
1

CHAPTER

1 The Breadth and Depth of DSP

Digital Signal Processing is one of the most powerful technologies that will shape science and
engineering in the twenty-first century. Revolutionary changes have already been made in a broad
range of fields: communications, medical imaging, radar & sonar, high fidelity music
reproduction, and oil prospecting, to name just a few. Each of these areas has developed a deep
DSP technology, with its own algorithms, mathematics, and specialized techniques. This
combination of breath and depth makes it impossible for any one individual to master all of the
DSP technology that has been developed. DSP education involves two tasks: learning general
concepts that apply to the field as a whole, and learning specialized techniques for your particular
area of interest. This chapter starts our journey into the world of Digital Signal Processing by
describing the dramatic effect that DSP has made in several diverse fields. The revolution has
begun.

The Roots of DSP
Digital Signal Processing is distinguished from other areas in computer science
by the unique type of data it uses: signals. In most cases, these signals
originate as sensory data from the real world: seismic vibrations, visual images,
sound waves, etc. DSP is the mathematics, the algorithms, and the techniques
used to manipulate these signals after they have been converted into a digital
form. This includes a wide variety of goals, such as: enhancement of visual
images, recognition and generation of speech, compression of data for storage
and transmission, etc. Suppose we attach an analog-to-digital converter to a
computer and use it to acquire a chunk of real world data. DSP answers the
question: What next?

The roots of DSP are in the 1960s and 1970s when digital computers first
became available. Computers were expensive during this era, and DSP was
limited to only a few critical applications. Pioneering efforts were made in four
key areas: radar & sonar, where national security was at risk; oil exploration,
where large amounts of money could be made; space exploration, where the

The Scientist and Engineer's Guide to Digital Signal Processing2

DSP

Space

Medical

Commercial

Military

Scientific

Industrial

Telephone

-Earthquake recording & analysis
-Data acquisition
-Spectral analysis
-Simulation and modeling

-Oil and mineral prospecting
-Process monitoring & control
-Nondestructive testing
-CAD and design tools

-Radar
-Sonar
-Ordnance guidance
-Secure communication

-Voice and data compression
-Echo reduction
-Signal multiplexing
-Filtering

-Image and sound compression
 for multimedia presentation
-Movie special effects
-Video conference calling

-Diagnostic imaging (CT, MRI,
 ultrasound, and others)
-Electrocardiogram analysis
-Medical image storage/retrieval

-Space photograph enhancement
-Data compression
-Intelligent sensory analysis by
 remote space probes

FIGURE 1-1
DSP has revolutionized many areas in science and engineering. A
few of these diverse applications are shown here.

data are irreplaceable; and medical imaging, where lives could be saved.
The personal computer revolution of the 1980s and 1990s caused DSP to
explode with new applications. Rather than being motivated by military and
government needs, DSP was suddenly driven by the commercial marketplace.
Anyone who thought they could make money in the rapidly expanding field was
suddenly a DSP vendor. DSP reached the public in such products as: mobile
telephones, compact disc players, and electronic voice mail. Figure 1-1
illustrates a few of these varied applications.

This technological revolution occurred from the top-down. In the early
1980s, DSP was taught as a graduate level course in electrical engineering.
A decade later, DSP had become a standard part of the undergraduate
curriculum. Today, DSP is a basic skill needed by scientists and engineers

Chapter 1- The Breadth and Depth of DSP 3

Digital
Signal
Processing

Communication
Theory

Analog
Electronics

Digital
Electronics

Probability
and Statistics

Decision
Theory

Analog
Signal
Processing

Numerical
Analysis

FIGURE 1-2
Digital Signal Processing has fuzzy and overlapping borders with many other
areas of science, engineering and mathematics.

in many fields. As an analogy, DSP can be compared to a previous
technological revolution: electronics. While still the realm of electrical
engineering, nearly every scientist and engineer has some background in basic
circuit design. Without it, they would be lost in the technological world. DSP
has the same future.

This recent history is more than a curiosity; it has a tremendous impact on your
ability to learn and use DSP. Suppose you encounter a DSP problem, and turn
to textbooks or other publications to find a solution. What you will typically
find is page after page of equations, obscure mathematical symbols, and
unfamiliar terminology. It's a nightmare! Much of the DSP literature is
baffling even to those experienced in the field. It's not that there is anything
wrong with this material, it is just intended for a very specialized audience.
State-of-the-art researchers need this kind of detailed mathematics to
understand the theoretical implications of the work.

A basic premise of this book is that most practical DSP techniques can be
learned and used without the traditional barriers of detailed mathematics and
theory. The Scientist and Engineer’s Guide to Digital Signal Processing is
written for those who want to use DSP as a tool, not a new career.

The remainder of this chapter illustrates areas where DSP has produced
revolutionary changes. As you go through each application, notice that DSP
is very interdisciplinary, relying on the technical work in many adjacent
fields. As Fig. 1-2 suggests, the borders between DSP and other technical
disciplines are not sharp and well defined, but rather fuzzy and overlapping.
If you want to specialize in DSP, these are the allied areas you will also
need to study.

The Scientist and Engineer's Guide to Digital Signal Processing4

Telecommunications
Telecommunications is about transferring information from one location to
another. This includes many forms of information: telephone conversations,
television signals, computer files, and other types of data. To transfer the
information, you need a channel between the two locations. This may be
a wire pair, radio signal, optical fiber, etc. Telecommunications companies
receive payment for transferring their customer's information, while they
must pay to establish and maintain the channel. The financial bottom line
is simple: the more information they can pass through a single channel, the
more money they make. DSP has revolutionized the telecommunications
industry in many areas: signaling tone generation and detection, frequency
band shifting, filtering to remove power line hum, etc. Three specific
examples from the telephone network will be discussed here: multiplexing,
compression, and echo control.

Multiplexing
There are approximately one billion telephones in the world. At the press of
a few buttons, switching networks allow any one of these to be connected to
any other in only a few seconds. The immensity of this task is mind boggling!
Until the 1960s, a connection between two telephones required passing the
analog voice signals through mechanical switches and amplifiers. One
connection required one pair of wires. In comparison, DSP converts audio
signals into a stream of serial digital data. Since bits can be easily
intertwined and later separated, many telephone conversations can be
transmitted on a single channel. For example, a telephone standard known
as the T-carrier system can simultaneously transmit 24 voice signals. Each
voice signal is sampled 8000 times per second using an 8 bit companded
(logarithmic compressed) analog-to-digital conversion. This results in each
voice signal being represented as 64,000 bits/sec, and all 24 channels being
contained in 1.544 megabits/sec. This signal can be transmitted about 6000
feet using ordinary telephone lines of 22 gauge copper wire, a typical
interconnection distance. The financial advantage of digital transmission
is enormous. Wire and analog switches are expensive; digital logic gates
are cheap.

Compression
When a voice signal is digitized at 8000 samples/sec, most of the digital
information is redundant. That is, the information carried by any one
sample is largely duplicated by the neighboring samples. Dozens of DSP
algorithms have been developed to convert digitized voice signals into data
streams that require fewer bits/sec. These are called data compression
algorithms. Matching uncompression algorithms are used to restore the
signal to its original form. These algorithms vary in the amount of
compression achieved and the resulting sound quality. In general, reducing the
data rate from 64 kilobits/sec to 32 kilobits/sec results in no loss of sound
quality. When compressed to a data rate of 8 kilobits/sec, the sound is
noticeably affected, but still usable for long distance telephone networks.
The highest achievable compression is about 2 kilobits/sec, resulting in

Chapter 1- The Breadth and Depth of DSP 5

sound that is highly distorted, but usable for some applications such as military
and undersea communications.

Echo control
Echoes are a serious problem in long distance telephone connections.
When you speak into a telephone, a signal representing your voice travels
to the connecting receiver, where a portion of it returns as an echo. If the
connection is within a few hundred miles, the elapsed time for receiving the
echo is only a few milliseconds. The human ear is accustomed to hearing
echoes with these small time delays, and the connection sounds quite
normal. As the distance becomes larger, the echo becomes increasingly
noticeable and irritating. The delay can be several hundred milliseconds
for intercontinental communications, and is particularly objectionable.
Digital Signal Processing attacks this type of problem by measuring the
returned signal and generating an appropriate antisignal to cancel the
offending echo. This same technique allows speakerphone users to hear
and speak at the same time without fighting audio feedback (squealing).
It can also be used to reduce environmental noise by canceling it with
digitally generated antinoise.

Audio Processing
The two principal human senses are vision and hearing. Correspondingly,
much of DSP is related to image and audio processing. People listen to
both music and speech. DSP has made revolutionary changes in both
these areas.

Music
The path leading from the musician's microphone to the audiophile's speaker is
remarkably long. Digital data representation is important to prevent the
degradation commonly associated with analog storage and manipulation. This
is very familiar to anyone who has compared the musical quality of cassette
tapes with compact disks. In a typical scenario, a musical piece is recorded in
a sound studio on multiple channels or tracks. In some cases, this even involves
recording individual instruments and singers separately. This is done to give
the sound engineer greater flexibility in creating the final product. The
complex process of combining the individual tracks into a final product is
called mix down. DSP can provide several important functions during mix
down, including: filtering, signal addition and subtraction, signal editing, etc.

One of the most interesting DSP applications in music preparation is
artificial reverberation. If the individual channels are simply added together,
the resulting piece sounds frail and diluted, much as if the musicians were
playing outdoors. This is because listeners are greatly influenced by the echo
or reverberation content of the music, which is usually minimized in the sound
studio. DSP allows artificial echoes and reverberation to be added during
mix down to simulate various ideal listening environments. Echoes with
delays of a few hundred milliseconds give the impression of cathedral like

The Scientist and Engineer's Guide to Digital Signal Processing6

locations. Adding echoes with delays of 10-20 milliseconds provide the
perception of more modest size listening rooms.

Speech generation
Speech generation and recognition are used to communicate between humans
and machines. Rather than using your hands and eyes, you use your mouth and
ears. This is very convenient when your hands and eyes should be doing
something else, such as: driving a car, performing surgery, or (unfortunately)
firing your weapons at the enemy. Two approaches are used for computer
generated speech: digital recording and vocal tract simulation. In digital
recording, the voice of a human speaker is digitized and stored, usually in a
compressed form. During playback, the stored data are uncompressed and
converted back into an analog signal. An entire hour of recorded speech
requires only about three megabytes of storage, well within the capabilities of
even small computer systems. This is the most common method of digital
speech generation used today.

Vocal tract simulators are more complicated, trying to mimic the physical
mechanisms by which humans create speech. The human vocal tract is an
acoustic cavity with resonant frequencies determined by the size and shape of
the chambers. Sound originates in the vocal tract in one of two basic ways,
called voiced and fricative sounds. With voiced sounds, vocal cord vibration
produces near periodic pulses of air into the vocal cavities. In comparison,
fricative sounds originate from the noisy air turbulence at narrow constrictions,
such as the teeth and lips. Vocal tract simulators operate by generating digital
signals that resemble these two types of excitation. The characteristics of the
resonate chamber are simulated by passing the excitation signal through a
digital filter with similar resonances. This approach was used in one of the
very early DSP success stories, the Speak & Spell, a widely sold electronic
learning aid for children.

Speech recognition
The automated recognition of human speech is immensely more difficult
than speech generation. Speech recognition is a classic example of things
that the human brain does well, but digital computers do poorly. Digital
computers can store and recall vast amounts of data, perform mathematical
calculations at blazing speeds, and do repetitive tasks without becoming
bored or inefficient. Unfortunately, present day computers perform very
poorly when faced with raw sensory data. Teaching a computer to send you
a monthly electric bill is easy. Teaching the same computer to understand
your voice is a major undertaking.

Digital Signal Processing generally approaches the problem of voice
recognition in two steps: feature extraction followed by feature matching.
Each word in the incoming audio signal is isolated and then analyzed to
identify the type of excitation and resonate frequencies. These parameters are
then compared with previous examples of spoken words to identify the closest
match. Often, these systems are limited to only a few hundred words; can
only accept speech with distinct pauses between words; and must be retrained
for each individual speaker. While this is adequate for many commercial

Chapter 1- The Breadth and Depth of DSP 7

applications, these limitations are humbling when compared to the abilities of
human hearing. There is a great deal of work to be done in this area, with
tremendous financial rewards for those that produce successful commercial
products.

Echo Location
A common method of obtaining information about a remote object is to bounce
a wave off of it. For example, radar operates by transmitting pulses of radio
waves, and examining the received signal for echoes from aircraft. In sonar,
sound waves are transmitted through the water to detect submarines and other
submerged objects. Geophysicists have long probed the earth by setting off
explosions and listening for the echoes from deeply buried layers of rock.
While these applications have a common thread, each has its own specific
problems and needs. Digital Signal Processing has produced revolutionary
changes in all three areas.

Radar
Radar is an acronym for RAdio Detection And Ranging. In the simplest
radar system, a radio transmitter produces a pulse of radio frequency
energy a few microseconds long. This pulse is fed into a highly directional
antenna, where the resulting radio wave propagates away at the speed of
light. Aircraft in the path of this wave will reflect a small portion of the
energy back toward a receiving antenna, situated near the transmission site.
The distance to the object is calculated from the elapsed time between the
transmitted pulse and the received echo. The direction to the object is
found more simply; you know where you pointed the directional antenna
when the echo was received.

The operating range of a radar system is determined by two parameters: how
much energy is in the initial pulse, and the noise level of the radio receiver.
Unfortunately, increasing the energy in the pulse usually requires making the
pulse longer. In turn, the longer pulse reduces the accuracy and precision of
the elapsed time measurement. This results in a conflict between two important
parameters: the ability to detect objects at long range, and the ability to
accurately determine an object's distance.

DSP has revolutionized radar in three areas, all of which relate to this basic
problem. First, DSP can compress the pulse after it is received, providing
better distance determination without reducing the operating range. Second,
DSP can filter the received signal to decrease the noise. This increases the
range, without degrading the distance determination. Third, DSP enables the
rapid selection and generation of different pulse shapes and lengths. Among
other things, this allows the pulse to be optimized for a particular detection
problem. Now the impressive part: much of this is done at a sampling rate
comparable to the radio frequency used, as high as several hundred megahertz!
When it comes to radar, DSP is as much about high-speed hardware design as
it is about algorithms.

The Scientist and Engineer's Guide to Digital Signal Processing8

Sonar
Sonar is an acronym for SOund NAvigation and Ranging. It is divided into
two categories, active and passive. In active sonar, sound pulses between
2 kHz and 40 kHz are transmitted into the water, and the resulting echoes
detected and analyzed. Uses of active sonar include: detection &
localization of undersea bodies, navigation, communication, and mapping
the sea floor. A maximum operating range of 10 to 100 kilometers is
typical. In comparison, passive sonar simply listens to underwater sounds,
which includes: natural turbulence, marine life, and mechanical sounds from
submarines and surface vessels. Since passive sonar emits no energy, it is
ideal for covert operations. You want to detect the other guy, without him
detecting you. The most important application of passive sonar is in
military surveillance systems that detect and track submarines. Passive
sonar typically uses lower frequencies than active sonar because they
propagate through the water with less absorption. Detection ranges can be
thousands of kilometers.

DSP has revolutionized sonar in many of the same areas as radar: pulse
generation, pulse compression, and filtering of detected signals. In one
view, sonar is simpler than radar because of the lower frequencies involved.
In another view, sonar is more difficult than radar because the environment
is much less uniform and stable. Sonar systems usually employ extensive
arrays of transmitting and receiving elements, rather than just a single
channel. By properly controlling and mixing the signals in these many
elements, the sonar system can steer the emitted pulse to the desired
location and determine the direction that echoes are received from. To
handle these multiple channels, sonar systems require the same massive
DSP computing power as radar.

Reflection seismology
As early as the 1920s, geophysicists discovered that the structure of the earth's
crust could be probed with sound. Prospectors could set off an explosion and
record the echoes from boundary layers more than ten kilometers below the
surface. These echo seismograms were interpreted by the raw eye to map the
subsurface structure. The reflection seismic method rapidly became the
primary method for locating petroleum and mineral deposits, and remains so
today.

In the ideal case, a sound pulse sent into the ground produces a single echo for
each boundary layer the pulse passes through. Unfortunately, the situation is
not usually this simple. Each echo returning to the surface must pass through
all the other boundary layers above where it originated. This can result in the
echo bouncing between layers, giving rise to echoes of echoes being detected
at the surface. These secondary echoes can make the detected signal very
complicated and difficult to interpret. Digital Signal Processing has been
widely used since the 1960s to isolate the primary from the secondary echoes
in reflection seismograms. How did the early geophysicists manage without
DSP? The answer is simple: they looked in easy places, where multiple
reflections were minimized. DSP allows oil to be found in difficult locations,
such as under the ocean.

Chapter 1- The Breadth and Depth of DSP 9

Image Processing
Images are signals with special characteristics. First, they are a measure of a
parameter over space (distance), while most signals are a measure of a
parameter over time. Second, they contain a great deal of information. For
example, more than 10 megabytes can be required to store one second of
television video. This is more than a thousand times greater than for a similar
length voice signal. Third, the final judge of quality is often a subjective
human evaluation, rather than an objective criterion. These special
characteristics have made image processing a distinct subgroup within DSP.

Medical
In 1895, Wilhelm Conrad Röntgen discovered that x-rays could pass through
substantial amounts of matter. Medicine was revolutionized by the ability to
look inside the living human body. Medical x-ray systems spread throughout
the world in only a few years. In spite of its obvious success, medical x-ray
imaging was limited by four problems until DSP and related techniques came
along in the 1970s. First, overlapping structures in the body can hide behind
each other. For example, portions of the heart might not be visible behind the
ribs. Second, it is not always possible to distinguish between similar tissues.
For example, it may be able to separate bone from soft tissue, but not
distinguish a tumor from the liver. Third, x-ray images show anatomy, the
body's structure, and not physiology, the body's operation. The x-ray image of
a living person looks exactly like the x-ray image of a dead one! Fourth, x-ray
exposure can cause cancer, requiring it to be used sparingly and only with
proper justification.

The problem of overlapping structures was solved in 1971 with the introduction
of the first computed tomography scanner (formerly called computed axial
tomography, or CAT scanner). Computed tomography (CT) is a classic
example of Digital Signal Processing. X-rays from many directions are passed
through the section of the patient's body being examined. Instead of simply
forming images with the detected x-rays, the signals are converted into digital
data and stored in a computer. The information is then used to calculate
images that appear to be slices through the body. These images show much
greater detail than conventional techniques, allowing significantly better
diagnosis and treatment. The impact of CT was nearly as large as the original
introduction of x-ray imaging itself. Within only a few years, every major
hospital in the world had access to a CT scanner. In 1979, two of CT's
principle contributors, Godfrey N. Hounsfield and Allan M. Cormack, shared
the Nobel Prize in Medicine. That's good DSP!

The last three x-ray problems have been solved by using penetrating energy
other than x-rays, such as radio and sound waves. DSP plays a key role in all
these techniques. For example, Magnetic Resonance Imaging (MRI) uses
magnetic fields in conjunction with radio waves to probe the interior of the
human body. Properly adjusting the strength and frequency of the fields cause
the atomic nuclei in a localized region of the body to resonate between quantum
energy states. This resonance results in the emission of a secondary radio

The Scientist and Engineer's Guide to Digital Signal Processing10

wave, detected with an antenna placed near the body. The strength and other
characteristics of this detected signal provide information about the localized
region in resonance. Adjustment of the magnetic field allows the resonance
region to be scanned throughout the body, mapping the internal structure. This
information is usually presented as images, just as in computed tomography.
Besides providing excellent discrimination between different types of soft
tissue, MRI can provide information about physiology, such as blood flow
through arteries. MRI relies totally on Digital Signal Processing techniques,
and could not be implemented without them.

Space
Sometimes, you just have to make the most out of a bad picture. This is
frequently the case with images taken from unmanned satellites and space
exploration vehicles. No one is going to send a repairman to Mars just to
tweak the knobs on a camera! DSP can improve the quality of images taken
under extremely unfavorable conditions in several ways: brightness and
contrast adjustment, edge detection, noise reduction, focus adjustment, motion
blur reduction, etc. Images that have spatial distortion, such as encountered
when a flat image is taken of a spherical planet, can also be warped into a
correct representation. Many individual images can also be combined into a
single database, allowing the information to be displayed in unique ways. For
example, a video sequence simulating an aerial flight over the surface of a
distant planet.

Commercial Imaging Products
The large information content in images is a problem for systems sold in mass
quantity to the general public. Commercial systems must be cheap, and this
doesn't mesh well with large memories and high data transfer rates. One
answer to this dilemma is image compression. Just as with voice signals,
images contain a tremendous amount of redundant information, and can be run
through algorithms that reduce the number of bits needed to represent them.
Television and other moving pictures are especially suitable for compression,
since most of the image remain the same from frame-to-frame. Commercial
imaging products that take advantage of this technology include: video
telephones, computer programs that display moving pictures, and digital
television.

