

 $[Ca^{2+}]_i = K_d. (F-F_{min}) / (F_{max}-F)$

F_{min} and F_{max} (and F) depend on the number of dye molecules excited
-> sensitive to dye concentration and volume of the compartment studied
- different indicator loading from cell to cell

- indicator concentration gradients, e.g. along dendrites
- volume differences, e.g. along dendrites

Therefore need to measure F_{\min} and F_{\max} in each experiment

Measure F_{min} and F_{max} at end of experiment What if F_{min} and F_{max} change during experiment (e.g. photobleaching)?

Quantification - pitfalls

Main pitfalls

1. Other ions

- From Molecular Probes:
- $\rm K_{d}$ measured in vitro at 22°C in 100 mM KCl, 10 mM MOPS, pH 7.2, unless otherwise noted.
- K_d values depend on temperature, ionic strength and pH
- most Ca indicators bind other divalents, which may enhance or quench fluoresence
- e.g. Zn²⁺ binds readily to fluo-3 and produces bright fluorescence
- e.g. Mn²⁺ binds & quenches many dyes, including fura-2

Main pitfalls

- 1. Other ions
- 2. Compartmentalization
 - dyes can be taken up into intracellular compartments

Main pitfalls

- 1. Other ions
- 2. Compartmentalization
 - dyes can be taken up into intracellular compartments

Main pitfalls

- 1. Other ions
- 2. Compartmentalization
- 3. Background problems

$$\Delta F/F = (F - F_{rest}) / F_{rest}$$

F_{rest} is fluorescence <u>from intracellular indicator</u> -> need to subtract background fluorescence

Main pitfalls

- 1. Other ions
- 2. Compartmentalization
- 3. Background problems
 - choice of background can strongly affect $\Delta F/F$
 - contamination with signal
 - non-uniform background
 - non-linear gradient

Main pitfalls

- 1. Other ions
- 2. Compartmentalization
- 3. Background problems
- 4. Buffering
 - added indicators (strongly) alter calcium dynamics
 - added indicators alter diffusion of calcium

Buffers compete for calcium binding (with each other, with pumps, etc.)

- immobile buffers 'hold calcium in place'
- mobile buffers facilitate diffusion

Endogenous buffers are typically immobile.

Indicators are mobile buffers.

-> Indicators increase spatial spread of calcium transients.

Main pitfalls

- 1. Other ions
- 2. Compartmentalization
- 3. Background problems
- 4. Buffering
 - added indicators (strongly) alter calcium dynamics
 - added indicators alter diffusion of calcium

