

Loading

Emission spectra

$\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}=\mathrm{K}_{\mathrm{d}} \cdot\left(\mathrm{F}-\mathrm{F}_{\text {min }}\right) /\left(\mathrm{F}_{\text {max }}-\mathrm{F}\right)$
$F_{\text {min }}$ and $F_{\text {max }}$ (and F) depend on the number of dye molecules excited -> sensitive to dye concentration and volume of the compartment studied - different indicator loading from cell to cell

- indicator concentration gradients, e.g. along dendrites
- volume differences, e.g. along dendrites

Therefore need to measure $F_{\text {min }}$ and $F_{\text {max }}$ in each experiment

Measure $F_{\text {min }}$ and $F_{\text {max }}$ at end of experiment
What if $F_{\text {min }}$ and $F_{\text {max }}$ change during experiment (e.g. photobleaching)?

The alternative: $\Delta F / F$

Absolute calcium concentrations aren't always of interest

$$
\left[\mathrm{Ca}^{2+}\right]_{1}=K_{d} \cdot\left(\mathrm{~F}-\mathrm{F}_{\text {min }}\right) /\left(F_{\text {max }^{-F}}\right.
$$

Quantify normalized changes in fluorescence

$$
\Delta F / F=\left(F-F_{\text {rest }}\right) / F_{\text {rest }}
$$

Unlike $F_{\text {min }}$ and $F_{\text {max }}, \Delta F / F$ is insensitive to

- excitation intensity and detector efficiency
- cell to cell variability
- differences between regions of a cell
- slow changes in fluorescence during the experiment

$$
\Delta F / F=\left(F-F_{\text {rest }}\right) / F_{\text {rest }}
$$

$\Delta F / F=\left(F-F_{\text {rest }}\right) / F_{\text {rest }}$

$$
\Delta F / F=\left(F-F_{\text {rest }}\right) / F_{\text {rest }}
$$

- don't forget to subtract background fluorescence
- beware changes in $F_{\text {rest }}$ (e.g. from photobleaching)

Main problem with $\Delta F / F$ calculation:
some dyes have very low resting fluorescence
-> dividing by a small, noisy number
-> noisy $\Delta F / F$

Solution to the low $F_{\text {rest }}$ problem
$F_{\text {rest }}$ is a measure of the indicator concentration

Co-load cells with two indicators
-> ratio fluorescence of calcium indicator to Ca^{2+}-insensitive indicator
$\Delta F / F=\left(F-F_{\text {rest }}\right) / F_{\text {rest }}$
$\Delta F / R=\left(F-F_{\text {rest }}\right) / R$
R is fluorescence of second indicator

Example of 2-indicator method

Oertner, Sabatini, Nimchinski \& Svoboda, 2002

Example of 2-indicator method: change in resting calcium

Wykes et al., Neurobiol Aging 2012

Solution to the low $F_{\text {rest }}$ problem
$F_{\text {rest }}$ is a measure of the indicator concentration

Co-load cells with two indicators

-> ratio fluorescence of calcium indicator to Ca^{2+}-insensitive indicator
$\Delta F / F=\left(F-F_{\text {rest }}\right) / F_{\text {rest }}$
$\Delta F / R=\left(F-F_{\text {rest }}\right) / R$
Potential problem:
differential distribution
or photobleaching
of the two indicators

Quantification options for single-wavelength indicators	
One indicator	Two indicators
$\Delta F / F=\left(F-F_{\text {rest }}\right) / F_{\text {rest }}$	$\Delta F / R=\left(F-F_{\text {rest }}\right) / R$
$\left[C^{2+}\right]=K_{d \cdot} \cdot\left(F-F_{\text {min }}\right) /\left(F_{\text {max }}-F\right)$	$\left[C a^{2+}\right]=K_{d} \cdot \frac{(F / R)-(F / R)_{\text {min }}}{(F / R)_{\max }^{-}-(F / R)}$

$\left[\mathrm{Ca}^{2+}\right]=K_{d} \cdot\left(\mathrm{~F}-\mathrm{F}_{\text {min }}\right)+\left(\mathrm{F}_{\text {max }}-\mathrm{F}\right)$ $(F / R)_{\text {max }}{ }^{-}(F / R)$
but see Maravall et al. (2000) BiophysJ
Ca induces spectral changes in ratiometric dyes

Excitation spectrum of fura Emission spectrum of indo

Wavelength (nm)

$$
\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}=\mathrm{K}_{\text {eff: }}\left(\mathrm{R}-\mathrm{R}_{\min }\right) /\left(\mathrm{R}_{\max }-\mathrm{R}\right)
$$

- need to measure $R_{\text {min }}, R_{\text {max }}, F_{\text {max, ,2 }}$ and $F_{\text {min }, \lambda 2}$
- unaffected by photobleaching, etc.
- disadvantages: UV-excitable dyes, poor signal-to-noise ratio