11

CHAPTER

2 Statistics, Probability and Noise

Statistics and probability are used in Digital Signal Processing to characterize signals and the
processes that generate them. For example, a primary use of DSP is to reduce interference, noise,
and other undesirable components in acquired data. These may be an inherent part of the signal
being measured, arise from imperfections in the data acquisition system, or be introduced as an
unavoidable byproduct of some DSP operation. Statistics and probability allow these disruptive
features to be measured and classified, the first step in developing strategies to remove the
offending components. This chapter introduces the most important concepts in statistics and
probability, with emphasis on how they apply to acquired signals.

Signal and Graph Terminology
A signal is a description of how one parameter is related to another parameter.
For example, the most common type of signal in analog electronics is a voltage
that varies with time. Since both parameters can assume a continuous range
of values, we will call this a continuous signal. In comparison, passing this
signal through an analog-to-digital converter forces each of the two parameters
to be quantized. For instance, imagine the conversion being done with 12 bits
at a sampling rate of 1000 samples per second. The voltage is curtailed to 4096
(212) possible binary levels, and the time is only defined at one millisecond
increments. Signals formed from parameters that are quantized in this manner
are said to be discrete signals or digitized signals. For the most part,
continuous signals exist in nature, while discrete signals exist inside computers
(although you can find exceptions to both cases). It is also possible to have
signals where one parameter is continuous and the other is discrete. Since
these mixed signals are quite uncommon, they do not have special names given
to them, and the nature of the two parameters must be explicitly stated.

Figure 2-1 shows two discrete signals, such as might be acquired with a
digital data acquisition system. The vertical axis may represent voltage, light

The Scientist and Engineer's Guide to Digital Signal Processing12

intensity, sound pressure, or an infinite number of other parameters. Since we
don't know what it represents in this particular case, we will give it the generic
label: amplitude. This parameter is also called several other names: the y-
axis, the dependent variable, the range, and the ordinate.

The horizontal axis represents the other parameter of the signal, going by
such names as: the x-axis, the independent variable, the domain, and the
abscissa. Time is the most common parameter to appear on the horizontal axis
of acquired signals; however, other parameters are used in specific applications.
For example, a geophysicist might acquire measurements of rock density at
equally spaced distances along the surface of the earth. To keep things
general, we will simply label the horizontal axis: sample number. If this
were a continuous signal, another label would have to be used, such as: time,
distance, x, etc.

The two parameters that form a signal are generally not interchangeable. The
parameter on the y-axis (the dependent variable) is said to be a function of the
parameter on the x-axis (the independent variable). In other words, the
independent variable describes how or when each sample is taken, while the
dependent variable is the actual measurement. Given a specific value on the
x-axis, we can always find the corresponding value on the y-axis, but usually
not the other way around.

Pay particular attention to the word: domain, a very widely used term in DSP.
For instance, a signal that uses time as the independent variable (i.e., the
parameter on the horizontal axis), is said to be in the time domain. Another
common signal in DSP uses frequency as the independent variable, resulting in
the term, frequency domain. Likewise, signals that use distance as the
independent parameter are said to be in the spatial domain (distance is a
measure of space). The type of parameter on the horizontal axis is the domain
of the signal; it's that simple. What if the x-axis is labeled with something
very generic, such as sample number? Authors commonly refer to these signals
as being in the time domain. This is because sampling at equal intervals of
time is the most common way of obtaining signals, and they don't have anything
more specific to call it.

Although the signals in Fig. 2-1 are discrete, they are displayed in this figure
as continuous lines. This is because there are too many samples to be
distinguishable if they were displayed as individual markers. In graphs that
portray shorter signals, say less than 100 samples, the individual markers are
usually shown. Continuous lines may or may not be drawn to connect the
markers, depending on how the author wants you to view the data. For
instance, a continuous line could imply what is happening between samples, or
simply be an aid to help the reader's eye follow a trend in noisy data. The
point is, examine the labeling of the horizontal axis to find if you are working
with a discrete or continuous signal. Don't rely on an illustrator's ability to
draw dots.

The variable, N, is widely used in DSP to represent the total number of
samples in a signal. For example, for the signals in Fig. 2-1. ToN ' 512

Chapter 2- Statistics, Probability and Noise 13

Sample number
0 64 128 192 256 320 384 448 512

-4

-2

0

2

4

6

8

511

a. Mean = 0.5, F = 1

Sample number
0 64 128 192 256 320 384 448 512

-4

-2

0

2

4

6

8

511

b. Mean = 3.0, F = 0.2

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 2-1
Examples of two digitized signals with different means and standard deviations.

EQUATION 2-1
Calculation of a signal's mean. The signal is
contained in x0 through xN-1, i is an index that
runs through these values, and µ is the mean.

µ '
1
N j

N &1

i ' 0
xi

keep the data organized, each sample is assigned a sample number or
index. These are the numbers that appear along the horizontal axis. Two
notations for assigning sample numbers are commonly used. In the first
notation, the sample indexes run from 1 to N (e.g., 1 to 512). In the second
notation, the sample indexes run from 0 to (e.g. , 0 to 511).N& 1
Mathematicians often use the first method (1 to N), while those in DSP
commonly uses the second (0 to). In this book, we will use the secondN& 1
notation. Don't dismiss this as a trivial problem. It will confuse you
sometime during your career. Look out for it!

Mean and Standard Deviation
The mean, indicated by µ (a lower case Greek mu), is the statistician's jargon
for the average value of a signal. It is found just as you would expect: add all
of the samples together, and divide by N. It looks like this in mathematical
form:

In words, sum the values in the signal, , by letting the index, i, run from 0xi
to . Then finish the calculation by dividing the sum by N. This isN& 1
identical to the equation: . If you are not alreadyµ ' (x0% x1% x2% ˛% xN&1) /N
familiar with E (upper case Greek sigma) being used to indicate summation,
study these equations carefully, and compare them with the computer program
in Table 2-1. Summations of this type are abundant in DSP, and you need to
understand this notation fully.

The Scientist and Engineer's Guide to Digital Signal Processing14

EQUATION 2-2
Calculation of the standard deviation of a
signal. The signal is stored in , µ is thexi
mean found from Eq. 2-1, N is the number of
samples, and is the standard deviation.σ

F2 '
1

N& 1 j
N &1

i ' 0
(xi & µ)2

In electronics, the mean is commonly called the DC (direct current) value.
Likewise, AC (alternating current) refers to how the signal fluctuates around
the mean value. If the signal is a simple repetitive waveform, such as a sine
or square wave, its excursions can be described by its peak-to-peak amplitude.
Unfortunately, most acquired signals do not show a well defined peak-to-peak
value, but have a random nature, such as the signals in Fig. 2-1. A more
generalized method must be used in these cases, called the standard
deviation, denoted by FF (a lower case Greek sigma).

As a starting point, the expression, , describes how far the sample*xi& µ* i th

deviates (differs) from the mean. The average deviation of a signal is found
by summing the deviations of all the individual samples, and then dividing by
the number of samples, N. Notice that we take the absolute value of each
deviation before the summation; otherwise the positive and negative terms
would average to zero. The average deviation provides a single number
representing the typical distance that the samples are from the mean. While
convenient and straightforward, the average deviation is almost never used in
statistics. This is because it doesn't fit well with the physics of how signals
operate. In most cases, the important parameter is not the deviation from the
mean, but the power represented by the deviation from the mean. For example,
when random noise signals combine in an electronic circuit, the resultant noise
is equal to the combined power of the individual signals, not their combined
amplitude.

The standard deviation is similar to the average deviation, except the
averaging is done with power instead of amplitude. This is achieved by
squaring each of the deviations before taking the average (remember, power %
voltage2). To finish, the square root is taken to compensate for the initial
squaring. In equation form, the standard deviation is calculated:

In the alternative notation: .F' (x0& µ)2% (x1& µ)2% ˛% (xN&1& µ)2 / (N&1)
Notice that the average is carried out by dividing by instead of N. ThisN& 1
is a subtle feature of the equation that will be discussed in the next section.
The term, F2, occurs frequently in statistics and is given the name variance.
The standard deviation is a measure of how far the signal fluctuates from the
mean. The variance represents the power of this fluctuation. Another term
you should become familiar with is the rms (root-mean-square) value,
frequently used in electronics. By definition, the standard deviation only
measures the AC portion of a signal, while the rms value measures both the AC
and DC components. If a signal has no DC component, its rms value is
identical to its standard deviation. Figure 2-2 shows the relationship between
the standard deviation and the peak-to-peak value of several common
waveforms.

Chapter 2- Statistics, Probability and Noise 15

Vpp
F

Vpp
F

Vpp F

Vpp
F

FIGURE 2-2
Ratio of the peak-to-peak amplitude to the standard deviation for several common waveforms. For the square
wave, this ratio is 2; for the triangle wave it is ; for the sine wave it is . While random12 ' 3.46 2 2 ' 2.83
noise has no exact peak-to-peak value, it is approximately 6 to 8 times the standard deviation.

a. Square Wave, Vpp = 2F

c. Sine wave, Vpp = 2 2F d. Random noise, Vpp . 6-8 F

b. Triangle wave, Vpp = 12 F

100 CALCULATION OF THE MEAN AND STANDARD DEVIATION
110 '
120 DIM X[511] 'The signal is held in X[0] to X[511]
130 N% = 512 'N% is the number of points in the signal
140 '
150 GOSUB XXXX 'Mythical subroutine that loads the signal into X[]
160 '
170 MEAN = 0 'Find the mean via Eq. 2-1
180 FOR I% = 0 TO N%-1
190 MEAN = MEAN + X[I%]
200 NEXT I%
210 MEAN = MEAN/N%
220 '
230 VARIANCE = 0 'Find the standard deviation via Eq. 2-2
240 FOR I% = 0 TO N%-1
250 VARIANCE = VARIANCE + (X[I%] - MEAN)^2
260 NEXT I%
270 VARIANCE = VARIANCE/(N%-1)
280 SD = SQR(VARIANCE)
290 '
300 PRINT MEAN SD 'Print the calculated mean and standard deviation
310 '
320 END

TABLE 2-1

Table 2-1 lists a computer routine for calculating the mean and standard
deviation using Eqs. 2-1 and 2-2. The programs in this book are intended to
convey algorithms in the most straightforward way; all other factors are
treated as secondary. Good programming techniques are disregarded if it
makes the program logic more clear. For instance: a simplified version of
BASIC is used, line numbers are included, the only control structure allowed
is the FOR-NEXT loop, there are no I/O statements, etc. Think of these
programs as an alternative way of understanding the equations used

The Scientist and Engineer's Guide to Digital Signal Processing16

F2 '
1

N& 1 j
N&1

i'0
x 2

i &
1
N j

N&1

i'0
xi

2EQUATION 2-3
Calculation of the standard deviation using
running statistics. This equation provides the
same result as Eq. 2-2, but with less round-
of f no ise and grea te r computa t iona l
efficiency. The signal is expressed in terms
of three accumulated parameters: N, the total
number of samples; sum, the sum of these
samples; and sum of squares, the sum of the
squares of the samples. The mean and
standard deviation are then calculated from
these three accumulated parameters.

or using a simpler notation,

F2 '
1

N& 1
sum of squares &

sum 2

N

in DSP. If you can't grasp one, maybe the other will help. In BASIC, the
% character at the end of a variable name indicates it is an integer. All
other variables are floating point. Chapter 4 discusses these variable types
in detail.

This method of calculating the mean and standard deviation is adequate for
many applications; however, it has two limitations. First, if the mean is
much larger than the standard deviation, Eq. 2-2 involves subtracting two
numbers that are very close in value. This can result in excessive round-off
error in the calculations, a topic discussed in more detail in Chapter 4.
Second, it is often desirable to recalculate the mean and standard deviation
as new samples are acquired and added to the signal. We will call this type
of calculation: running statistics. While the method of Eqs. 2-1 and 2-2
can be used for running statistics, it requires that all of the samples be
involved in each new calculation. This is a very inefficient use of
computational power and memory.

A solution to these problems can be found by manipulating Eqs. 2-1 and 2-2 to
provide another equation for calculating the standard deviation:

While moving through the signal, a running tally is kept of three parameters:
(1) the number of samples already processed, (2) the sum of these samples,
and (3) the sum of the squares of the samples (that is, square the value of
each sample and add the result to the accumulated value). After any number
of samples have been processed, the mean and standard deviation can be
efficiently calculated using only the current value of the three parameters.
Table 2-2 shows a program that reports the mean and standard deviation in
this manner as each new sample is taken into account. This is the method
used in hand calculators to find the statistics of a sequence of numbers.
Every time you enter a number and press the E (summation) key, the three
parameters are updated. The mean and standard deviation can then be found
whenever desired, without having to recalculate the entire sequence.

Chapter 2- Statistics, Probability and Noise 17

100 'MEAN AND STANDARD DEVIATION USING RUNNING STATISTICS
110 '
120 DIM X[511] 'The signal is held in X[0] to X[511]
130 '
140 GOSUB XXXX 'Mythical subroutine that loads the signal into X[]
150 '
160 N% = 0 'Zero the three running parameters
170 SUM = 0
180 SUMSQUARES = 0
190 '
200 FOR I% = 0 TO 511 'Loop through each sample in the signal
210 '
220 N% = N%+1 'Update the three parameters
230 SUM = SUM + X[I%]
240 SUMSQUARES = SUMSQUARES + X[I%]^2
250 '
260 MEAN = SUM/N% 'Calculate mean and standard deviation via Eq. 2-3
270 IF N% = 1 THEN SD = 0: GOTO 300
280 SD = SQR((SUMSQUARES - SUM^2/N%) / (N%-1))
290 '
300 PRINT MEAN SD 'Print the running mean and standard deviation
310 '
320 NEXT I%
330 '
340 END

TABLE 2-2

Before ending this discussion on the mean and standard deviation, two other
terms need to be mentioned. In some situations, the mean describes what is
being measured, while the standard deviation represents noise and other
interference. In these cases, the standard deviation is not important in itself, but
only in comparison to the mean. This gives rise to the term: signal-to-noise
ratio (SNR), which is equal to the mean divided by the standard deviation.
Another term is also used, the coefficient of variation (CV). This is defined
as the standard deviation divided by the mean, multiplied by 100 percent. For
example, a signal (or other group of measure values) with a CV of 2%, has an
SNR of 50. Better data means a higher value for the SNR and a lower value
for the CV.

Signal vs. Underlying Process
Statistics is the science of interpreting numerical data, such as acquired
signals. In comparison, probability is used in DSP to understand the
processes that generate signals. Although they are closely related, the
distinction between the acquired signal and the underlying process is key
to many DSP techniques.

For example, imagine creating a 1000 point signal by flipping a coin 1000
times. If the coin flip is heads, the corresponding sample is made a value of
one. On tails, the sample is set to zero. The process that created this signal
has a mean of exactly 0.5, determined by the relative probability of each
possible outcome: 50% heads, 50% tails. However, it is unlikely that the
actual 1000 point signal will have a mean of exactly 0.5. Random chance

The Scientist and Engineer's Guide to Digital Signal Processing18

EQUATION 2-4
Typical error in calculating the mean of an
underlying process by using a finite number
of samples, N. The parameter, , is theσ
standard deviation.

Typical error '
F

N 1/2

will make the number of ones and zeros slightly different each time the signal
is generated. The probabilities of the underlying process are constant, but the
statistics of the acquired signal change each time the experiment is repeated.
This random irregularity found in actual data is called by such names as:
statistical variation, statistical fluctuation, and statistical noise.

This presents a bit of a dilemma. When you see the terms: mean and standard
deviation, how do you know if the author is referring to the statistics of an
actual signal, or the probabilities of the underlying process that created the
signal? Unfortunately, the only way you can tell is by the context. This is not
so for all terms used in statistics and probability. For example, the histogram
and probability mass function (discussed in the next section) are matching
concepts that are given separate names.

Now, back to Eq. 2-2, calculation of the standard deviation. As previously
mentioned, this equation divides by N-1 in calculating the average of the squared
deviations, rather than simply by N. To understand why this is so, imagine that
you want to find the mean and standard deviation of some process that generates
signals. Toward this end, you acquire a signal of N samples from the process,
and calculate the mean of the signal via Eq. 2.1. You can then use this as an
estimate of the mean of the underlying process; however, you know there will
be an error due to statistical noise. In particular, for random signals, the
typical error between the mean of the N points, and the mean of the underlying
process, is given by:

If N is small, the statistical noise in the calculated mean will be very large.
In other words, you do not have access to enough data to properly
characterize the process. The larger the value of N, the smaller the expected
error will become. A milestone in probability theory, the Strong Law of
Large Numbers, guarantees that the error becomes zero as N approaches
infinity.

In the next step, we would like to calculate the standard deviation of the
acquired signal, and use it as an estimate of the standard deviation of the
underlying process. Herein lies the problem. Before you can calculate the
standard deviation using Eq. 2-2, you need to already know the mean, µ.
However, you don't know the mean of the underlying process, only the mean
of the N point signal, which contains an error due to statistical noise. This
error tends to reduce the calculated value of the standard deviation. To
compensate for this, N is replaced by N-1. If N is large, the difference
doesn't matter. If N is small, this replacement provides a more accurate

Chapter 2- Statistics, Probability and Noise 19

Sample number
0 64 128 192 256 320 384 448 512

-4

-2

0

2

4

6

8

511

a. Changing mean and standard deviation

Sample number
0 64 128 192 256 320 384 448 512

-4

-2

0

2

4

6

8

511

b. Changing mean, constant standard deviation

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 2-3
Examples of signals generated from nonstationary processes. In (a), both the mean and standard deviation
change. In (b), the standard deviation remains a constant value of one, while the mean changes from a value
of zero to two. It is a common analysis technique to break these signals into short segments, and calculate
the statistics of each segment individually.

estimate of the standard deviation of the underlying process. In other words, Eq.
2-2 is an estimate of the standard deviation of the underlying process. If we
divided by N in the equation, it would provide the standard deviation of the
acquired signal.

As an illustration of these ideas, look at the signals in Fig. 2-3, and ask: are the
variations in these signals a result of statistical noise, or is the underlying
process changing? It probably isn't hard to convince yourself that these changes
are too large for random chance, and must be related to the underlying process.
Processes that change their characteristics in this manner are called
nonstationary. In comparison, the signals previously presented in Fig. 2-1
were generated from a stationary process, and the variations result completely
from statistical noise. Figure 2-3b illustrates a common problem with
nonstationary signals: the slowly changing mean interferes with the calculation
of the standard deviation. In this example, the standard deviation of the signal,
over a short interval, is one. However, the standard deviation of the entire
signal is 1.16. This error can be nearly eliminated by breaking the signal into
short sections, and calculating the statistics for each section individually. If
needed, the standard deviations for each of the sections can be averaged to
produce a single value.

The Histogram, Pmf and Pdf
Suppose we attach an 8 bit analog-to-digital converter to a computer, and
acquire 256,000 samples of some signal. As an example, Fig. 2-4a shows
128 samples that might be a part of this data set. The value of each sample
will be one of 256 possibilities, 0 through 255. The histogram displays the
number of samples there are in the signal that have each of these possible
values. Figure (b) shows the histogram for the 128 samples in (a). For

The Scientist and Engineer's Guide to Digital Signal Processing20

Value of sample
90 100 110 120 130 140 150 160 170

0

1

2

3

4

5

6

7

8

9

b. 128 point histogram

Value of sample
90 100 110 120 130 140 150 160 170

0

2000

4000

6000

8000

10000

c. 256,000 point histogram

Sample number
0 16 32 48 64 80 96 112 128

0

64

128

192

127

255

a. 128 samples of 8 bit signal

A
m

pl
itu

de

N
um

be
r o

f o
cc

ur
en

ce
s

N
um

be
r o

f o
cc

ur
en

ce
sFIGURE 2-4

Examples of histograms. Figure (a) shows
128 samples from a very long signal, with
each sample being an integer between 0 and
255. Figures (b) and (c) show histograms
using 128 and 256,000 samples from the
signal, respectively. As shown, the histogram
is smoother when more samples are used.

EQUATION 2-5
The sum of all of the values in the histogram is
equal to the number of points in the signal. In
this equation, Hi is the histogram, N is the
number of points in the signal, and M is the
number of points in the histogram.

N ' j
M&1

i '0
Hi

example, there are 2 samples that have a value of 110, 7 samples that have a
value of 131, 0 samples that have a value of 170, etc. We will represent the
histogram by Hi, where i is an index that runs from 0 to M-1, and M is the
number of possible values that each sample can take on. For instance, H50 is the
number of samples that have a value of 50. Figure (c) shows the histogram of
the signal using the full data set, all 256k points. As can be seen, the larger
number of samples results in a much smoother appearance. Just as with the
mean, the statistical noise (roughness) of the histogram is inversely proportional
to the square root of the number of samples used.

