis

f 0.75f
Object Virtual Image
In: Parallel to optical axis Out: Through back focal point
In: Through front focal point Out: Parallel to optical axis
In: Through center of lens Out: Undeviated
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OBJECT FAR
AWAY FROM LENS

OBJECT VERY

CLOSE TO LENS

Real & Virtual Images

For a real image,
the light rays

A Actual Paths actually
) converge
of Light Rays (come together)
here.

Original
Object
The actual paths
traveled by
the light rays
never actually Human
converge here. Observer

Original
Object

U Actual Paths Human
of Light Rays Observer



Imaging Conditions : d, vs d,

Negative Lenses Positive Lenses

Image position (in focal lengths)
N OO o0 A WO NN =0 O =~ N W P> 00 N

el R R R e R R R R T R R R R R R I R e I R R

2 3 4 5 6 7

~N
(0]
o1
1
Ay
w
N
—

0

Object position (in focal lengths)
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