GCaMP

Ackerboom et al., J Neurosci 2012

GCaMP6

Quantification -summary	
One indicator	
$\Delta F / F=\left(F-F_{\text {rest }}\right) / F_{\text {rest }}$	$\Delta F / R=\left(F-F_{\text {rest }}\right) / R$
$\left[C a^{2+}\right]=K_{d} \cdot\left(F-F_{\text {min }}\right) /\left(F_{\text {max }}-F\right)$	$\left[C a^{2+}\right]=K_{d} \cdot \frac{(F / R)-(F / R)_{\text {min }}}{(F / R)_{\text {max }}-(F / R)}$
\quadRatiometric $\left[C a^{2+}\right]_{i}=K_{\text {eff }} \cdot\left(R-R_{\text {min }}\right) /\left(R_{\text {max }}-R\right)$	

Quantification
 - pitfalls

Main pitfalls

Main pitfalls

1. Other ions
2. Other ions

- From Molecular Probes:
K_{d} measured in vitro at $22^{\circ} \mathrm{C}$ in $100 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM}$ MOPS, pH 7.2, unless otherwise noted.
K_{d} values depend on temperature, ionic strength and pH
- most Ca indicators bind other divalents, which may enhance or quench fluoresence
e.g. Zn^{2+} binds readily to fluo-3 and produces bright fluorescence
e.g. Mn^{2+} binds \& quenches many dyes, including fura-2

2. Compartmentalization

- dyes can be taken up into intracellular compartments

Example of compartmentalization

$\overline{0_{0}, \mathrm{~mm}}$

David, Barrett \& Barrett, 1998

Main pitfalls
Main pitfalls

1. Other ions
2. Other ions
3. Compartmentalization

- dyes can be taken up into intracellular compartments

3. Background problems

$$
\Delta F / F=\left(F-F_{\text {rest }}\right) / F_{\text {rest }}
$$

$F_{\text {rest }}$ is fluorescence from intracellular indicator -> need to subtract background fluorescence

So what's the problem?

Pyramidal neuron in slice - camera vs 2P scope

Main pitfalls

1. Other ions
2. Compartmentalization
3. Background problems

- choice of background can strongly affect $\Delta F / F$
- contamination with signal
- non-uniform background
- non-linear gradient

Main pitfalls

1. Other ions
2. Compartmentalization
3. Background problems

к: 'buffer capacity' or 'binding ratio'
4. Buffering

- indicators bind (buffer) calcium
- added indicators alter calcium dynamics

The calcium binding ratio

$\kappa=\left[\mathrm{Ca}^{2+}\right]_{\text {bound }} /\left[\mathrm{Ca}^{2+}\right]$

If $\kappa=100$ then there are 100 bound Ca^{2+} ions for every free Ca^{2+} ion

The calcium binding ratio
Calcium binding ratio for fura-2
к: 'buffer capacity' or 'binding ratio'
$\kappa=\left[\mathrm{Ca}^{2+}\right]_{\text {bound }} /\left[\mathrm{Ca}^{2+}\right]$

If $\mathrm{K}=100$ then there are 100 bound Ca^{2+} ions for every free Ca^{2+} ion

Calcium buffers affect calcium dynamics

A tau treble binding ratio

(integral is unchanged)
$A \propto \frac{1}{1+\kappa}$
$\tan \propto 1+\kappa$

For a mixture of endogenous and exogenous buffers:

$$
A \propto \frac{1}{1+\kappa_{s}+\kappa_{B}} \quad \text { tau } \propto 1+\kappa_{s}+\kappa_{B}
$$

Measuring endogenous buffers

Calcium binding ratio for fura-2

K

Main pitfalls

1. Other ions
2. Compartmentalization
3. Background problems
4. Buffering

- added indicators (strongly) alter calcium dynamics
$D_{\text {eff }}=\frac{D_{c a}+\kappa_{B} \cdot D_{B}}{1+\kappa_{B}+\kappa_{S}}$
Buffers compete for calcium binding (with each other, with pumps, etc.)
- immobile buffers 'hold calcium in place
- mobile buffers facilitate diffusion

Endogenous buffers are typically immobile.
ndicators are mobile buffers
> Indicators increase spatial spread of calcium transients.
$D_{\text {eff }} \quad$ effective diffusion coefficient
$\begin{array}{ll}\mathrm{D}_{\mathrm{ca}} & \text { diffusion coefficient of calcium } \\ \mathrm{D}_{\mathrm{B}} & \text { diffusion coefficient of exogenous (mobile) buffer }\end{array}$
$\kappa_{B} \& \kappa_{S}$ binding ratios of exogenous (mobile) and

Main pitfalls

1. Other ions
2. Compartmentalization
3. Background problems
4. Buffering

- added indicators (strongly) alter calcium dynamics
- added indicators alter diffusion of calcium

Optimal signal-to-noise ratio

Optimal signal-to-noise ratio

Dye concentration