From the way it is defined, the sum of all of the values in the histogram must be
equal to the number of points in the signal:

The histogram can be used to efficiently calculate the mean and standard
deviation of very large data sets. This is especially important for images,
which can contain millions of samples. The histogram groups samples

Chapter 2- Statistics, Probability and Noise 21

EQUATION 2-6
Calculation of the mean from the histogram.
This can be viewed as combining all samples
having the same value into groups, and then
using Eq. 2-1 on each group.

µ '
1
N j

M&1

i '0
i Hi

EQUATION 2-7
Calculation of the standard deviation from
the histogram. This is the same concept as
Eq. 2-2, except that all samples having the
same value are operated on at once.

F2 '
1

N& 1 j
M&1

i '0
(i & µ)2 Hi

100 'CALCULATION OF THE HISTOGRAM, MEAN, AND STANDARD DEVIATION
110 '
120 DIM X%[25000] 'X%[0] to X%[25000] holds the signal being processed
130 DIM H%[255] 'H%[0] to H%[255] holds the histogram
140 N% = 25001 'Set the number of points in the signal
150 '
160 FOR I% = 0 TO 255 'Zero the histogram, so it can be used as an accumulator
170 H%[I%] = 0
180 NEXT I%
190 '
200 GOSUB XXXX 'Mythical subroutine that loads the signal into X%[]
210 '
220 FOR I% = 0 TO 25000 'Calculate the histogram for 25001 points
230 H%[X%[I%]] = H%[X%[I%]] + 1
240 NEXT I%
250 '
260 MEAN = 0 'Calculate the mean via Eq. 2-6
270 FOR I% = 0 TO 255
280 MEAN = MEAN + I% * H%[I%]
290 NEXT I%
300 MEAN = MEAN / N%
310 '
320 VARIANCE = 0 'Calculate the standard deviation via Eq. 2-7
330 FOR I% = 0 TO 255
340 VARIANCE = VARIANCE + H%[I%] * (I%-MEAN)^2
350 NEXT I%
360 VARIANCE = VARIANCE / (N%-1)
370 SD = SQR(VARIANCE)
380 '
390 PRINT MEAN SD 'Print the calculated mean and standard deviation.
400 '
410 END

TABLE 2-3

together that have the same value. This allows the statistics to be calculated by
working with a few groups, rather than a large number of individual samples.
Using this approach, the mean and standard deviation are calculated from the
histogram by the equations:

Table 2-3 contains a program for calculating the histogram, mean, and
standard deviation using these equations. Calculation of the histogram is
very fast, since it only requires indexing and incrementing. In comparison,

The Scientist and Engineer's Guide to Digital Signal Processing22

calculating the mean and standard deviation requires the time consuming
operations of addition and multiplication. The strategy of this algorithm is
to use these slow operations only on the few numbers in the histogram, not
the many samples in the signal. This makes the algorithm much faster than
the previously described methods. Think a factor of ten for very long signals
with the calculations being performed on a general purpose computer.

The notion that the acquired signal is a noisy version of the underlying
process is very important; so important that some of the concepts are given
different names. The histogram is what is formed from an acquired signal.
The corresponding curve for the underlying process is called the probability
mass function (pmf). A histogram is always calculated using a finite
number of samples, while the pmf is what would be obtained with an infinite
number of samples. The pmf can be estimated (inferred) from the histogram,
or it may be deduced by some mathematical technique, such as in the coin
flipping example.

Figure 2-5 shows an example pmf, and one of the possible histograms that could
be associated with it. The key to understanding these concepts rests in the units
of the vertical axis. As previously described, the vertical axis of the histogram
is the number of times that a particular value occurs in the signal. The vertical
axis of the pmf contains similar information, except expressed on a fractional
basis. In other words, each value in the histogram is divided by the total
number of samples to approximate the pmf. This means that each value in the
pmf must be between zero and one, and that the sum of all of the values in the
pmf will be equal to one.

The pmf is important because it describes the probability that a certain value
will be generated. For example, imagine a signal with the pmf of Fig. 2-5b,
such as previously shown in Fig. 2-4a. What is the probability that a sample
taken from this signal will have a value of 120? Figure 2-5b provides the
answer, 0.03, or about 1 chance in 34. What is the probability that a
randomly chosen sample will have a value greater than 150? Adding up the
values in the pmf for: 151, 152, 153,@@@, 255, provides the answer, 0.0122,
or about 1 chance in 82. Thus, the signal would be expected to have a value
exceeding 150 on an average of every 82 points. What is the probability that
any one sample will be between 0 and 255? Summing all of the values in
the pmf produces the probability of 1.00, that is, a certainty that this will
occur.

The histogram and pmf can only be used with discrete data, such as a
digitized signal residing in a computer. A similar concept applies to
continuous signals, such as voltages appearing in analog electronics. The
probability density function (pdf), also called the probability distribution
function, is to continuous signals what the probability mass function is to
discrete signals. For example, imagine an analog signal passing through an
analog-to-digital converter, resulting in the digitized signal of Fig. 2-4a. For
simplicity, we will assume that voltages between 0 and 255 millivolts become
digitized into digital numbers between 0 and 255. The pmf of this digital

Chapter 2- Statistics, Probability and Noise 23

Value of sample
90 100 110 120 130 140 150 160 170

0

2000

4000

6000

8000

10000

a. Histogram

Signal level (millivolts)
90 100 110 120 130 140 150 160 170

0.000

0.010

0.020

0.030

0.040

0.050

0.060

c. Probability Density Function (pdf)

Value of sample
90 100 110 120 130 140 150 160 170

0.000

0.010

0.020

0.030

0.040

0.050

0.060

b. Probability Mass Function (pmf)

Pr
ob

ab
ili

ty
 o

f o
cc

ur
en

ce
Pr

ob
ab

ili
ty

 d
en

si
ty

N
um

be
r o

f o
cc

ur
en

ce
s

FIGURE 2-5
The relationship between (a) the histogram, (b) the
probability mass function (pmf), and (c) the
probability density function (pdf). The histogram is
calculated from a finite number of samples. The pmf
describes the probabilities of the underlying process.
The pdf is similar to the pmf, but is used with
continuous rather than discrete signals. Even though
the vertical axis of (b) and (c) have the same values
(0 to 0.06), this is only a coincidence of this example.
The amplitude of these three curves is determined by:
(a) the sum of the values in the histogram being equal
to the number of samples in the signal; (b) the sum of
the values in the pmf being equal to one, and (c) the
area under the pdf curve being equal to one.

signal is shown by the markers in Fig. 2-5b. Similarly, the pdf of the analog
signal is shown by the continuous line in (c), indicating the signal can take on
a continuous range of values, such as the voltage in an electronic circuit.

The vertical axis of the pdf is in units of probability density, rather than just
probability. For example, a pdf of 0.03 at 120.5 does not mean that the a
voltage of 120.5 millivolts will occur 3% of the time. In fact, the probability
of the continuous signal being exactly 120.5 millivolts is infinitesimally small.
This is because there are an infinite number of possible values that the signal
needs to divide its time between: 120.49997, 120.49998, 120.49999, etc. The
chance that the signal happens to be exactly 120.50000˛ is very remote
indeed!

To calculate a probability, the probability density is multiplied by a range of
values. For example, the probability that the signal, at any given instant, will
be between the values of 120 and 121 is: (121&120) × 0.03 ' 0.03. The
probabi l i ty that the s ignal wil l be between 120.4 and 120.5 is :

, etc. If the pdf is not constant over the range of(120.5&120.4) × 0.03 ' 0.003
interest, the multiplication becomes the integral of the pdf over that range. In
other words, the area under the pdf bounded by the specified values. Since the
value of the signal must always be something, the total area under the pdf

The Scientist and Engineer's Guide to Digital Signal Processing24

Time (or other variable)
0 16 32 48 64 80 96 112 128

-2

-1

0

1

2

a. Square wave

127

pdf

FIGURE 2-6
Three common waveforms and their
probability density functions. As in
these examples, the pdf graph is often
rotated one-quarter turn and placed at
the side of the signal it describes. The
pdf of a square wave, shown in (a),
consists of two infinitesimally narrow
spikes, corresponding to the signal only
having two possible values. The pdf of
the triangle wave, (b), has a constant
value over a range, and is often called a
uniform distribution. The pdf of random
noise, as in (c), is the most interesting of
all, a bell shaped curve known as a
Gaussian.

Time (or other variable)
0 16 32 48 64 80 96 112 128

-2

-1

0

1

2

127

pdf
b. Triangle wave

Time (or other variable)
0 16 32 48 64 80 96 112 128

-2

-1

0

1

2

127

pdf
c. Random noise

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

curve, the integral from to , will always be equal to one. This is&4 %4
analogous to the sum of all of the pmf values being equal to one, and the sum
of all of the histogram values being equal to N.

The histogram, pmf, and pdf are very similar concepts. Mathematicians
always keep them straight, but you will frequently find them used
interchangeably (and therefore, incorrectly) by many scientists and

Chapter 2- Statistics, Probability and Noise 25

100 'CALCULATION OF BINNED HISTOGRAM
110 '
120 DIM X[25000] 'X[0] to X[25000] holds the floating point signal,
130 ' 'with each sample having a value between 0.0 and 10.0.
140 DIM H%[999] 'H%[0] to H%[999] holds the binned histogram
150 '
160 FOR I% = 0 TO 999 'Zero the binned histogram for use as an accumulator
170 H%[I%] = 0
180 NEXT I%
190 '
200 GOSUB XXXX 'Mythical subroutine that loads the signal into X%[]
210 '
220 FOR I% = 0 TO 25000 ' 'Calculate the binned histogram for 25001 points
230 BINNUM% = INT(X[I%] * 100)
240 H%[BINNUM%] = H%[BINNUM%] + 1
250 NEXT I%
260 '
270 END

TABLE 2-4

engineers. Figure 2-6 shows three continuous waveforms and their pdfs. If
these were discrete signals, signified by changing the horizontal axis labeling
to "sample number," pmfs would be used.

A problem occurs in calculating the histogram when the number of levels
each sample can take on is much larger than the number of samples in the
signal. This is always true for signals represented in floating point
notation, where each sample is stored as a fractional value. For example,
integer representation might require the sample value to be 3 or 4, while
floating point allows millions of possible fractional values between 3 and
4. The previously described approach for calculating the histogram involves
counting the number of samples that have each of the possible quantization
levels. This is not possible with floating point data because there are
billions of possible levels that would have to be taken into account. Even
worse, nearly all of these possible levels would have no samples that
correspond to them. For example, imagine a 10,000 sample signal, with
each sample having one billion possible values. The conventional histogram
would consist of one billion data points, with all but about 10,000 of them
having a value of zero.

The solution to these problems is a technique called binning. This is done
by arbitrarily selecting the length of the histogram to be some convenient
number, such as 1000 points, often called bins. The value of each bin
represents the total number of samples in the signal that have a value within
a certain range. For example, imagine a floating point signal that contains
values between 0.0 and 10.0, and a histogram with 1000 bins. Bin 0 in the
histogram is the number of samples in the signal with a value between 0 and
0.01, bin 1 is the number of samples with a value between 0.01 and 0.02,
and so forth, up to bin 999 containing the number of samples with a value
between 9.99 and 10.0. Table 2-4 presents a program for calculating a
binned histogram in this manner.

The Scientist and Engineer's Guide to Digital Signal Processing26

Bin number in histogram
0 2 4 6 8

0

40

80

120

160

c. Histogram of 9 bins

Bin number in histogram
0 150 300 450 600

0

0.2

0.4

0.6

0.8

b. Histogram of 601 bins

Sample number
0 50 100 150 200 250 300

0

1

2

3

4

a. Example signal

FIGURE 2-7
Example of binned histograms. As shown in
(a), the signal used in this example is 300
samples long, with each sample a floating point
number uniformly distributed between 1 and 3.
Figures (b) and (c) show binned histograms of
this signal, using 601 and 9 bins, respectively.
As shown, a large number of bins results in poor
resolution along the vertical axis, while a small
number of bins provides poor resolution along
the horizontal axis. Using more samples makes
the resolution better in both directions.

A
m

pl
itu

de

N
um

be
r o

f o
cc

ur
en

ce
s

N
um

be
r o

f o
cc

ur
en

ce
s

y (x) ' e &x 2

How many bins should be used? This is a compromise between two problems.
As shown in Fig. 2-7, too many bins makes it difficult to estimate the
amplitude of the underlying pmf. This is because only a few samples fall into
each bin, making the statistical noise very high. At the other extreme, too few
of bins makes it difficult to estimate the underlying pmf in the horizontal
direction. In other words, the number of bins controls a tradeoff between
resolution along the y-axis, and resolution along the x-axis.

The Normal Distribution
Signals formed from random processes usually have a bell shaped pdf. This is
called a normal distribution, a Gauss distribution, or a Gaussian, after
the great German mathematician, Karl Friedrich Gauss (1777-1855). The
reason why this curve occurs so frequently in nature will be discussed shortly
in conjunction with digital noise generation. The basic shape of the curve is
generated from a negative squared exponent:

Chapter 2- Statistics, Probability and Noise 27

P (x) '
1

2BF
e & (x & µ)2/2F2

EQUATION 2-8
Equation for the normal distribution, also
called the Gauss distribution, or simply a
Gaussian. In this relation, P(x) is the
probability distribution function, µ is the
mean, and is the standard deviation. σ

x
0 5 10 15 20 25 30 35 40

0.0

0.1

0.2

0.3

-3F -2F -1F 1F 3F2F 4F-4F µ

c. Mean = 20, F = 3

x
-5 -4 -3 -2 -1 0 1 2 3 4 5

0.0

0.5

1.0

1.5

a. Raw shape, no normalization

x
-5 -4 -3 -2 -1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

b. Mean = 0, F = 1

y (x) ' e &x 2

FIGURE 2-8
Examples of Gaussian curves. Figure (a)
shows the shape of the raw curve without
normalization or the addition of adjustable
parameters. In (b) and (c), the complete
Gaussian curve is shown for various means
and standard deviations.

y(
x)

P(
x)

P(
x)

This raw curve can be converted into the complete Gaussian by adding an
adjustable mean, µ, and standard deviation, F. In addition, the equation must
be normalized so that the total area under the curve is equal to one, a
requirement of all probability distribution functions. This results in the general
form of the normal distribution, one of the most important relations in statistics
and probability:

Figure 2-8 shows several examples of Gaussian curves with various means and
standard deviations. The mean centers the curve over a particular value, while
the standard deviation controls the width of the bell shape.

An interesting characteristic of the Gaussian is that the tails drop toward
zero very rapidly, much faster than with other common functions such as
decaying exponentials or 1/x. For example, at two, four, and six standard

The Scientist and Engineer's Guide to Digital Signal Processing28

deviations from the mean, the value of the Gaussian curve has dropped to about
1/19, 1/7563, and 1/166,666,666, respectively. This is why normally
distributed signals, such as illustrated in Fig. 2-6c, appear to have an
approximate peak-to-peak value. In principle, signals of this type can
experience excursions of unlimited amplitude. In practice, the sharp drop of the
Gaussian pdf dictates that these extremes almost never occur. This results in
the waveform having a relatively bounded appearance with an apparent peak-
to-peak amplitude of about 6-8F.

As previously shown, the integral of the pdf is used to find the probability that
a signal will be within a certain range of values. This makes the integral of the
pdf important enough that it is given its own name, the cumulative
distribution function (cdf). An especially obnoxious problem with the
Gaussian is that it cannot be integrated using elementary methods. To get
around this, the integral of the Gaussian can be calculated by numerical
integration. This involves sampling the continuous Gaussian curve very finely,
say, a few million points between -10F and +10F. The samples in this discrete
signal are then added to simulate integration. The discrete curve resulting from
this simulated integration is then stored in a table for use in calculating
probabilities.

The cdf of the normal distribution is shown in Fig. 2-9, with its numeric
values listed in Table 2-5. Since this curve is used so frequently in
probability, it is given its own symbol: (upper case Greek phi). ForM(x)
example, has a value of 0.0228. This indicates that there is a 2.28%M(&2)
probability that the value of the signal will be between -4 and two standard
deviations below the mean, at any randomly chosen time. Likewise, the
value: , means there is an 84.13% chance that the value of theM(1) ' 0.8413
signal, at a randomly selected instant, will be between -4 and one standard
deviation above the mean. To calculate the probability that the signal will
be will be between two values, it is necessary to subtract the appropriate
numbers found in the table. For example, the probability that theM(x)
value of the signal, at some randomly chosen time, will be between two
standard deviations below the mean and one standard deviation above the
mean, is given by: , or 81.85%M(1) & M(&2) ' 0.8185

Using this method, samples taken from a normally distributed signal will be
within ±1F of the mean about 68% of the time. They will be within ±2F about
95% of the time, and within ±3F about 99.75% of the time. The probability
of the signal being more than 10 standard deviations from the mean is so
minuscule, it would be expected to occur for only a few microseconds since the
beginning of the universe, about 10 billion years!

Equation 2-8 can also be used to express the probability mass function of
normally distributed discrete signals. In this case, x is restricted to be one of
the quantized levels that the signal can take on, such as one of the 4096
binary values exiting a 12 bit analog-to-digital converter. Ignore the 1/ 2BF
term, it is only used to make the total area under the pdf curve equal to
one. Instead, you must include whatever term is needed to make the sum
of all the values in the pmf equal to one. In most cases, this is done by

Chapter 2- Statistics, Probability and Noise 29

x
-4 -3 -2 -1 0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
(x

)

FIGURE 2-9 & TABLE 2-5
M(x), the cumulative distribution function of
the normal distribution (mean = 0, standard
deviation = 1). These values are calculated by
numerically integrating the normal distribution
shown in Fig. 2-8b. In words, M(x) is the
probability that the value of a normally
distributed signal, at some randomly chosen
time, will be less than x. In this table, the
value of x is expressed in units of standard
deviations referenced to the mean.

 x M(x)

 -3.4 .0003
 -3.3 .0005
 -3.2 .0007
 -3.1 .0010
 -3.0 .0013
 -2.9 .0019
 -2.8 .0026
 -2.7 .0035
 -2.6 .0047
 -2.5 .0062
 -2.4 .0082
 -2.3 .0107
 -2.2 .0139
 -2.1 .0179
 -2.0 .0228
 -1.9 .0287
 -1.8 .0359
 -1.7 .0446
 -1.6 .0548
 -1.5 .0668
 -1.4 .0808
 -1.3 .0968
 -1.2 .1151
 -1.1 .1357
 -1.0 .1587
 -0.9 .1841
 -0.8 .2119
 -0.7 .2420
 -0.6 .2743
 -0.5 .3085
 -0.4 .3446
 -0.3 .3821
 -0.2 .4207
 -0.1 .4602
 0.0 .5000

 x M(x)

 0.0 .5000
 0.1 .5398
 0.2 .5793
 0.3 .6179
 0.4 .6554
 0.5 .6915
 0.6 .7257
 0.7 .7580
 0.8 .7881
 0.9 .8159
 1.0 .8413
 1.1 .8643
 1.2 .8849
 1.3 .9032
 1.4 .9192
 1.5 .9332
 1.6 .9452
 1.7 .9554
 1.8 .9641
 1.9 .9713
 2.0 .9772
 2.1 .9821
 2.2 .9861
 2.3 .9893
 2.4 .9918
 2.5 .9938
 2.6 .9953
 2.7 .9965
 2.8 .9974
 2.9 .9981
 3.0 .9987
 3.1 .9990
 3.2 .9993
 3.3 .9995
 3.4 .9997

generating the curve without worrying about normalization, summing all of the
unnormalized values, and then dividing all of the values by the sum.

Digital Noise Generation
Random noise is an important topic in both electronics and DSP. For example,
it limits how small of a signal an instrument can measure, the distance a radio
system can communicate, and how much radiation is required to produce an x-
ray image. A common need in DSP is to generate signals that resemble various
types of random noise. This is required to test the performance of algorithms
that must work in the presence of noise.

The heart of digital noise generation is the random number generator. Most
programming languages have this as a standard function. The BASIC
statement: X = RND, loads the variable, X, with a new random number each
time the command is encountered. Each random number has a value between
zero and one, with an equal probability of being anywhere between these two
extremes. Figure 2-10a shows a signal formed by taking 128 samples from this
type of random number generator. The mean of the underlying process that
generated this signal is 0.5, the standard deviation is , and the1 / 12 ' 0.29
distribution is uniform between zero and one.

The Scientist and Engineer's Guide to Digital Signal Processing30

EQUATION 2-9
Generation of normally distributed random
numbers. R1 and R2 are random numbers
with a uniform distribution between zero and
one. This results in X being normally
distributed with a mean of zero, and a
standard deviation of one. The log is base e,
and the cosine is in radians.

X ' (&2 log R1)
1/2 cos(2BR2)

Algorithms need to be tested using the same kind of data they will
encounter in actual operation. This creates the need to generate digital
noise with a Gaussian pdf. There are two methods for generating such
signals using a random number generator. Figure 2-10 illustrates the first
method. Figure (b) shows a signal obtained by adding two random numbers
to form each sample, i.e., X = RND+RND. Since each of the random
numbers can run from zero to one, the sum can run from zero to two. The
mean is now one, and the standard deviation is (remember, when1 / 6
independent random signals are added, the variances also add). As shown,
the pdf has changed from a uniform d is t r ibut ion to a triangular
distribution. That is, the signal spends more of its time around a value of
one, with less time spent near zero or two.

Figure (c) takes this idea a step further by adding twelve random numbers
to produce each sample. The mean is now six, and the standard deviation
is one. What is most important, the pdf has virtually become a Gaussian.
This procedure can be used to create a normally distributed noise signal
with an arbitrary mean and standard deviation. For each sample in the
signal: (1) add twelve random numbers, (2) subtract six to make the mean
equal to zero, (3) multiply by the standard deviation desired, and (4) add
the desired mean.

The mathematical basis for this algorithm is contained in the Central Limit
Theorem, one of the most important concepts in probability. In its simplest
form, the Central Limit Theorem states that a sum of random numbers
becomes normally distributed as more and more of the random numbers are
added together. The Central Limit Theorem does not require the individual
random numbers be from any particular distribution, or even that the
random numbers be from the same distribution. The Central Limit Theorem
provides the reason why normally distributed signals are seen so widely in
nature. Whenever many different random forces are interacting, the
resulting pdf becomes a Gaussian.

In the second method for generating normally distributed random numbers, the
random number generator is invoked twice, to obtain R1 and R2. A normally
distributed random number, X, can then be found:

Just as before, this approach can generate normally distributed random signals
with an arbitrary mean and standard deviation. Take each number generated
by this equation, multiply it by the desired standard deviation, and add the
desired mean.

Chapter 2- Statistics, Probability and Noise 31

Sample number
0 16 32 48 64 80 96 112 128

0

1

2

3

4

5

6

7

8

9

10

11

12

a. X = RND

127

mean = 0.5, F = 1/% 12

Sample number
0 16 32 48 64 80 96 112 128

0

1

2

3

4

5

6

7

8

9

10

11

12

c. X = RND+RND+ ... +RND (12 times)

127

mean = 6.0, F = 1

Sample number
0 16 32 48 64 80 96 112 128

0

1

2

3

4

5

6

7

8

9

10

11

12

b. X = RND+RND

127

mean = 1.0, F = 1/% 6

pdf

pdf

pdf

FIGURE 2-10
Converting a uniform distribution to a Gaussian distribution. Figure (a) shows a signal where each sample is generated
by a random number generator. As indicated by the pdf, the value of each sample is uniformly distributed between zero
and one. Each sample in (b) is formed by adding two values from the random number generator. In (c), each sample
is created by adding twelve values from the random number generator. The pdf of (c) is very nearly Gaussian, with a
mean of six, and a standard deviation of one.

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

The Scientist and Engineer's Guide to Digital Signal Processing32

EQUATION 2-10
Common algorithm for generating uniformly
distributed random numbers between zero
and one. In this method, S is the seed, R is
the new random number, and a,b,& c are
appropriately chosen constants. In words,
the quantity aS+b is divided by c, and the
remainder is taken as R.

R ' (aS% b) modulo c

Random number generators operate by starting with a seed, a number between
zero and one. When the random number generator is invoked, the seed is
passed through a fixed algorithm, resulting in a new number between zero and
one. This new number is reported as the random number, and is then
internally stored to be used as the seed the next time the random number
generator is called. The algorithm that transforms the seed into the new
random number is often of the form:

In this manner, a continuous sequence of random numbers can be generated, all
starting from the same seed. This allows a program to be run multiple times
using exactly the same random number sequences. If you want the random
number sequence to change, most languages have a provision for reseeding the
random number generator, allowing you to choose the number first used as the
seed. A common technique is to use the time (as indicated by the system's
clock) as the seed, thus providing a new sequence each time the program is run.

From a pure mathematical view, the numbers generated in this way cannot be
absolutely random since each number is fully determined by the previous
number. The term pseudo-random is often used to describe this situation.
However, this is not something you should be concerned with. The sequences
generated by random number generators are statistically random to an
exceedingly high degree. It is very unlikely that you will encounter a situation
where they are not adequate.

Precision and Accuracy
Precision and accuracy are terms used to describe systems and methods that
measure, estimate, or predict. In all these cases, there is some parameter you
wish to know the value of. This is called the true value, or simply, truth.
The method provides a measured value, that you want to be as close to the
true value as possible. Precision and accuracy are ways of describing the
error that can exist between these two values.

Unfortunately, precision and accuracy are used interchangeably in non-technical
settings. In fact, dictionaries define them by referring to each other! In spite
of this, science and engineering have very specific definitions for each. You
should make a point of using the terms correctly, and quietly tolerate others
when they use them incorrectly.

Chapter 2- Statistics, Probability and Noise 33

Ocean depth (meters)

500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

20

40

60

80

100

120

140

Accuracy

Precision

true valuemean

FIGURE 2-11
Definitions of accuracy and precision.
Accuracy is the difference between the
true value and the mean of the under-lying
process that generates the data. Precision
is the spread of the values, specified by
the standard deviation, the signal-to-noise
ratio, or the CV.

N
um

be
r o

f o
cc

ur
en

ce
s

As an example, consider an oceanographer measuring water depth using a
sonar system. Short bursts of sound are transmitted from the ship, reflected
from the ocean floor, and received at the surface as an echo. Sound waves
travel at a relatively constant velocity in water, allowing the depth to be found
from the elapsed time between the transmitted and received pulses. As with all
empirical measurements, a certain amount of error exists between the measured
and true values. This particular measurement could be affected by many
factors: random noise in the electronics, waves on the ocean surface, plant
growth on the ocean floor, variations in the water temperature causing the
sound velocity to change, etc.

To investigate these effects, the oceanographer takes many successive readings
at a location known to be exactly 1000 meters deep (the true value). These
measurements are then arranged as the histogram shown in Fig. 2-11. As
would be expected from the Central Limit Theorem, the acquired data are
normally distributed. The mean occurs at the center of the distribution, and
represents the best estimate of the depth based on all of the measured data.
The standard deviation defines the width of the distribution, describing how
much variation occurs between successive measurements.

This situation results in two general types of error that the system can
experience. First, the mean may be shifted from the true value. The amount of
this shift is called the accuracy of the measurement. Second, individual
measurements may not agree well with each other, as indicated by the width of
the distribution. This is called the precision of the measurement, and is
expressed by quoting the standard deviation, the signal-to-noise ratio, or the
CV.

Consider a measurement that has good accuracy, but poor precision; the
histogram is centered over the true value, but is very broad. Although the
measurements are correct as a group, each individual reading is a poor measure
of the true value. This situation is said to have poor repeatability;
measurements taken in succession don't agree well. Poor precision results
from random errors. This is the name given to errors that change each

The Scientist and Engineer's Guide to Digital Signal Processing34

time the measurement is repeated. Averaging several measurements will
always improve the precision. In short, precision is a measure of random
noise.

Now, imagine a measurement that is very precise, but has poor accuracy. This
makes the histogram very slender, but not centered over the true value.
Successive readings are close in value; however, they all have a large error.
Poor accuracy results from systematic errors. These are errors that become
repeated in exactly the same manner each time the measurement is conducted.
Accuracy is usually dependent on how you calibrate the system. For example,
in the ocean depth measurement, the parameter directly measured is elapsed
time. This is converted into depth by a calibration procedure that relates
milliseconds to meters. This may be as simple as multiplying by a fixed
velocity, or as complicated as dozens of second order corrections. Averaging
individual measurements does nothing to improve the accuracy. In short,
accuracy is a measure of calibration.

In actual practice there are many ways that precision and accuracy can become
intertwined. For example, imagine building an electronic amplifier from 1%
resistors. This tolerance indicates that the value of each resistor will be within
1% of the stated value over a wide range of conditions, such as temperature,
humidity, age, etc. This error in the resistance will produce a corresponding
error in the gain of the amplifier. Is this error a problem of accuracy or
precision?

The answer depends on how you take the measurements. For example,
suppose you build one amplifier and test it several times over a few minutes.
The error in gain remains constant with each test, and you conclude the
problem is accuracy. In comparison, suppose you build one thousand of the
amplifiers. The gain from device to device will fluctuate randomly, and the
problem appears to be one of precision. Likewise, any one of these amplifiers
will show gain fluctuations in response to temperature and other environmental
changes. Again, the problem would be called precision.

When deciding which name to call the problem, ask yourself two questions.
First: Will averaging successive readings provide a better measurement? If
yes, call the error precision; if no, call it accuracy. Second: Will calibration
correct the error? If yes, call it accuracy; if no, call it precision. This may
require some thought, especially related to how the device will be calibrated,
and how often it will be done.

35

CHAPTER

3 ADC and DAC

Most of the signals directly encountered in science and engineering are continuous: light intensity
that changes with distance; voltage that varies over time; a chemical reaction rate that depends
on temperature, etc. Analog-to-Digital Conversion (ADC) and Digital-to-Analog Conversion
(DAC) are the processes that allow digital computers to interact with these everyday signals.
Digital information is different from its continuous counterpart in two important respects: it is
sampled, and it is quantized. Both of these restrict how much information a digital signal can
contain. This chapter is about information management: understanding what information you
need to retain, and what information you can afford to lose. In turn, this dictates the selection
of the sampling frequency, number of bits, and type of analog filtering needed for converting
between the analog and digital realms.

Quantization
First, a bit of trivia. As you know, it is a digital computer, not a digit
computer. The information processed is called digital data, not digit data.
Why then, is analog-to-digital conversion generally called: digitize and
digitization, rather than digitalize and digitalization? The answer is nothing
you would expect. When electronics got around to inventing digital techniques,
the preferred names had already been snatched up by the medical community
nearly a century before. Digitalize and digitalization mean to administer the
heart stimulant digitalis.

Figure 3-1 shows the electronic waveforms of a typical analog-to-digital
conversion. Figure (a) is the analog signal to be digitized. As shown by the
labels on the graph, this signal is a voltage that varies over time. To make
the numbers easier, we will assume that the voltage can vary from 0 to 4.095
volts, corresponding to the digital numbers between 0 and 4095 that will be
produced by a 12 bit digitizer. Notice that the block diagram is broken into
two sections, the sample-and-hold (S/H), and the analog-to-digital converter
(ADC). As you probably learned in electronics classes, the sample-and-hold
is required to keep the voltage entering the ADC constant while the

The Scientist and Engineer's Guide to Digital Signal Processing36

conversion is taking place. However, this is not the reason it is shown here;
breaking the digitization into these two stages is an important theoretical model
for understanding digitization. The fact that it happens to look like common
electronics is just a fortunate bonus.

As shown by the difference between (a) and (b), the output of the sample-and-
hold is allowed to change only at periodic intervals, at which time it is made
identical to the instantaneous value of the input signal. Changes in the input
signal that occur between these sampling times are completely ignored. That
is, sampling converts the independent variable (time in this example) from
continuous to discrete.

As shown by the difference between (b) and (c), the ADC produces an integer
value between 0 and 4095 for each of the flat regions in (b). This introduces
an error, since each plateau can be any voltage between 0 and 4.095 volts. For
example, both 2.56000 volts and 2.56001 volts will be converted into digital
number 2560. In other words, quantization converts the dependent variable
(voltage in this example) from continuous to discrete.

Notice that we carefully avoid comparing (a) and (c), as this would lump the
sampling and quantization together. It is important that we analyze them
separately because they degrade the signal in different ways, as well as being
controlled by different parameters in the electronics. There are also cases
where one is used without the other. For instance, sampling without
quantization is used in switched capacitor filters.

First we will look at the effects of quantization. Any one sample in the
digitized signal can have a maximum error of ±½ LSB (Least Significant
Bit, jargon for the distance between adjacent quantization levels). Figure (d)
shows the quantization error for this particular example, found by subtracting
(b) from (c), with the appropriate conversions. In other words, the digital
output (c), is equivalent to the continuous input (b), plus a quantization error
(d). An important feature of this analysis is that the quantization error appears
very much like random noise.

This sets the stage for an important model of quantization error. In most cases,
quantization results in nothing more than the addition of a specific amount
of random noise to the signal. The additive noise is uniformly distributed
between ±½ LSB, has a mean of zero, and a standard deviation of LSB1/ 12
(-0.29 LSB). For example, passing an analog signal through an 8 bit digitizer
adds an rms noise of: , or about 1/900 of the full scale value. A 120.29 /256
bit conversion adds a noise of: , while a 16 bit0.29 /4096 . 1 /14,000
conversion adds: . Since quantization error is a0.29 /65536 . 1 /227,000
random noise, the number of bits determines the precision of the data. For
example, you might make the statement: "We increased the precision of the
measurement from 8 to 12 bits."

This model is extremely powerful, because the random noise generated by
quantization will simply add to whatever noise is already present in the

Chapter 3- ADC and DAC 37

Time
0 5 10 15 20 25 30 35 40 45 50

3.000

3.005

3.010

3.015

3.020

3.025

a. Original analog signal

Time
0 5 10 15 20 25 30 35 40 45 50

3.000

3.005

3.010

3.015

3.020

3.025

b. Sampled analog signal

Sample number
0 5 10 15 20 25 30 35 40 45 50

3000

3005

3010

3015

3020

3025

c. Digitized signal

Sample number
0 5 10 15 20 25 30 35 40 45 50

-1.0

-0.5

0.0

0.5

1.0

d. Quantization error

analog
input

digital
output

S/H ADC

pdf

FIGURE 3-1
Waveforms illustrating the digitization process. The
conversion is broken into two stages to allow the
effects of sampling to be separated from the effects of
quantization. The first stage is the sample-and-hold
(S/H), where the only information retained is the
instantaneous value of the signal when the periodic
sampling takes place. In the second stage, the ADC
converts the voltage to the nearest integer number.
This results in each sample in the digitized signal
having an error of up to ±½ LSB, as shown in (d). As
a result, quantization can usually be modeled as
simply adding noise to the signal.

A
m

pl
itu

de
 (i

n
vo

lts
)

A
m

pl
itu

de
 (i

n
vo

lts
)

D
ig

ita
l n

um
be

r

Er
ro

r (
in

 L
SB

s)

The Scientist and Engineer's Guide to Digital Signal Processing38

analog signal. For example, imagine an analog signal with a maximum
amplitude of 1.0 volt, and a random noise of 1.0 millivolt rms. Digitizing this
signal to 8 bits results in 1.0 volt becoming digital number 255, and 1.0
millivolt becoming 0.255 LSB. As discussed in the last chapter, random noise
signals are combined by adding their variances. That is, the signals are added
in quadrature: . The total noise on the digitized signal isA 2%B 2 ' C
therefore given by: LSB. This is an increase of about0.2552 % 0.292 ' 0.386
50% over the noise already in the analog signal. Digitizing this same signal
to 12 bits would produce virtually no increase in the noise, and nothing would
be lost due to quantization. When faced with the decision of how many bits
are needed in a system, ask two questions: (1) How much noise is already
present in the analog signal? (2) How much noise can be tolerated in the
digital signal?

When isn't this model of quantization valid? Only when the quantization
error cannot be treated as random. The only common occurrence of this
is when the analog signal remains at about the same value for many
consecutive samples, as is illustrated in Fig. 3-2a. The output remains
stuck on the same digital number for many samples in a row, even though
the analog signal may be changing up to ±½ LSB. Instead of being an
additive random noise, the quantization error now looks like a thresholding
effect or weird distortion.

Dithering is a common technique for improving the digitization of these
slowly varying signals. As shown in Fig. 3-2b, a small amount of random
noise is added to the analog signal. In this example, the added noise is
normally distributed with a standard deviation of 2/3 LSB, resulting in a peak-
to-peak amplitude of about 3 LSB. Figure (c) shows how the addition of this
dithering noise has affected the digitized signal. Even when the original analog
signal is changing by less than ±½ LSB, the added noise causes the digital
output to randomly toggle between adjacent levels.

To understand how this improves the situation, imagine that the input signal
is a constant analog voltage of 3.0001 volts, making it one-tenth of the way
between the digital levels 3000 and 3001. Without dithering, taking
10,000 samples of this signal would produce 10,000 identical numbers, all
having the value of 3000. Next, repeat the thought experiment with a small
amount of dithering noise added. The 10,000 values will now oscillate
between two (or more) levels, with about 90% having a value of 3000, and
10% having a value of 3001. Taking the average of all 10,000 values
results in something close to 3000.1. Even though a single measurement
has the inherent ±½ LSB limitation, the statistics of a large number of the
samples can do much better. This is quite a strange situation: adding
noise provides more information.

Circuits for dithering can be quite sophisticated, such as using a computer
to generate random numbers, and then passing them through a DAC to
produce the added noise. After digitization, the computer can subtract

Chapter 3- ADC and DAC 39

Time (or sample number)
0 5 10 15 20 25 30 35 40 45 50

3000

3001

3002

3003

3004

3005

original analog signal

digital signal

c. Digitization of dithered signal

Time (or sample number)
0 5 10 15 20 25 30 35 40 45 50

3000

3001

3002

3003

3004

3005

a. Digitization of a small amplitude signal

analog signal

digital signal

Time
0 5 10 15 20 25 30 35 40 45 50

3000

3001

3002

3003

3004

3005

original analog signal

with added noise

b. Dithering noise added

M
ill

iv
ol

ts
 (o

r d
ig

ita
l n

um
be

r)
M

ill
iv

ol
ts

M
ill

iv
ol

ts
 (o

r d
ig

ita
l n

um
be

r)

FIGURE 3-2
Illustration of dithering. Figure (a) shows how
an analog signal that varies less than ±½ LSB can
become stuck on the same quantization level
during digitization. Dithering improves this
situation by adding a small amount of random
noise to the analog signal, such as shown in (b).
In this example, the added noise is normally
distributed with a standard deviation of 2/3 LSB.
As shown in (c), the added noise causes the
digitized signal to toggle between adjacent
quantization levels, providing more information
about the original signal.

the random numbers from the digital signal using floating point arithmetic.
This elegant technique is called subtractive dither, but is only used in the
most elaborate systems. The simplest method, although not always possible,
is to use the noise already present in the analog signal for dithering.

The Sampling Theorem
The definition of proper sampling is quite simple. Suppose you sample a
continuous signal in some manner. If you can exactly reconstruct the analog
signal from the samples, you must have done the sampling properly. Even if
the sampled data appears confusing or incomplete, the key information has been
captured if you can reverse the process.

Figure 3-3 shows several sinusoids before and after digitization. The
continuous line represents the analog signal entering the ADC, while the square
markers are the digital signal leaving the ADC. In (a), the analog signal is a
constant DC value, a cosine wave of zero frequency. Since the analog signal
is a series of straight lines between each of the samples, all of the information
needed to reconstruct the analog signal is contained in the digital data.
According to our definition, this is proper sampling.

The Scientist and Engineer's Guide to Digital Signal Processing40

The sine wave shown in (b) has a frequency of 0.09 of the sampling rate. This
might represent, for example, a 90 cycle/second sine wave being sampled at
1000 samples/second. Expressed in another way, there are 11.1 samples taken
over each complete cycle of the sinusoid. This situation is more complicated
than the previous case, because the analog signal cannot be reconstructed by
simply drawing straight lines between the data points. Do these samples
properly represent the analog signal? The answer is yes, because no other
sinusoid, or combination of sinusoids, will produce this pattern of samples
(within the reasonable constraints listed below). These samples correspond to
only one analog signal, and therefore the analog signal can be exactly
reconstructed. Again, an instance of proper sampling.

In (c), the situation is made more difficult by increasing the sine wave's
frequency to 0.31 of the sampling rate. This results in only 3.2 samples per
sine wave cycle. Here the samples are so sparse that they don't even appear
to follow the general trend of the analog signal. Do these samples properly
represent the analog waveform? Again, the answer is yes, and for exactly the
same reason. The samples are a unique representation of the analog signal.
All of the information needed to reconstruct the continuous waveform is
contained in the digital data. How you go about doing this will be discussed
later in this chapter. Obviously, it must be more sophisticated than just
drawing straight lines between the data points. As strange as it seems, this is
proper sampling according to our definition.

In (d), the analog frequency is pushed even higher to 0.95 of the sampling rate,
with a mere 1.05 samples per sine wave cycle. Do these samples properly
represent the data? No, they don't! The samples represent a different sine wave
from the one contained in the analog signal. In particular, the original sine
wave of 0.95 frequency misrepresents itself as a sine wave of 0.05 frequency
in the digital signal. This phenomenon of sinusoids changing frequency during
sampling is called aliasing. Just as a criminal might take on an assumed name
or identity (an alias), the sinusoid assumes another frequency that is not its
own. Since the digital data is no longer uniquely related to a particular analog
signal, an unambiguous reconstruction is impossible. There is nothing in the
sampled data to suggest that the original analog signal had a frequency of 0.95
rather than 0.05. The sine wave has hidden its true identity completely; the
perfect crime has been committed! According to our definition, this is an
example of improper sampling.

This line of reasoning leads to a milestone in DSP, the sampling theorem.
Frequently this is called the Shannon sampling theorem, or the Nyquist
sampling theorem, after the authors of 1940s papers on the topic. The sampling
theorem indicates that a continuous signal can be properly sampled, only if it
does not contain frequency components above one-half of the sampling rate.
For instance, a sampling rate of 2,000 samples/second requires the analog
signal to be composed of frequencies below 1000 cycles/second. If frequencies
above this limit are present in the signal, they will be aliased to frequencies
between 0 and 1000 cycles/second, combining with whatever information that
was legitimately there.

Chapter 3- ADC and DAC 41

Time (or sample number)
-3

-2

-1

0

1

2

3

c. Analog frequency = 0.31 of sampling rate

Time (or sample number)
-3

-2

-1

0

1

2

3

d. Analog frequency = 0.95 of sampling rate

Time (or sample number)
-3

-2

-1

0

1

2

3

a. Analog frequency = 0.0 (i.e., DC)

Time (or sample number)
-3

-2

-1

0

1

2

3

b. Analog frequency = 0.09 of sampling rate

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

FIGURE 3-3
Illustration of proper and improper sampling. A continuous signal is sampled properly if the samples contain all the
information needed to recreate the original waveform. Figures (a), (b), and (c) illustrate proper sampling of three
sinusoidal waves. This is certainly not obvious, since the samples in (c) do not even appear to capture the shape of the
waveform. Nevertheless, each of these continuous signals forms a unique one-to-one pair with its pattern of samples.
This guarantees that reconstruction can take place. In (d), the frequency of the analog sine wave is greater than the
Nyquist frequency (one-half of the sampling rate). This results in aliasing, where the frequency of the sampled data is
different from the frequency of the continuous signal. Since aliasing has corrupted the information, the original signal
cannot be reconstructed from the samples.

A
m

pl
itu

de

Two terms are widely used when discussing the sampling theorem: the
Nyquist frequency and the Nyquist rate. Unfortunately, their meaning is
not standardized. To understand this, consider an analog signal composed of
frequencies between DC and 3 kHz. To properly digitize this signal it must
be sampled at 6,000 samples/sec (6 kHz) or higher. Suppose we choose to
sample at 8,000 samples/sec (8 kHz), allowing frequencies between DC and 4
kHz to be properly represented. In this situation there are four important
frequencies: (1) the highest frequency in the signal, 3 kHz; (2) twice this
frequency, 6 kHz; (3) the sampling rate, 8 kHz; and (4) one-half the sampling
rate, 4 kHz. Which of these four is the Nyquist frequency and which is the
Nyquist rate? It depends who you ask! All of the possible combinations are

The Scientist and Engineer's Guide to Digital Signal Processing42

used. Fortunately, most authors are careful to define how they are using the
terms. In this book, they are both used to mean one-half the sampling rate.

Figure 3-4 shows how frequencies are changed during aliasing. The key
point to remember is that a digital signal cannot contain frequencies above
one-half the sampling rate (i.e., the Nyquist frequency/rate). When the
frequency of the continuous wave is below the Nyquist rate, the frequency
of the sampled data is a match. However, when the continuous signal's
frequency is above the Nyquist rate, aliasing changes the frequency into
something that can be represented in the sampled data. As shown by the
zigzagging line in Fig. 3-4, every continuous frequency above the Nyquist
rate has a corresponding digital frequency between zero and one-half the
sampling rate. If there happens to be a sinusoid already at this lower
frequency, the aliased signal will add to it , resulting in a loss of
information. Aliasing is a double curse; information can be lost about the
higher and the lower frequency. Suppose you are given a digital signal
containing a frequency of 0.2 of the sampling rate. If this signal were
obtained by proper sampling, the original analog signal must have had a
frequency of 0.2. If aliasing took place during sampling, the digital
frequency of 0.2 could have come from any one of an infinite number of
frequencies in the analog signal: 0.2, 0.8, 1.2, 1.8, 2.2, ˛ .

Just as aliasing can change the frequency during sampling, it can also change
the phase. For example, look back at the aliased signal in Fig. 3-3d. The
aliased digital signal is inverted from the original analog signal; one is a sine
wave while the other is a negative sine wave. In other words, aliasing has
changed the frequency and introduced a 180E phase shift. Only two phase
shifts are possible: 0E (no phase shift) and 180E (inversion). The zero phase
shift occurs for analog frequencies of 0 to 0.5, 1.0 to 1.5, 2.0 to 2.5, etc. An
inverted phase occurs for analog frequencies of 0.5 to 1.0, 1.5 to 2.0, 2.5 to
3.0, and so on.

Now we will dive into a more detailed analysis of sampling and how aliasing
occurs. Our overall goal is to understand what happens to the information
when a signal is converted from a continuous to a discrete form. The problem
is, these are very different things; one is a continuous waveform while the
other is an array of numbers. This "apples-to-oranges" comparison makes the
analysis very difficult. The solution is to introduce a theoretical concept called
the impulse train.

Figure 3-5a shows an example analog signal. Figure (c) shows the signal
sampled by using an impulse train. The impulse train is a continuous signal
consisting of a series of narrow spikes (impulses) that match the original signal
at the sampling instants. Each impulse is infinitesimally narrow, a concept that
will be discussed in Chapter 13. Between these sampling times the value of the
waveform is zero. Keep in mind that the impulse train is a theoretical concept,
not a waveform that can exist in an electronic circuit. Since both the original
analog signal and the impulse train are continuous waveforms, we can make an
"apples-apples" comparison between the two.

Chapter 3- ADC and DAC 43

Continuous frequency (as a fraction of the sampling rate)
0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.1

0.2

0.3

0.4

0.5

DC
Nyquist

Frequency

GOOD
ALIASED

FIGURE 3-4
Conversion of analog frequency into digital frequency during sampling. Continuous signals with
a frequency less than one-half of the sampling rate are directly converted into the corresponding
digital frequency. Above one-half of the sampling rate, aliasing takes place, resulting in the frequency
being misrepresented in the digital data. Aliasing always changes a higher frequency into a lower
frequency between 0 and 0.5. In addition, aliasing may also change the phase of the signal by 180
degrees.

Continuous frequency (as a fraction of the sampling rate)
0.0 0.5 1.0 1.5 2.0 2.5

-90

0

90

180

270

D
ig

ita
l f

re
qu

en
cy

D
ig

ita
l p

ha
se

 (d
eg

re
es

)

Now we need to examine the relationship between the impulse train and the
discrete signal (an array of numbers). This one is easy; in terms of information
content, they are identical. If one is known, it is trivial to calculate the other.
Think of these as different ends of a bridge crossing between the analog and
digital worlds. This means we have achieved our overall goal once we
understand the consequences of changing the waveform in Fig. 3-5a into the
waveform in Fig. 3.5c.

Three continuous waveforms are shown in the left-hand column in Fig. 3-5. The
corresponding frequency spectra of these signals are displayed in the right-
hand column. This should be a familiar concept from your knowledge of
electronics; every waveform can be viewed as being composed of sinusoids of
varying amplitude and frequency. Later chapters will discuss the frequency
domain in detail. (You may want to revisit this discussion after becoming more
familiar with frequency spectra).

Figure (a) shows an analog signal we wish to sample. As indicated by its
frequency spectrum in (b), it is composed only of frequency components
between 0 and about 0.33 fs, where fs is the sampling frequency we intend to

The Scientist and Engineer's Guide to Digital Signal Processing44

use. For example, this might be a speech signal that has been filtered to
remove all frequencies above 3.3 kHz. Correspondingly, fs would be 10 kHz
(10,000 samples/second), our intended sampling rate.

Sampling the signal in (a) by using an impulse train produces the signal
shown in (c), and its frequency spectrum shown in (d). This spectrum is a
duplication of the spectrum of the original signal. Each multiple of the
sampling frequency, fs, 2fs, 3fs, 4fs, etc., has received a copy and a left-for-
right flipped copy of the original frequency spectrum. The copy is called
the upper sideband, while the flipped copy is called the lower sideband.
Sampling has generated new frequencies. Is this proper sampling? The
answer is yes, because the signal in (c) can be transformed back into the
signal in (a) by eliminating all frequencies above ½fs. That is, an analog
low-pass filter will convert the impulse train, (b), back into the original
analog signal, (a).

If you are already familiar with the basics of DSP, here is a more technical
explanation of why this spectral duplication occurs. (Ignore this paragraph
if you are new to DSP). In the time domain, sampling is achieved by
multiplying the original signal by an impulse train of unity amplitude
spikes. The frequency spectrum of this unity amplitude impulse train is
also a unity amplitude impulse train, with the spikes occurring at multiples
of the sampling frequency, fs, 2fs, 3fs, 4fs, etc. When two time domain
signals are multiplied, their frequency spectra are convolved. This results
in the original spectrum being duplicated to the location of each spike in
the impulse train's spectrum. Viewing the original signal as composed of
both positive and negative frequencies accounts for the upper and lower
sidebands, respectively. This is the same as amplitude modulation,
discussed in Chapter 10.

Figure (e) shows an example of improper sampling, resulting from too low
of sampling rate. The analog signal still contains frequencies up to 3.3
kHz, but the sampling rate has been lowered to 5 kHz. Notice that

 along the horizontal axis are spaced closer in (f) than in (d).fS , 2fS , 3fS ˛
The frequency spectrum, (f), shows the problem: the duplicated portions of
the spectrum have invaded the band between zero and one-half of the
sampling frequency. Although (f) shows these overlapping frequencies as
retaining their separate identity, in actual practice they add together forming
a single confused mess. Since there is no way to separate the overlapping
frequencies, information is lost, and the original signal cannot be
reconstructed. This overlap occurs when the analog signal contains
frequencies greater than one-half the sampling rate, that is, we have proven
the sampling theorem.

Digital-to-Analog Conversion
In theory, the simplest method for digital-to-analog conversion is to pull the
samples from memory and convert them into an impulse train. This is

Chapter 3- ADC and DAC 45

Time
0 1 2 3 4 5

-3

-2

-1

0

1

2

3

a. Original analog signal

Frequency
0 100 200 300 400 500 600

0

1

2

3

b. Original signal's spectrum

0 f 2f 3fsss

Time
0 1 2 3 4 5

-3

-2

-1

0

1

2

3

original signal
impulse train

c. Sampling at 3 times highest frequency

Frequency
0 100 200 300 400 500 600

0

1

2

3

d. Duplicated spectrum from sampling
upper

sideband
lower

sideband

0 f 2f 3fsss

Time
0 1 2 3 4 5

-3

-2

-1

0

1

2

3

e. Sampling at 1.5 times highest frequency

original signal
impulse train

Frequency
0 100 200 300 400 500 600

0

1

2

3

f. Overlapping spectra causing aliasing

0 2f 4f 6fsssfs 3f 5fss

Time Domain Frequency Domain

FIGURE 3-5
The sampling theorem in the time and frequency domains. Figures (a) and (b) show an analog signal composed
of frequency components between zero and 0.33 of the sampling frequency, fs. In (c), the analog signal is
sampled by converting it to an impulse train. In the frequency domain, (d), this results in the spectrum being
duplicated into an infinite number of upper and lower sidebands. Since the original frequencies in (b) exist
undistorted in (d), proper sampling has taken place. In comparison, the analog signal in (e) is sampled at 0.66
of the sampling frequency, a value exceeding the Nyquist rate. This results in aliasing, indicated by the
sidebands in (f) overlapping.

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

The Scientist and Engineer's Guide to Digital Signal Processing46

EQUATION 3-1
High frequency amplitude reduction due to
the zeroth-order hold. This curve is plotted
in Fig. 3-6d. The sampling frequency is
represented by . For .fS f ' 0, H (f) ' 1

H (f) ' /00
sin(Bf /fs)
Bf /fs

/00

illustrated in Fig. 3-6a, with the corresponding frequency spectrum in (b). As
just described, the original analog signal can be perfectly reconstructed by
passing this impulse train through a low-pass filter, with the cutoff frequency
equal to one-half of the sampling rate. In other words, the original signal and
the impulse train have identical frequency spectra below the Nyquist frequency
(one-half the sampling rate). At higher frequencies, the impulse train contains
a duplication of this information, while the original analog signal contains
nothing (assuming aliasing did not occur).

While this method is mathematically pure, it is difficult to generate the required
narrow pulses in electronics. To get around this, nearly all DACs operate by
holding the last value until another sample is received. This is called a
zeroth-order hold, the DAC equivalent of the sample-and-hold used during
ADC. (A first-order hold is straight lines between the points, a second-order
hold uses parabolas, etc.). The zeroth-order hold produces the staircase
appearance shown in (c).

In the frequency domain, the zeroth-order hold results in the spectrum of the
impulse train being multiplied by the dark curve shown in (d), given by the
equation:

This is of the general form: , called the sinc function or sinc(x).sin (Bx) /(Bx)
The sinc function is very common in DSP, and will be discussed in more detail
in later chapters. If you already have a background in this material, the zeroth-
order hold can be understood as the convolution of the impulse train with a
rectangular pulse, having a width equal to the sampling period. This results in
the frequency domain being multiplied by the Fourier transform of the
rectangular pulse, i.e., the sinc function. In Fig. (d), the light line shows the
frequency spectrum of the impulse train (the "correct" spectrum), while the dark
line shows the sinc. The frequency spectrum of the zeroth order hold signal is
equal to the product of these two curves.

The analog filter used to convert the zeroth-order hold signal, (c), into the
reconstructed signal, (f), needs to do two things: (1) remove all frequencies
above one-half of the sampling rate, and (2) boost the frequencies by the
reciprocal of the zeroth-order hold's effect, i.e., 1/sinc(x). This amounts to an
amplification of about 36% at one-half of the sampling frequency. Figure (e)
shows the ideal frequency response of this analog filter.

This 1/sinc(x) frequency boost can be handled in four ways: (1) ignore it and
accept the consequences, (2) design an analog filter to include the 1/sinc(x)

Chapter 3- ADC and DAC 47

FIGURE 3-6
Analysis of digital-to-analog conversion. In (a), the digital
data are converted into an impulse train, with the spectrum
in (b). This is changed into the reconstructed signal, (f), by
using an electronic low-pass filter to remove frequencies
above one-half the sampling rate [compare (b) and (g)].
However, most electronic DACs create a zeroth-order hold
waveform, (c), instead of an impulse train. The spectrum
of the zeroth-order hold is equal to the spectrum of the
impulse train multiplied by the sinc function shown in (d).
To convert the zeroth-order hold into the reconstructed
signal, the analog filter must remove all frequencies above
the Nyquist rate, and correct for the sinc, as shown in (e).

Time
0 1 2 3 4 5

-3

-2

-1

0

1

2

3

a. Impulse train

Frequency
0 100 200 300 400 500 600

0

1

2

b. Spectrum of impulse train

0 f 2f 3fsss

Time
0 1 2 3 4 5

-3

-2

-1

0

1

2

3

c. Zeroth-order hold

Frequency
0 100 200 300 400 500 600

0

1

2

d. Spectrum multiplied by sinc

"correct" spectrum

sinc

0 f 2f 3fsss

Time
0 1 2 3 4 5

-3

-2

-1

0

1

2

3

f. Reconstructed analog signal

Frequency
0 100 200 300 400 500 600

0

1

2

g. Reconstructed spectrum

0 f 2f 3fsss

Time Domain Frequency Domain

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Frequency
0 100 200 300 400 500 600

0

1

2

e. Ideal reconstruction filter

0 f 2f 3fsss

A
m

pl
itu

de

The Scientist and Engineer's Guide to Digital Signal Processing48

Digital
ProcessingADC DAC Analog

Filter
Analog
Filter

Analog
Input

Filtered
Analog
Input

Digitized
Input

Digitized
Output

S/H
Analog
Output

Analog
Output

antialias filter reconstruction filter

FIGURE 3-7
Analog electronic filters used to comply with the sampling theorem. The electronic filter placed before an ADC is
called an antialias filter. It is used to remove frequency components above one-half of the sampling rate that would
alias during the sampling. The electronic filter placed after a DAC is called a reconstruction filter. It also eliminates
frequencies above the Nyquist rate, and may include a correction for the zeroth-order hold.

response, (3) use a fancy multirate technique described later in this chapter,
or (4) make the correction in software before the DAC (see Chapter 24).

Before leaving this section on sampling, we need to dispel a common myth
about analog versus digital signals. As this chapter has shown, the amount of
information carried in a digital signal is limited in two ways: First, the number
of bits per sample limits the resolution of the dependent variable. That is,
small changes in the signal's amplitude may be lost in the quantization noise.
Second, the sampling rate limits the resolution of the independent variable, i.e.,
closely spaced events in the analog signal may be lost between the samples.
This is another way of saying that frequencies above one-half the sampling rate
are lost.

Here is the myth: "Since analog signals use continuous parameters, they have
infinitely good resolution in both the independent and the dependent variables."
Not true! Analog signals are limited by the same two problems as digital
signals: noise and bandwidth (the highest frequency allowed in the signal). The
noise in an analog signal limits the measurement of the waveform's amplitude,
just as quantization noise does in a digital signal. Likewise, the ability to
separate closely spaced events in an analog signal depends on the highest
frequency allowed in the waveform. To understand this, imagine an analog
signal containing two closely spaced pulses. If we place the signal through a
low-pass filter (removing the high frequencies), the pulses will blur into a
single blob. For instance, an analog signal formed from frequencies between
DC and 10 kHz will have exactly the same resolution as a digital signal
sampled at 20 kHz. It must, since the sampling theorem guarantees that the
two contain the same information.

Analog Filters for Data Conversion
Figure 3-7 shows a block diagram of a DSP system, as the sampling theorem
dictates it should be. Before encountering the analog-to-digital converter,

Chapter 3- ADC and DAC 49

the input signal is processed with an electronic low-pass filter to remove all
frequencies above the Nyquist frequency (one-half the sampling rate). This is
done to prevent aliasing during sampling, and is correspondingly called an
antialias filter. On the other end, the digitized signal is passed through a
digital-to-analog converter and another low-pass filter set to the Nyquist
frequency. This output filter is called a reconstruction filter, and may include
the previously described zeroth-order-hold frequency boost. Unfortunately,
there is a serious problem with this simple model: the limitations of electronic
filters can be as bad as the problems they are trying to prevent.

If your main interest is in software, you are probably thinking that you don't
need to read this section. Wrong! Even if you have vowed never to touch an
oscilloscope, an understanding of the properties of analog filters is important
for successful DSP. First, the characteristics of every digitized signal you
encounter will depend on what type of antialias filter was used when it was
acquired. If you don't understand the nature of the antialias filter, you cannot
understand the nature of the digital signal. Second, the future of DSP is to
replace hardware with software. For example, the multirate techniques
presented later in this chapter reduce the need for antialias and reconstruction
filters by fancy software tricks. If you don't understand the hardware, you
cannot design software to replace it. Third, much of DSP is related to digital
filter design. A common strategy is to start with an equivalent analog filter,
and convert it into software. Later chapters assume you have a basic
knowledge of analog filter techniques.

Three types of analog filters are commonly used: Chebyshev, Butterworth,
and Bessel (also called a Thompson filter). Each of these is designed to
optimize a different performance parameter. The complexity of each filter
can be adjusted by selecting the number of poles and zeros, mathematical
terms that will be discussed in later chapters. The more poles in a filter,
the more electronics it requires, and the better it performs. Each of these
names describe what the filter does, not a particular arrangement of
resistors and capacitors. For example, a six pole Bessel filter can be
implemented by many different types of circuits, all of which have the same
overall characteristics. For DSP purposes, the characteristics of these
filters are more important than how they are constructed. Nevertheless, we
will start with a short segment on the electronic design of these filters to
provide an overall framework.

Figure 3-8 shows a common building block for analog filter design, the
modified Sallen-Key circuit. This is named after the authors of a 1950s paper
describing the technique. The circuit shown is a two pole low-pass filter that
can be configured as any of the three basic types. Table 3-1 provides the
necessary information to select the appropriate resistors and capacitors. For
example, to design a 1 kHz, 2 pole Butterworth filter, Table 3-1 provides the
parameters: k1 = 0.1592 and k2 = 0.586. Arbitrarily selecting R1 = 10K and
C = 0.01uF (common values for op amp circuits), R and Rf can be calculated
as 15.95K and 5.86K, respectively. Rounding these last two values to the
nearest 1% standard resistors, results in R = 15.8K and Rf = 5.90K All of the
components should be 1% precision or better.

The Scientist and Engineer's Guide to Digital Signal Processing50

TABLE 3-1
Parameters for designing Bessel, Butterworth, and Chebyshev (6% ripple) filters.

 Bessel Butterworth Chebyshev
 # poles k1 k2 k1 k2 k1 k2

2 stage 1 0.1251 0.268 0.1592 0.586 0.1293 0.842

4 stage 1 0.1111 0.084 0.1592 0.152 0.2666 0.582
stage 2 0.0991 0.759 0.1592 1.235 0.1544 1.660

6 stage 1 0.0990 0.040 0.1592 0.068 0.4019 0.537
stage 2 0.0941 0.364 0.1592 0.586 0.2072 1.448
stage 3 0.0834 1.023 0.1592 1.483 0.1574 1.846

8 stage 1 0.0894 0.024 0.1592 0.038 0.5359 0.522
stage 2 0.0867 0.213 0.1592 0.337 0.2657 1.379
stage 3 0.0814 0.593 0.1592 0.889 0.1848 1.711
stage 4 0.0726 1.184 0.1592 1.610 0.1582 1.913

FIGURE 3-8
The modified Sallen-Key circuit, a building
block for active filter design. The circuit
shown implements a 2 pole low-pass filter.
Higher order filters (more poles) can be
formed by cascading stages. Find k1 and k2
from Table 3-1, arbitrarily select R1 and C
(try 10K and 0.01µF), and then calculate R
and Rf from the equations in the figure. The
parameter, fc, is the cutoff frequency of the
filter, in hertz.

Rf

R1

C

C

R R

R '
k1

C fc

Rf ' R1 k2

402S

10K

0.01µF

0.01µF

10K 10K

3.65K

10K

0.01µF

0.01µF

9.53K 9.53K

10.2K

10K

0.01µF

0.01µF

8.25K 8.25K

k1 = 0.0990
k2 = 0.040

stage 1

k1 = 0.0941
k2 = 0.364

stage 2

k1 = 0.0834
k2 = 1.023

stage 3

FIGURE 3-9
A six pole Bessel filter formed by cascading three Sallen-Key circuits. This is a low-pass filter with
a cutoff frequency of 1 kHz.

The particular op amp used isn't critical, as long as the unity gain frequency is
more than 30 to 100 times higher than the filter's cutoff frequency. This is an
easy requirement as long as the filter's cutoff frequency is below about 100
kHz.

Four, six, and eight pole filters are formed by cascading 2,3, and 4 of these
circuits, respectively. For example, Fig. 3-9 shows the schematic of a 6 pole

Chapter 3- ADC and DAC 51

time

low f

high f

time time

high R

low R

time

Resistor-Capacitor

Switched Capacitor

R

C

CC/100

f

FIGURE 3-10
Switched capacitor filter operation. Switched capacitor filters use switches and capacitors to mimic
resistors. As shown by the equivalent step responses, two capacitors and one switch can perform the
same function as a resistor-capacitor network.

vo
lta

ge

vo
lta

ge
vo

lta
ge

vo
lta

ge

Bessel filter created by cascading three stages. Each stage has different values
for k1 and k2 as provided by Table 3-1, resulting in different resistors and
capacitors being used. Need a high-pass filter? Simply swap the R and C
components in the circuits (leaving Rf and R1 alone).

This type of circuit is very common for small quantity manufacturing and R&D
applications; however, serious production requires the filter to be made as an
integrated circuit. The problem is, it is difficult to make resistors directly in
silicon. The answer is the switched capacitor filter. Figure 3-10 illustrates
its operation by comparing it to a simple RC network. If a step function is fed
into an RC low-pass filter, the output rises exponentially until it matches the
input. The voltage on the capacitor doesn't change instantaneously, because the
resistor restricts the flow of electrical charge.

The switched capacitor filter operates by replacing the basic resistor-
capacitor network with two capacitors and an electronic switch. The newly
added capacitor is much smaller in value than the already existing
capacitor, say, 1% of its value. The switch alternately connects the small
capacitor between the input and the output at a very high frequency,
typically 100 times faster than the cutoff frequency of the filter. When the
switch is connected to the input, the small capacitor rapidly charges to
whatever voltage is presently on the input. When the switch is connected
to the output, the charge on the small capacitor is transferred to the large
capacitor. In a resistor, the rate of charge transfer is determined by its
resistance. In a switched capacitor circuit, the rate of charge transfer is
determined by the value of the small capacitor and by the switching
frequency. This results in a very useful feature of switched capacitor

The Scientist and Engineer's Guide to Digital Signal Processing52

filters: the cutoff frequency of the filter is directly proportional to the clock
frequency used to drive the switches. This makes the switched capacitor filter
ideal for data acquisition systems that operate with more than one sampling
rate. These are easy-to-use devices; pay ten bucks and have the performance
of an eight pole filter inside a single 8 pin IC.

Now for the important part: the characteristics of the three classic filter types.
The first performance parameter we want to explore is cutoff frequency
sharpness. A low-pass filter is designed to block all frequencies above the
cutoff frequency (the stopband), while passing all frequencies below (the
passband). Figure 3-11 shows the frequency response of these three filters on
a logarithmic (dB) scale. These graphs are shown for filters with a one hertz
cutoff frequency, but they can be directly scaled to whatever cutoff frequency
you need to use. How do these filters rate? The Chebyshev is clearly the best,
the Butterworth is worse, and the Bessel is absolutely ghastly! As you
probably surmised, this is what the Chebyshev is designed to do, roll-off (drop
in amplitude) as rapidly as possible.

Unfortunately, even an 8 pole Chebyshev isn't as good as you would like for
an antialias filter. For example, imagine a 12 bit system sampling at 10,000
samples per second. The sampling theorem dictates that any frequency above
5 kHz will be aliased, something you want to avoid. With a little guess work,
you decide that all frequencies above 5 kHz must be reduced in amplitude by
a factor of 100, insuring that any aliased frequencies will have an amplitude of
less than one percent. Looking at Fig. 3-11c, you find that an 8 pole
Chebyshev filter, with a cutoff frequency of 1 hertz, doesn't reach an
attenuation (signal reduction) of 100 until about 1.35 hertz. Scaling this to the
example, the filter's cutoff frequency must be set to 3.7 kHz so that everything
above 5 kHz will have the required attenuation. This results in the frequency
band between 3.7 kHz and 5 kHz being wasted on the inadequate roll-off of the
analog filter.

A subtle point: the attenuation factor of 100 in this example is probably
sufficient even though there are 4096 steps in 12 bits. From Fig. 3-4, 5100
hertz will alias to 4900 hertz, 6000 hertz will alias to 4000 hertz, etc. You
don't care what the amplitudes of the signals between 5000 and 6300 hertz are,
because they alias into the unusable region between 3700 hertz and 5000 hertz.
In order for a frequency to alias into the filter's passband (0 to 3.7 kHz), it
must be greater than 6300 hertz, or 1.7 times the filter's cutoff frequency of
3700 hertz. As shown in Fig. 3-11c, the attenuation provided by an 8 pole
Chebyshev filter at 1.7 times the cutoff frequency is about 1300, much more
adequate than the 100 we started the analysis with. The moral to this story: In
most systems, the frequency band between about 0.4 and 0.5 of the sampling
frequency is an unusable wasteland of filter roll-off and aliased signals. This
is a direct result of the limitations of analog filters.

The frequency response of the perfect low-pass filter is flat across the entire
passband. All of the filters look great in this respect in Fig. 3-11, but only
because the vertical axis is displayed on a logarithmic scale. Another story is
told when the graphs are converted to a linear vertical scale, as is shown

Chapter 3- ADC and DAC 53

Frequency (hertz)
0 1 2 3 4 5

0.0001

0.001

0.01

0.1

1

10

8
4

2 pole

a. Bessel

ideal

Frequency (hertz)
0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

8
4

2 pole

a. Bessel

ideal

Frequency (hertz)
0 1 2 3 4 5

0.0001

0.001

0.01

0.1

1

10

8

4

2 pole

b. Butterworth

Frequency (hertz)
0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

8
4

2 pole

b. Butterworth

Frequency (hertz)
0 1 2 3 4 5

0.0001

0.001

0.01

0.1

1

10

8

4

2 pole

c. Chebyshev (6% ripple)

Frequency (hertz)
0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

4

2 pole

8

c. Chebyshev (6% ripple)

Linear scale

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Log scale
A

m
pl

itu
de

FIGURE 3-12
Frequency response of the three filters on a
linear scale. The Butterworth filter provides
the flattest passband.

FIGURE 3-11
Frequency response of the three filters on a
logarithmic scale. The Chebyshev filter has
the sharpest roll-off.

in Fig. 3-12. Passband ripple can now be seen in the Chebyshev filter
(wavy variations in the amplitude of the passed frequencies). In fact, the
Chebyshev filter obtains its excellent roll-off by allowing this passband
ripple. When more passband ripple is allowed in a filter, a faster roll-off

The Scientist and Engineer's Guide to Digital Signal Processing54

Time (seconds)
0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

8 pole

4

2

a. Bessel

Time (seconds)
0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

8 pole

2

b. Butterworth

4

FIGURE 3-13
Step response of the three filters. The times
shown on the horizontal axis correspond to a
one hertz cutoff frequency. The Bessel is the
optimum filter when overshoot and ringing
must be minimized.

Time (seconds)
0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

8 pole

4

2

c. Chebyshev (6% ripple)

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
can be achieved. All the Chebyshev filters designed by using Table 3-1 have
a passband ripple of about 6% (0.5 dB), a good compromise, and a common
choice. A similar design, the elliptic filter, allows ripple in both the passband
and the stopband. Although harder to design, elliptic filters can achieve an
even better tradeoff between roll-off and passband ripple.

In comparison, the Butterworth filter is optimized to provide the sharpest roll-
off possible without allowing ripple in the passband. It is commonly called the
maximally flat filter, and is identical to a Chebyshev designed for zero
passband ripple. The Bessel filter has no ripple in the passband, but the roll-
off is far worse than the Butterworth.

The last parameter to evaluate is the step response, how the filter responds
when the input rapidly changes from one value to another. Figure 3-13 shows
the step response of each of the three filters. The horizontal axis is shown for
filters with a 1 hertz cutoff frequency, but can be scaled (inversely) for higher
cutoff frequencies. For example, a 1000 hertz cutoff frequency would show a
step response in milliseconds, rather than seconds. The Butterworth and
Chebyshev filters overshoot and show ringing (oscillations that slowly
decreasing in amplitude). In comparison, the Bessel filter has neither of these
nasty problems.

Chapter 3- ADC and DAC 55

Time
0 100 200 300 400 500

-0.5

0.0

0.5

1.0

1.5

a. Pulse waveform

Time
0 100 200 300 400 500

-0.5

0.0

0.5

1.0

1.5

b. After Bessel filter

FIGURE 3-14
Pulse response of the Bessel and Chebyshev
filters. A key property of the Bessel filter is that
the rising and falling edges in the filter's output
looking similar. In the jargon of the field, this is
called linear phase. Figure (b) shows the result
of passing the pulse waveform in (a) through a 4
pole Bessel filter. Both edges are smoothed in a
similar manner. Figure (c) shows the result of
passing (a) through a 4 pole Chebyshev filter.
The left edge overshoots on the top, while the
right edge overshoots on the bottom . Many
applications cannot tolerate this distortion.

Time
0 100 200 300 400 500

-0.5

0.0

0.5

1.0

1.5

c. After Chebyshev filter

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Figure 3-14 further illustrates this very favorable characteristic of the Bessel
filter. Figure (a) shows a pulse waveform, which can be viewed as a rising
step followed by a falling step. Figures (b) and (c) show how this waveform
would appear after Bessel and Chebyshev filters, respectively. If this were a
video signal, for instance, the distortion introduced by the Chebyshev filter
would be devastating! The overshoot would change the brightness of the edges
of objects compared to their centers. Worse yet, the left side of objects would
look bright, while the right side of objects would look dark. Many applications
cannot tolerate poor performance in the step response. This is where the Bessel
filter shines; no overshoot and symmetrical edges.

Selecting The Antialias Filter
Table 3-2 summarizes the characteristics of these three filters, showing how
each optimizes a particular parameter at the expense of everything else. The
Chebyshev optimizes the roll-off, the Butterworth optimizes the passband
flatness, and the Bessel optimizes the step response.

The selection of the antialias filter depends almost entirely on one issue: how
information is represented in the signals you intend to process. While

The Scientist and Engineer's Guide to Digital Signal Processing56

TABLE 3-2
Characteristics of the three classic filters. The Bessel filter provides the best step response, making it the choice for
time domain encoded signals. The Chebyshev and Butterworth filters are used to eliminate frequencies in the
stopband, making them ideal for frequency domain encoded signals. Values in this table are in the units of seconds
and hertz, for a one hertz cutoff frequency.

Step Response Frequency Response
Voltage gain

at DC Overshoot
Time to

settle to 1%
Time to
settle to

0.1%
Ripple in
passband

Frequency
for x100

attenuation

Frequency
for x1000

attenuation
Bessel

2 pole 1.27 0.4% 0.60 1.12 0% 12.74 40.4
4 pole 1.91 0.9% 0.66 1.20 0% 4.74 8.45
6 pole 2.87 0.7% 0.74 1.18 0% 3.65 5.43
8 pole 4.32 0.4% 0.80 1.16 0% 3.35 4.53

Butterworth
2 pole 1.59 4.3% 1.06 1.66 0% 10.0 31.6
4 pole 2.58 10.9% 1.68 2.74 0% 3.17 5.62
6 pole 4.21 14.3% 2.74 3.92 0% 2.16 3.17
8 pole 6.84 16.4% 3.50 5.12 0% 1.78 2.38

Chebyshev
2 pole 1.84 10.8% 1.10 1.62 6% 12.33 38.9
4 pole 4.21 18.2% 3.04 5.42 6% 2.59 4.47
6 pole 10.71 21.3% 5.86 10.4 6% 1.63 2.26
8 pole 28.58 23.0% 8.34 16.4 6% 1.34 1.66

there are many ways for information to be encoded in an analog waveform,
only two methods are common, time domain encoding, and frequency
domain encoding. The difference between these two is critical in DSP, and
will be a reoccurring theme throughout this book.

In frequency domain encoding, the information is contained in sinusoidal
waves that combine to form the signal. Audio signals are an excellent example
of this. When a person hears speech or music, the perceived sound depends on
the frequencies present, and not on the particular shape of the waveform. This
can be shown by passing an audio signal through a circuit that changes the
phase of the various sinusoids, but retains their frequency and amplitude. The
resulting signal looks completely different on an oscilloscope, but sounds
identical. The pertinent information has been left intact, even though the
waveform has been significantly altered. Since aliasing misplaces and overlaps
frequency components, it directly destroys information encoded in the frequency
domain. Consequently, digitization of these signals usually involves an
antialias filter with a sharp cutoff, such as a Chebyshev, Elliptic, or
Butterworth. What about the nasty step response of these filters? It doesn't
matter; the encoded information isn't affected by this type of distortion.

In contrast, time domain encoding uses the shape of the waveform to store
information. For example, physicians can monitor the electrical activity of a

Chapter 3- ADC and DAC 57

person's heart by attaching electrodes to their chest and arms (an
electrocardiogram or EKG). The shape of the EKG waveform provides the
information being sought, such as when the various chambers contract during
a heartbeat. Images are another example of this type of signal. Rather than a
waveform that varies over time, images encode information in the shape of a
waveform that varies over distance. Pictures are formed from regions of
brightness and color, and how they relate to other regions of brightness and
color. You don't look at the Mona Lisa and say, "My, what an interesting
collection of sinusoids."

Here's the problem: The sampling theorem is an analysis of what happens in
the frequency domain during digitization. This makes it ideal to under-stand
the analog-to-digital conversion of signals having their information encoded in
the frequency domain. However, the sampling theorem is little help in
understanding how time domain encoded signals should be digitized. Let's take
a closer look.

Figure 3-15 illustrates the choices for digitizing a time domain encoded signal.
Figure (a) is an example analog signal to be digitized. In this case, the
information we want to capture is the shape of the rectangular pulses. A short
burst of a high frequency sine wave is also included in this example signal.
This represents wideband noise, interference, and similar junk that always
appears on analog signals. The other figures show how the digitized signal
would appear with different antialias filter options: a Chebyshev filter, a Bessel
filter, and no filter.

It is important to understand that none of these options will allow the original
signal to be reconstructed from the sampled data. This is because the original
signal inherently contains frequency components greater than one-half of the
sampling rate. Since these frequencies cannot exist in the digitized signal, the
reconstructed signal cannot contain them either. These high frequencies result
from two sources: (1) noise and interference, which you would like to
eliminate, and (2) sharp edges in the waveform, which probably contain
information you want to retain.

The Chebyshev filter, shown in (b), attacks the problem by aggressively
removing all high frequency components. This results in a filtered analog
signal that can be sampled and later perfectly reconstructed. However, the
reconstructed analog signal is identical to the filtered signal, not the original
signal. Although nothing is lost in sampling, the waveform has been severely
distorted by the antialias filter. As shown in (b), the cure is worse than the
disease! Don't do it!

The Bessel filter, (c), is designed for just this problem. Its output closely
resembles the original waveform, with only a gentle rounding of the edges.
By adjusting the filter's cutoff frequency, the smoothness of the edges can
be traded for elimination of high frequency components in the signal.
Using more poles in the filter allows a better tradeoff between these two
parameters. A common guideline is to set the cutoff frequency at about
one-quarter of the sampling frequency. This results in about two samples

The Scientist and Engineer's Guide to Digital Signal Processing58

along the rising portion of each edge. Notice that both the Bessel and the
Chebyshev filter have removed the burst of high frequency noise present in
the original signal.

The last choice is to use no antialias filter at all, as is shown in (d). This
has the strong advantage that the value of each sample is identical to the
value of the original analog signal. In other words, it has perfect edge
sharpness; a change in the original signal is immediately mirrored in the
digital data. The disadvantage is that aliasing can distort the signal. This
takes two different forms. First, high frequency interference and noise,
such as the example sinusoidal burst, will turn into meaningless samples,
as shown in (d). That is, any high frequency noise present in the analog
signal will appear as aliased noise in the digital signal. In a more general
sense, this is not a problem of the sampling, but a problem of the upstream
analog electronics. It is not the ADC's purpose to reduce noise and
interference; this is the responsibility of the analog electronics before the
digitization takes place. It may turn out that a Bessel filter should be
placed before the digitizer to control this problem. However, this means the
filter should be viewed as part of the analog processing, not something that
is being done for the sake of the digitizer.

The second manifestation of aliasing is more subtle. When an event occurs
in the analog signal (such as an edge), the digital signal in (d) detects the
change on the next sample. There is no information in the digital data to
indicate what happens between samples. Now, compare using no filter with
using a Bessel filter for this problem. For example, imagine drawing
straight lines between the samples in (c). The time when this constructed
line crosses one-half the amplitude of the step provides a subsample
estimate of when the edge occurred in the analog signal. When no filter is
used, this subsample information is completely lost. You don't need a fancy
theorem to evaluate how this will affect your particular situation, just a
good understanding of what you plan to do with the data once is it acquired.

Multirate Data Conversion
There is a strong trend in electronics to replace analog circuitry with
digital algorithms. Data conversion is an excellent example of this.
Consider the design of a digital voice recorder, a system that will digitize
a voice signal, store the data in digital form, and later reconstruct the
signal for playback. To recreate intelligible speech, the system must
capture the frequencies between about 100 and 3000 hertz. However, the
analog signal produced by the microphone also contains much higher
frequencies, say to 40 kHz. The brute force approach is to pass the analog
signal through an eight pole low-pass Chebyshev filter at 3 kHz, and then
sample at 8 kHz. On the other end, the DAC reconstructs the analog signal
at 8 kHz with a zeroth order hold. Another Chebyshev filter at 3 kHz is
used to produce the final voice signal.

Chapter 3- ADC and DAC 59

Sample number
0 10 20 30 40 50 60

-1

0

1

2

3

d. No analog filter

Time
0 100 200 300 400 500 600

-1

0

1

2

3

a. Analog waveform
waveform to
be captured

high-frequency
noise to be rejected

Sample number
0 10 20 30 40 50 60

-1

0

1

2

3

b. With Chebyshev filter

FIGURE 3-15
Three antialias filter options for time domain encoded signals. The goal is to eliminate high frequencies (that will alias
during sampling), while simultaneously retaining edge sharpness (that carries information). Figure (a) shows an example
analog signal containing both sharp edges and a high frequency noise burst. Figure (b) shows the digitized signal using
a Chebyshev filter. While the high frequencies have been effectively removed, the edges have been grossly distorted.
This is usually a terrible solution. The Bessel filter, shown in (c), provides a gentle edge smoothing while removing the
high frequencies. Figure (d) shows the digitized signal using no antialias filter. In this case, the edges have retained
perfect sharpness; however, the high frequency burst has aliased into several meaningless samples.

Sample number
0 10 20 30 40 50 60

-1

0

1

2

3

c. With Bessel filter

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

There are many useful benefits in sampling faster than this direct analysis. For
example, imagine redesigning the digital voice recorder using a 64 kHz
sampling rate. The antialias filter now has an easier task: pass all freq-uencies
below 3 kHz, while rejecting all frequencies above 32 kHz. A similar
simplification occurs for the reconstruction filter. In short, the higher sampling
rate allows the eight pole filters to be replaced with simple resistor-capacitor
(RC) networks. The problem is, the digital system is now swamped with data
from the higher sampling rate.

The next level of sophistication involves multirate techniques, using more
than one sampling rate in the same system. It works like this for the digital
voice recorder example. First, pass the voice signal through a simple RC low-

The Scientist and Engineer's Guide to Digital Signal Processing60

pass filter and sample the data at 64 kHz. The resulting digital data contains
the desired voice band between 100 and 3000 hertz, but also has an unusable
band between 3 kHz and 32 kHz. Second, remove these unusable frequencies
in software, by using a digital low-pass filter at 3 kHz. Third, resample the
digital signal from 64 kHz to 8 kHz by simply discarding every seven out of
eight samples, a procedure called decimation. The resulting digital data is
equivalent to that produced by aggressive analog filtering and direct 8 kHz
sampling.

Multirate techniques can also be used in the output portion of our example
system. The 8 kHz data is pulled from memory and converted to a 64 kHz
sampling rate, a procedure called interpolation. This involves placing seven
samples, with a value of zero, between each of the samples obtained from
memory. The resulting signal is a digital impulse train, containing the desired
voice band between 100 and 3000 hertz, plus spectral duplications between 3
kHz and 32 kHz. Refer back to Figs. 3-6 a&b to understand why this it true.
Everything above 3 kHz is then removed with a digital low-pass filter. After
conversion to an analog signal through a DAC, a simple RC network is all that
is required to produce the final voice signal.

Multirate data conversion is valuable for two reasons: (1) it replaces
analog components with software, a clear economic advantage in mass-
produced products, and (2) it can achieve higher levels of performance in
critical applications. For example, compact disc audio systems use
techniques of this type to achieve the best possible sound quality. This
increased performance is a result of replacing analog components (1%
precision), with digital algorithms (0.0001% precision from round-off
error). As discussed in upcoming chapters, digital filters outperform analog
filters by hundreds of times in key areas.

Single Bit Data Conversion
A popular technique in telecommunications and high fidelity music reproduction
is single bit ADC and DAC. These are multirate techniques where a higher
sampling rate is traded for a lower number of bits. In the extreme, only a
single bit is needed for each sample. While there are many different circuit
configurations, most are based on the use of delta modulation. Three
example circuits will be presented to give you a flavor of the field. All of
these circuits are implemented in IC's, so don't worry where all of the
individual transistors and op amps should go. No one is going to ask you to
build one of these circuits from basic components.

Figure 3-16 shows the block diagram of a typical delta modulator. The
analog input is a voice signal with an amplitude of a few volts, while the
output signal is a stream of digital ones and zeros. A comparator decides
which has the greater voltage, the incoming analog signal, or the voltage
stored on the capacitor. This decision, in the form of a digital one or zero,
is applied to the input of the latch. At each clock pulse, typically at a few
hundred kilohertz, the latch transfers whatever digital state appears on its

Chapter 3- ADC and DAC 61

digital
latchcomparator

charge
injector

negative

charge
injector

positive

clock
analog
input delta

modulated
output

clock

clock

FIGURE 3-16
Block diagram of a delta modulation circuit. The input voltage is compared with the voltage
stored on the capacitor, resulting in a digital zero or one being applied to the input of the latch.
The output of the latch is updated in synchronization with the clock, and used in a feedback
loop to cause the capacitor voltage to track the input voltage.

input, to its output. This latch insures that the output is synchronized with the
clock, thereby defining the sampling rate, i.e., the rate at which the 1 bit output
can update itself.

A feedback loop is formed by taking the digital output and using it to drive an
electronic switch. If the output is a digital one, the switch connects the
capacitor to a positive charge injector. This is a very loose term for a circuit
that increases the voltage on the capacitor by a fixed amount, say 1 millivolt
per clock cycle. This may be nothing more than a resistor connected to a large
positive voltage. If the output is a digital zero, the switch is connected to a
negative charge injector. This decreases the voltage on the capacitor by the
same fixed amount.

Figure 3-17 illustrates the signals produced by this circuit. At time equal
zero, the analog input and the voltage on the capacitor both start with a
voltage of zero. As shown in (a), the input signal suddenly increases to 9.5
volts on the eighth clock cycle. Since the input signal is now more positive
than the voltage on the capacitor, the digital output changes to a one, as
shown in (b). This results in the switch being connected to the positive
charge injector, and the voltage on the capacitor increasing by a small
amount on each clock cycle. Although an increment of 1 volt per clock
cycle is shown in (a), this is only for illustration, and a value of 1 millivolt
is more typical. This staircase increase in the capacitor voltage continues
until it exceeds the voltage of the input signal. Here the system reached an
equilibrium with the output oscillating between a digital one and zero,
causing the voltage on the capacitor to oscillate between 9 volts and 10

The Scientist and Engineer's Guide to Digital Signal Processing62

volts. In this manner, the feedback of the circuit forces the capacitor
voltage to track the voltage of the input signal. If the input signal changes
very rapidly, the voltage on the capacitor changes at a constant rate until a
match is obtained. This constant rate of change is called the slew rate, just
as in other electronic devices such as op amps.

Now, consider the characteristics of the delta modulated output signal. If the
analog input is increasing in value, the output signal will consist of more ones
than zeros. Likewise, if the analog input is decreasing in value, the output will
consist of more zeros than ones. If the analog input is constant, the digital
output will alternate between zero and one with an equal number of each. Put
in more general terms, the relative number of ones versus zeros is directly
proportional to the slope (derivative) of the analog input.

This circuit is a cheap method of transforming an analog signal into a serial
stream of ones and zeros for transmission or digital storage. An especially
attractive feature is that all the bits have the same meaning, unlike the
conventional serial format: start bit, LSB, ,MSB, stop bit. The circuit at@ @ @
the receiver is identical to the feedback portion of the transmitting circuit. Just
as the voltage on the capacitor in the transmitting circuit follows the analog
input, so does the voltage on the capacitor in the receiving circuit. That is, the
capacitor voltage shown in (a) also represents how the reconstructed signal
would appear.

A critical limitation of this circuit is the unavoidable tradeoff between (1)
maximum slew rate, (2) quantization size, and (3) data rate. In particular, if
the maximum slew rate and quantization size are adjusted to acceptable values
for voice communication, the data rate ends up in the MHz range. This is too
high to be of commercial value. For instance, conventional sampling of a voice
signal requires only about 64,000 bits per second.

A solution to this problem is shown in Fig. 3-18, the Continuously Variable
Slope Delta (CVSD) modulator, a technique implemented in the Motorola
MC3518 family. In this approach, the clock rate and the quantization size are
set to something acceptable, say 30 kHz, and 2000 levels. This results in a
terrible slew rate, which you correct with additional circuitry. In operation, a
shift resister continually looks at the last four bits that the system has produced.
If the circuit is in a slew rate limited condition, the last four bits will be all
ones (positive slope) or all zeros (negative slope). A logic circuit detects this
situation and produces an analog signal that increases the level of charge
produced by the charge injectors. This boosts the slew rate by increasing the
size of the voltage steps being applied to the capacitor.

An analog filter is usually placed between the logic circuitry and the charge
injectors. This allows the step size to depend on how long the circuit has
been in a slew limited condition. As long as the circuit is slew limited, the
step size keeps getting larger and larger. This is often called a syllabic
filter, since its characteristics depend on the average length of the syllables
making up speech. With proper optimization (from the chip manufacturer's

Chapter 3- ADC and DAC 63

Time (clock cycles)
0 10 20 30 40 50 60 70 80 90 100 110 120

-10

-5

0

5

10

15

a. Analog signals

signal voltage

capacitor voltage

Time (clock cycles)
0 10 20 30 40 50 60 70 80 90 100 110 120

-1

0

1

2

3

slew rate limited

b. Digital output

FIGURE 3-17
Example of signals produced by the delta modulator in Fig. 3-16. Figure (a) shows the analog
input signal, and the corresponding voltage on the capacitor. Figure (b) shows the delta
modulated output, a digital stream of ones and zeros.

D
ig

ita
l l

og
ic

 st
at

e
A

m
pl

itu
de

 (v
ol

ts
)

spec sheet, not your own work), data rates of 16 to 32 kHz produce acceptable
quality speech. The continually changing step size makes the digital data
difficult to understand, but fortunately, you don't need to. At the receiver, the
analog signal is reconstructed by incorporating a syllabic filter that is identical
to the one in the transmission circuit. If the two filters are matched, little
distortion results from the CVSD modulation. CVSD is probably the easiest
way to digitally transmit a voice signal.

While CVSD modulation is great for encoding voice signals, it cannot be used
for general purpose analog-to-digital conversion. Even if you get around the
fact that the digital data is related to the derivative of the input signal, the
changing step size will confuse things beyond repair. In addition, the DC level
of the analog signal is usually not captured in the digital data.

The delta-sigma converter, shown in Fig. 3-19, eliminates these problems
by cleverly combining analog electronics with DSP algorithms. Notice that
the voltage on the capacitor is now being compared with ground potential.
The feedback loop has also been modified so that the voltage on the

The Scientist and Engineer's Guide to Digital Signal Processing64

digital
latchcomparator

charge
injector

negative

charge
injector

positive

clock
analog
input delta

modulated
output

4 bit
shift
register

all 1's,
all 0's
detect

syllabic
filter

CVSD Modifications

1

0

clock

clock

logic

FIGURE 3-18
CVSD modulation block diagram. A logic circuit is added to the basic delta modulator to
improve the slew rate.

capacitor is decreased when the circuit's output is a digital one, and
increased when it is a digital zero. As the input signal increases and
decreases in voltage, it tries to raise and lower the voltage on the capacitor.
This change in voltage is detected by the comparator, resulting in the charge
injectors producing a counteracting charge to keep the capacitor at zero
volts.

If the input voltage is positive, the digital output will be composed of more
ones than zeros. The excess number of ones being needed to generate the
negative charge that cancels with the positive input signal. Likewise, if the
input voltage is negative, the digital output will be composed of more zeros
than ones, providing a net positive charge injection. If the input signal is equal
to zero volts, an equal number of ones and zeros will be generated in the
output, providing an overall charge injection of zero.

The relative number of ones and zeros in the output is now related to the level
of the input voltage, not the slope as in the previous circuit. This is much
simpler. For instance, you could form a 12 bit ADC by feeding the digital
output into a counter, and counting the number of ones over 4096 clock cycles.
A digital number of 4095 would correspond to the maximum positive input
voltage. Likewise, digital number 0 would correspond to the maximum
negative input voltage, and 2048 would correspond to an input voltage of zero.
This also shows the origin of the name, delta-sigma: delta modulation followed
by summation (sigma).

The ones and zeros produced by this type of delta modulator are very easy to
transform back into an analog signal. All that is required is an analog low-
pass filter, which might be as simple as a single RC network. The high

Chapter 3- ADC and DAC 65

Digital
Latchcomparator

charge
injector

negative

charge
injector

positive

clock
analog
input delta

modulated
signal

0

1

Counter Latch

digital
output

begin ADC
RESET to

end ADC
cycle

LATCH to

cycle

Digital
digital
output

low-pass
filter

Decimate

clock

clock

FIGURE 3-19
Block diagram of a delta-sigma analog-to-digital converter. In the simplest case, the pulses from a delta
modulator are counted for a predetermined number of clock cycles. The output of the counter is then latched
to complete the conversion. In a more sophisticated circuit, the pulses are passed through a digital low-pass
filter and then resampled (decimated) to a lower sampling rate.

 and low voltages corresponding to the digital ones and zeros average out to
form the correct analog voltage. For example, suppose that the ones and zeros
are represented by 5 volts and 0 volts, respectively. If 80% of the bits in the
data stream are ones, and 20% are zeros, the output of the low-pass filter will
be 4 volts.

This method of transforming the single bit data stream back into the original
waveform is important for several reasons. First, it describes a slick way to
replace the counter in the delta-sigma ADC circuit. Instead of simply counting
the pulses from the delta modulator, the binary signal is passed through a
digital low-pass filter, and then decimated to reduce the sampling rate. For
example, this procedure might start by changing each of the ones and zeros in
the digital stream into a 12 bit sample; ones become a value of 4095, while
zeros become a value of 0. Using a digital low-pass filter on this signal
produces a digitized version of the original waveform, just as an analog low-
pass filter would form an analog recreation. Decimation then reduces the
sampling rate by discarding most of the samples. This results in a digital
signal that is equivalent to direct sampling of the original waveform.

This approach is used in many commercial ADC's for digitizing voice and other
audio signals. An example is the National Semiconductor ADC16071, which
provides 16 bit analog-to-digital conversion at sampling rates up to 192 kHz.
At a sampling rate of 100 kHz, the delta modulator operates with a clock
frequency of 6.4 MHz. The low-pass digital filter is a 246 point FIR, such as
described in Chapter 16. This removes all frequencies in the digital data
above 50 kHz, ½ of the eventual sampling rate. Conceptually, this can be

The Scientist and Engineer's Guide to Digital Signal Processing66

viewed as forming a digital signal at 6.4 MHz, with each sample represented
by 16 bits. The signal is then decimated from 6.4 MHz to 100 kHz,
accomplished by deleting every 63 out of 64 samples. In actual operation,
much more goes on inside of this device than described by this simple
discussion.

Delta-sigma converters can also be used for digital-to-analog conversion of
voice and audio signals. The digital signal is retrieved from memory, and
converted into a delta modulated stream of ones and zeros. As mentioned
above, this single bit signal can easily be changed into the reconstructed analog
signal with a simple low-pass analog filter. As with the antialias filter, usually
only a single RC network is required. This is because the majority of the
filtration is handled by the high-performance digital filters.

Delta-sigma ADC's have several quirks that limit their use to specific
applications. For example, it is difficult to multiplex their inputs. When the
input is switched from one signal to another, proper operation is not established
until the digital filter can clear itself of data from the previous signal. Delta-
sigma converters are also limited in another respect: you don't know exactly
when each sample was taken. Each acquired sample is a composite of the one
bit information taken over a segment of the input signal. This is not a problem
for signals encoded in the frequency domain, such as audio, but it is a
significant limitation for time domain encoded signals. To understand the shape
of a signal's waveform, you often need to know the precise instant each sample
was taken. Lastly, most of these devices are specifically designed for audio
applications, and their performance specifications are quoted accordingly. For
example, a 16 bit ADC used for voice signals does not necessarily mean that
each sample has 16 bits of precision. Much more likely, the manufacturer is
stating that voice signals can be digitized to 16 bits of dynamic range. Don't
expect to get a full 16 bits of useful information from this device for general
purpose data acquisition.

While these explanations and examples provide an introduction to single bit
ADC and DAC, it must be emphasized that they are simplified descriptions of
sophisticated DSP and integrated circuit technology. You wouldn't expect the
manufacturer to tell their competitors all the internal workings of their chips,
so don't expect them to tell you.

67

CHAPTER

4 DSP Software

DSP applications are usually programmed in the same languages as other science and engineering
tasks, such as: C, BASIC and assembly. The power and versatility of C makes it the language
of choice for computer scientists and other professional programmers. On the other hand, the
simplicity of BASIC makes it ideal for scientists and engineers who only occasionally visit the
programming world. Regardless of the language you use, most of the important DSP software
issues are buried far below in the realm of whirling ones and zeros. This includes such topics as:
how numbers are represented by bit patterns, round-off error in computer arithmetic, the
computational speed of different types of processors, etc. This chapter is about the things you
can do at the high level to avoid being trampled by the low level internal workings of your
computer.

Computer Numbers
Digital computers are very proficient at storing and recalling numbers;
unfortunately, this process isn't without error. For example, you instruct your
computer to store the number: 1.41421356. The computer does its best, storing
the closest number it can represent: 1.41421354. In some cases this error is
quite insignificant, while in other cases it is disastrous. As another illustration,
a classic computational error results from the addition of two numbers with
very different values, for example, 1 and 0.00000001. We would like the
answer to be 1.00000001, but the computer replies with 1. An understanding
of how computers store and manipulate numbers allows you to anticipate and
correct these problems before your program spits out meaningless data.

These problems arise because a fixed number of bits are allocated to store each
number, usually 8, 16, 32 or 64. For example, consider the case where eight
bits are used to store the value of a variable. Since there are 28 = 256
possible bit patterns, the variable can only take on 256 different values. This
is a fundamental limitation of the situation, and there is nothing we can do
about it. The part we can control is what value we declare each bit pattern

The Scientist and Engineer's Guide to Digital Signal Processing68

to represent. In the simplest cases, the 256 bit patterns might represent the
integers from 0 to 255, 1 to 256, -127 to 128, etc. In a more unusual scheme,
the 256 bit patterns might represent 256 exponentially related numbers:

 Everyone accessing the data must understand1, 10, 100, 1000, ˛, 10254, 10255.
what value each bit pattern represents. This is usually provided by an
algorithm or formula for converting between the represented value and the
corresponding bit pattern, and back again.

While many encoding schemes are possible, only two general formats have
become common, fixed point (also called integer numbers) and floating point
(also called real numbers). In this book's BASIC programs, fixed point
variables are indicated by the % symbol as the last character in the name, such
as: I%, N%, SUM%, etc. All other variables are floating point, for example:
X, Y, MEAN, etc. When you evaluate the formats presented in the next few
pages, try to understand them in terms of their range (the largest and smallest
numbers they can represent) and their precision (the size of the gaps between
numbers).

Fixed Point (Integers)
Fixed point representation is used to store integers, the positive and negative
whole numbers: . High level programs, such as C and˛&3,&2,&1, 0, 1, 2, 3,˛
BASIC, usually allocate 16 bits to store each integer. In the simplest case, the

 possible bit patterns are assigned to the numbers 0 through 65,535.216 ' 65,536
This is called unsigned integer format, and a simplified example is shown in
Fig. 4-1 (using only 4 bits per number). Conversion between the bit pattern
and the number being represented is nothing more than changing between base
2 (binary) and base 10 (decimal). The disadvantage of unsigned integer is that
negative numbers cannot be represented.

Offset binary is similar to unsigned integer, except the decimal values are
shifted to allow for negative numbers. In the 4 bit example of Fig. 4-1, the
decimal numbers are offset by seven, resulting in the 16 bit patterns
corresponding to the integer numbers -7 through 8. In this same manner,
a 16 bit representation would use 32,767 as an offset, resulting in a range
between -32,767 and 32,768. Offset binary is not a standardized format,
and you will find other offsets used, such 32,768. The most important use
of offset binary is in ADC and DAC. For example, the input voltage range
of -5v to 5v might be mapped to the digital numbers 0 to 4095, for a 12 bit
conversion.

Sign and magnitude is another simple way of representing negative integers.
The far left bit is called the sign bit, and is made a zero for positive numbers,
and a one for negative numbers. The other bits are a standard binary
representation of the absolute value of the number. This results in one wasted
bit pattern, since there are two representations for zero, 0000 (positive zero)
and 1000 (negative zero). This encoding scheme results in 16 bit numbers
having a range of -32,767 to 32,767.

Chapter 4- DSP Software 69

FIGURE 4-1
Common formats for fixed point (integer) representation. Unsigned integer is a simple binary format, but
cannot represent negative numbers. Offset binary and sign & magnitude allow negative numbers, but they are
difficult to implement in hardware. Two's complement is the easiest to design hardware for, and is the most
common format for general purpose computing.

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
00000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Decimal Bit Pattern

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000-7

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8

Decimal Bit Pattern

0111
0110
0101
0100
0011
0010
0001
0000
1000
1001
1010
1011
1100
1101
1110
1111-7

-6
-5
-4
-3
-2
-1
0
0
1
2
3
4
5
6
7

Decimal Bit Pattern

0111
0110
0101
0100
0011
0010
0001
0000
1111
1110
1101
1100
1011
1010
1001
1000-8

-7

-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

Decimal Bit Pattern

UNSIGNED
INTEGER

OFFSET
BINARY

SIGN AND
MAGNITUDE

TWO'S
COMPLEMENT

-6

16 bit range:
0 to 65,535

16 bit range
-32,767 to 32,768

16 bit range
-32,767 to 32,767

16 bit range
-32,768 to 32,767

These first three representations are conceptually simple, but difficult to
implement in hardware. Remember, when A=B+C is entered into a computer
program, some hardware engineer had to figure out how to make the bit pattern
representing B, combine with the bit pattern representing C, to form the bit
pattern representing A.

Two's complement is the format loved by hardware engineers, and is how
integers are usually represented in computers. To understand the encoding
pattern, look first at decimal number zero in Fig. 4-1, which corresponds to a
binary zero, 0000. As we count upward, the decimal number is simply the
binary equivalent (0 = 0000, 1 = 0001, 2 = 0010, 3 = 0011, etc.). Now,
remember that these four bits are stored in a register consisting of 4 flip-flops.
If we again start at 0000 and begin subtracting, the digital hardware
automatically counts in two's complement: 0 = 0000, -1 = 1111, -2 = 1110, -3
= 1101, etc. This is analogous to the odometer in a new automobile. If driven
forward, it changes: 00000, 00001, 00002, 00003, and so on. When driven
backwards, the odometer changes: 00000, 99999, 99998, 99997, etc.

Using 16 bits, two's complement can represent numbers from -32,768 to
32,767. The left most bit is a 0 if the number is positive or zero, and a 1 if the
number is negative. Consequently, the left most bit is called the sign bit, just
as in sign & magnitude representation. Converting between decimal and two's
complement is straightforward for positive numbers, a simple decimal to binary

The Scientist and Engineer's Guide to Digital Signal Processing70

EQUATION 4-1
Equation for converting a bit pattern into a
floating point number. The number is
represented by v, S is the value of the sign
bit, M is the value of the mantissa, and E is
the value of the exponent.

v ' (&1)S × M × 2E &127

conversion. For negative numbers, the following algorithm is often used:
(1) take the absolute value of the decimal number, (2) convert it to binary,
(3) complement all of the bits (ones become zeros and zeros become ones),
(4) add 1 to the binary number. For example: -5 6 5 6 0101 6 1010 6
1011. Two's complement is hard for humans, but easy for digital
electronics.

Floating Point (Real Numbers)
The encoding scheme for floating point numbers is more complicated than for
fixed point. The basic idea is the same as used in scientific notation, where a
mantissa is multiplied by ten raised to some exponent. For instance,

 where 5.4321 is the mantissa and 6 is the exponent. Scientific5.4321 × 106,
notation is exceptional at representing very large and very small numbers. For
example: the number of atoms in the earth, or the1.2 × 1050, 2.6 × 10&23,
distance a turtle crawls in one second, compared to the diameter of our galaxy.
Notice that numbers represented in scientific notation are normalized so that
there is only a single nonzero digit left of the decimal point. This is achieved
by adjusting the exponent as needed.

Floating point representation is similar to scientific notation, except
everything is carried out in base two, rather than base ten. While several
similar formats are in use, the most common is ANSI/IEEE Std. 754-1985.
This standard defines the format for 32 bit numbers called single precision,
as well as 64 bit numbers called double precision. As shown in Fig. 4-2,
the 32 bits used in single precision are divided into three separate groups:
bits 0 through 22 form the mantissa, bits 23 through 30 form the exponent,
and bit 31 is the sign bit. These bits form the floating point number, v, by
the following relation:

The term: , simply means that the sign bit, S, is 0 for a positive number(&1)S

and 1 for a negative number. The variable, E, is the number between 0 and
255 represented by the eight exponent bits. Subtracting 127 from this number
allows the exponent term to run from to In other words, the2&127 2128.
exponent is stored in offset binary with an offset of 127.

The mantissa, M, is formed from the 23 bits as a binary fraction. For
example, the decimal fraction: 2.783, is interpreted: .2 % 7/10 % 8/100 % 3/1000
The binary fraction: 1.0101, means: . Floating point1 % 0/2 % 1/4 % 0/8 % 1/16
numbers are normalized in the same way as scientific notation, that is, there
is only one nonzero digit left of the decimal point (called a binary point in

Chapter 4- DSP Software 71

FIGURE 4-2
Single precision floating point storage format. The 32 bits are broken into three separate parts, the
sign bit, the exponent and the mantissa. Equations 4-1 and 4-2 shows how the represented number
is found from these three parts. MSB and LSB refer to “most significant bit” and “least significant
bit,” respectively.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MANTISSAEXPONENTSIGN

MSB LSB MSB LSB

23 bits8 bits1 bit

0 00000111 11000000000000000000000

1 10000001 01100000000000000000000

+ 7 0.75

129 0.375

Example 1

Example 2

&1.375 × 2(129&127) ' &5.500000

%1.75 × 2(7&127) ' %1.316554 × 10&36

EQUATION 4-2
Algorithm for converting the bit pattern into
the mantissa, M, used in Eq. 4-1. M ' 1.m22m21m20m19 @@@ m2m1m0

base 2). Since the only nonzero number that exists in base two is 1, the
leading digit in the mantissa will always be a 1, and therefore does not need to
be stored. Removing this redundancy allows the number to have an additional
one bit of precision. The 23 stored bits, referred to by the notation:

, form the mantissa according to:m22, m21, m21,˛, m0

In other words, . If bits 0 through 22 areM ' 1 % m222&1 % m212&2 % m202&3@@@
all zeros, M takes on the value of one. If bits 0 through 22 are all ones, M is
just a hair under two, i.e., 2 &2&23.

Using this encoding scheme, the largest number that can be represented is:
 Likewise, the smallest number that can be±(2&2& 23) × 2128 ' ±6.8 × 1038.

represented is: The IEEE standard reduces this±1.0 × 2&127 ' ±5.9 × 10&39.
range slightly to free bit patterns that are assigned special meanings. In
particular, the largest and smallest numbers allowed in the standard are

The Scientist and Engineer's Guide to Digital Signal Processing72

 and respectively. The freed bit patterns allow three±3.4 × 1038 ±1.2 × 10&38,
special classes of numbers: (1) ±0 is defined as all of the mantissa and
exponent bits being zero. (2) ±4 is defined as all of the mantissa bits being
zero, and all of the exponent bits being one. (3) A group of very small
unnormalized numbers between and . These are lower±1.2 × 10&38 ±1.4 × 10&45

precision numbers obtained by removing the requirement that the leading digit
in the mantissa be a one. Besides these three special classes, there are bit
patterns that are not assigned a meaning, commonly referred to as NANs (Not
A Number).

The IEEE standard for double precision simply adds more bits to both the
mantissa and exponent. Of the 64 bits used to store a double precision number,
bits 0 through 51 are the mantissa, bits 52 through 62 are the exponent, and bit
63 is the sign bit. As before, the mantissa is between one and just under two,
i.e., . The 11 exponent bits form a numberM ' 1 % m512&1 % m502&2 % m492&3@@@
between 0 and 2047, with an offset of 1023, allowing exponents from 2&1023

to . The largest and smallest numbers allowed are and21024 ±1.8 × 10308

, respectively. These are incredibly large and small numbers! It±2.2 × 10& 308

is quite uncommon to find an application where single precision is not
adequate. You will probably never find a case where double precision limits
what you want to accomplish.

Number Precision
The errors associated with number representation are very similar to
quantization errors during ADC. You want to store a continuous range of
values; however, you can represent only a finite number of quantized levels.
Every time a new number is generated, after a math calculation for example,
it must be rounded to the nearest value that can be stored in the format you are
using.

As an example, imagine that you allocate 32 bits to store a number. Since
there are exactly different bit patterns possible, you can232 ' 4,294,967,296
represent exactly 4,294,967,296 different numbers. Some programming
languages allow a variable called a long integer, stored as 32 bits, fixed
point, two's complement. This means that the 4,294,967,296 possible bit
patterns represent the integers between -2,147,483,648 and 2,147,483,647. In
comparison, single precision floating point spreads these 4,294,967,296 bit
patterns over the much larger range: to . &3.4 × 1038 3.4 × 1038

With fixed point variables, the gaps between adjacent numbers are always
exactly one. In floating point notation, the gaps between adjacent numbers
vary over the represented number range. If we randomly pick a floating
point number, the gap next to that number is approximately ten million
times smaller than the number itself (to be exact, to times the2&24 2&23

number). This is a key concept of floating point notation: large numbers
have large gaps between them, while small numbers have small gaps.
Figure 4-3 illustrates this by showing consecutive floating point numbers,
and the gaps that separate them.

Chapter 4- DSP Software 73

0.00001233862713
0.00001233862804
0.00001233862895
0.00001233862986
 !
 1.000000000
1.000000119
1.000000238
1.000000358
 !
1.996093750
1.996093869
1.996093988
1.996094108
 !
636.0312500
636.0313110
636.0313720
636.0314331
 !
217063424.0
217063440.0
217063456.0
217063472.0

spacing = 0.00000000000091
(1 part in 13 million)

spacing = 0.000000119
(1 part in 8 million)

spacing = 0.000000119
(1 part in 17 million)

spacing = 0.0000610
(1 part in 10 million)

spacing = 16.0
(1 part in 14 million)

FIGURE 4-3
Examples of the spacing between single
precision floating point numbers. The
spacing between adjacent numbers is
always between about 1 part in 8 million
and 1 part in 17 million of the value of the
number.

TABLE 4-1
Program for demonstrating floating point
error accumulation. This program initially
sets the value of X to 1.000000, and then
runs through a loop that should ideally do
nothing. During each loop, two random
numbers, A and B, are added to X, and then
subtracted back out. The accumulated error
from these additions and subtraction causes
X to wander from its initial value. As Fig. 4-
4 shows, the error may be random or
additive.

100 X = 1 'initialize X
110 '
120 FOR I% = 0 TO 2000
130 A = RND 'load random numbers
140 B = RND 'into A and B
150 '
160 X = X + A 'add A and B to X
170 X = X + B
180 X = X ! A 'undo the additions
190 X = X ! B
200 '
210 PRINT X 'ideally, X should be 1
220 NEXT I%
230 END

The program in Table 4-1 illustrates how round-off error (quantization error
in math calculations) causes problems in DSP. Within the program loop, two
random numbers are added to the floating point variable X, and then subtracted
back out again. Ideally, this should do nothing. In reality, the round-off error
from each of the arithmetic operations causes the value of X to gradually drift
away from its initial value. This drift can take one of two forms depending on
how the errors add together. If the round-off errors are randomly positive and
negative, the value of the variable will randomly increase and decrease. If the
errors are predominately of the same sign, the value of the variable will drift
away much more rapidly and uniformly.

The Scientist and Engineer's Guide to Digital Signal Processing74

FIGURE 4-4
Accumulation of round-off error in floating
point variables. These curves are generated
by the program shown in Table 4-1. When a
floating point variable is repeatedly used in
arithmetic operations, accumulated round-off
error causes the variable's value to drift. If the
errors are both positive and negative, the
value will increase and decrease in a random
fashion. I f the round-off e r rors a re
predominately of the same sign, the value
will change in a much more rapid and
uniform manner.

Number of loops
0 500 1000 1500 2000

0.9998

0.9999

1

1.0001

1.0002

Additive error

Random errorV
al

ue
 o

f X

Figure 4-4 shows how the variable, X, in this example program drifts in
value. An obvious concern is that additive error is much worse than
random error. This is because random errors tend to cancel with each
other, while the additive errors simply accumulate. The additive error is
roughly equal to the round-off error from a single operation, multiplied by
the total number of operations. In comparison, the random error only
increases in proportion to the square root of the number of operations. As
shown by this example, additive error can be hundreds of times worse than
random error for common DSP algorithms.

Unfortunately, it is nearly impossible to control or predict which of these
two behaviors a particular algorithm will experience. For example, the
program in Table 4-1 generates an additive error. This can be changed to
a random error by merely making a slight modification to the numbers being
added and subtracted. In particular, the random error curve in Fig. 4-4 was
generated by defining: and , rather than:A ' EXP(RND) B ' EXP(RND)

 and . Instead of A and B being randomly distributedA ' RND B ' RND
numbers between 0 and 1, they become exponentially distributed values
between 1 and 2.718. Even this small change is sufficient to toggle the
mode of error accumulation.

Since we can't control which way the round-off errors accumulate, keep in mind
the worse case scenario. Expect that every single precision number will have
an error of about one part in forty million, multiplied by the number of
operations it has been through. This is based on the assumption of additive
error, and the average error from a single operation being one-quarter of a
quantization level. Through the same analysis, every double precision number
has an error of about one part in forty quadrillion, multiplied by the number
of operations.

Chapter 4- DSP Software 75

TABLE 4-2
Comparison of floating point and integer variables for loop control. The left hand program controls
the FOR-NEXT loop with a floating point variable, X. This results in an accumulated round-off error
of 0.000133 by the end of the program, causing the last loop value, X = 10.0, to be omitted. In
comparison, the right hand program uses an integer, I%, for the loop index. This provides perfect
precision, and guarantees that the proper number of loop cycles will be completed.

100 'Floating Point Loop Control 100 'Integer Loop Control
110 FOR X = 0 TO 10 STEP 0.01 110 FOR I% = 0 TO 1000
120 PRINT X 120 X = I%/100
130 NEXT X 130 PRINT X

140 NEXT I%

Program Output: Program Output:

0.00 0.00
0.01 0.01
0.02 0.02
0.03 0.03

 ! !
9.960132 9.96
9.970133 9.97
9.980133 9.98
9.990133 9.99

 10.00

Table 4-2 illustrates a particularly annoying problem of round-off error.
Each of the two programs in this table perform the same task: printing 1001
numbers equally spaced between 0 and 10. The left-hand program uses the
floating point variable, X, as the loop index. When instructed to execute a
loop, the computer begins by setting the index variable to the starting value
of the loop (0 in this example). At the end of each loop cycle, the step size
(0.01 in the case) is added to the index. A decision is then made: are more
loops cycles required, or is the loop completed? The loop ends when the
computer finds that the value of the index is greater than the termination
value (in this example, 10.0). As shown by the generated output, round-off
error in the additions cause the value of X to accumulate a significant
discrepancy over the course of the loop. In fact, the accumulated error
prevents the execution of the last loop cycle. Instead of X having a value
of 10.0 on the last cycle, the error makes the last value of X equal to
10.000133. Since X is greater than the termination value, the computer
thinks its work is done, and the loop prematurely ends. This missing last
value is a common bug in many computer programs.

In comparison, the program on the right uses an integer variable, I%, to
control the loop. The addition, subtraction, or multiplication of two integers
always produces another integer. This means that fixed point notation has
absolutely no round-off error with these operations. Integers are ideal for
controlling loops, as well as other variables that undergo multiple
mathematical operations. The last loop cycle is guaranteed to execute!
Unless you have some strong motivation to do otherwise, always use
integers for loop indexes and counters.

The Scientist and Engineer's Guide to Digital Signal Processing76

If you must use a floating point variable as a loop index, try to use fractions
that are a power of two (such as:), instead of a power of ten1/2, 1/4, 3/8, 27/16
(such as: , etc.). For instance, it would be better to use: FOR0.1, 0.6, 1.4, 2.3
X = 1 TO 10 STEP 0.125, rather than: FOR X = 1 to 10 STEP 0.1. This
allows the index to always have an exact binary representation, thereby
reducing round-off error. For example, the decimal number: 1.125, can be
represented exactly in binary notation: 1.001000000000000000000000×20. In
comparison, the decimal number: 1.1, falls between two floating point numbers:
1.0999999046 and 1.1000000238 (in binary these numbers are:
1.00011001100110011001100×20 and 1.00011001100110011001101×20). This
results in an inherent error each time 1.1 is encountered in a program.

A useful fact to remember: single precision floating point has an exact binary
representation for every whole number between ±16.8 million (to be exact,
±224). Above this value, the gaps between the levels are larger than one,
causing some whole number values to be missed. This allows floating point
whole numbers (between ±16.8 million) to be added, subtracted and multiplied,
with no round-off error.

Execution Speed: Program Language
DSP programming can be loosely divided into three levels of sophistication:
Assembly , Compiled , and Application Specific. To understand the
difference between these three, we need to start with the very basics of
digital electronics. All microprocessors are based around a set of internal
binary registers, that is, a group of flip-flops that can store a series of ones
and zeros. For example, the 8088 microprocessor, the core of the original
IBM PC, has four general purpose registers, each consisting of 16 bits.
These are identified by the names: AX, BX, CX, and DX. There are also
nine additional registers with special purposes, called: SI, DI, SP, BP, CS,
DS, SS, ES, and IP. For example, IP, the Instruction Pointer, keeps track
of where in memory the next instruction resides.

Suppose you write a program to add the numbers: 1234 and 4321. When
the program begins, IP contains the address of a section of memory that
contains a pattern of ones and zeros, as shown in Table 4-3. Although it
looks meaningless to most humans, this pattern of ones and zeros contains
all of the commands and data required to complete the task. For example,
when the microprocessor encounters the bit pattern: 00000011 11000011,
it interpreters it as a command to take the 16 bits stored in the BX register,
add them in binary to the 16 bits stored in the AX register, and store the
result in the AX register. This level of programming is called machine
code, and is only a hair above working with the actual electronic circuits.

Since working in binary will eventually drive even the most patient engineer
crazy, these patterns of ones and zeros are assigned names according to the
function they perform. This level of programming is called assembly, and
an example is shown in Table 4-4. Although an assembly program is much
easier to understand, it is fundamentally the same as programming in

Chapter 4- DSP Software 77

10111001 00000000
11010010 10100001
00000100 00000000
10001001 00000000
00001110 10001011
00000000 00011110
00000000 00000010
10111001 00000000
11100001 00000011
00010000 11000011
10001001 10100011
00001110 00000100
00000010 00000000

TABLE 4-3
A machine code program for adding 1234
and 4321. This is the lowest level of
programming: direct manipulation of the
digital electronics. (The right column is a
continuation of the left column).

MOV CX,1234 ;store 1234 in register CX, and then
MOV DS:[0],CX ;transfer it to memory location DS:[0]

MOV CX,4321 ;store 4321 in register CX, and then
MOV DS:[2],CX ;transfer it to memory location DS:[2]

MOV AX,DS:[0] ;move variables stored in memory at
MOV BX,DS:[2] ;DS:[0] and DS:[2] into AX & BX

ADD AX,BX ;add AX and BX, store sum in AX

MOV DS:[4],AX ;move the sum into memory at DS:[4]

TABLE 4-4
An assembly program for adding
1234 and 4321. An assembler is a
program that converts an assembly
program into machine code.

100 A = 1234
110 B = 4321
120 C = A+B
130 END

TABLE 4-5
A BASIC program for adding 1234
and 4321. A compiler is a program
that converts this type of high-level
source code into machine code.

machine code, since there is a one-to-one correspondence between the
program commands and the action taken in the microprocessor. For
example: ADD AX, BX translates to: 00000011 11000011. A program
called an assembler is used to convert the assembly code in Table 4-4
(called the source code) into the patterns of ones and zeros shown in Table
4-3 (called the object code or executable code). This executable code can
be directly run on the microprocessor. Obviously, assembly programming
requires an extensive understanding of the internal construction of the
particular microprocessor you intend to use.

Assembly programming involves the direct manipulation of the digital
electronics: registers, memory locations, status bits, etc. The next level of
sophistication can manipulate abstract variables without any reference to the
particular hardware. These are called compiled or high-level languages. A
dozen or so are in common use, such as: C, BASIC, FORTRAN, PASCAL,
APL, COBOL, LISP, etc. Table 4-5 shows a BASIC program for adding 1234
and 4321. The programmer only knows about the variables A, B, and C, and
nothing about the hardware.

The Scientist and Engineer's Guide to Digital Signal Processing78

A program called a compiler is used to transform the high-level source code
directly into machine code. This requires the compiler to assign hardware
memory locations to each of the abstract variables being referenced. For
example, the first time the compiler encounters the variable A in Table 4-5
(line 100), it understands that the programmer is using this symbol to mean a
single precision floating point variable. Correspondingly, the compiler
designates four bytes of memory that will be used for nothing but to hold the
value of this variable. Each subsequent time that an A appears in the program,
the computer knows to update the value of the four bytes as needed. The
compiler also breaks complicated mathematical expressions, such as: Y =
LOG(XCOS(Z)), into more basic arithmetic. Microprocessors only know how to
add, subtract, multiply and divide. Anything more complicated must be done
as a series of these four elementary operations.

High-level languages isolate the programmer from the hardware. This makes
the programming much easier and allows the source code to be transported
between different types of microprocessors. Most important, the programmer
who uses a compiled language needs to know nothing about the internal
workings of the computer. Another programmer has assumed this
responsibility, the one who wrote the compiler.

Most compilers operate by converting the entire program into machine code
before it is executed. An exception to this is a type of compiler called an
interpreter, of which interpreter BASIC is the most common example. An
interpreter converts a single line of source code into machine code, executes
that machine code, and then goes on to the next line of source code. This
provides an interactive environment for simple programs, although the
execution speed is extremely slow (think a factor of 100).

The highest level of programming sophistication is found in applications
packages for DSP. These come in a variety of forms, and are often provided
to support specific hardware. Suppose you buy a newly developed DSP
microprocessor to embed in your current project. These devices often have lots
of built-in features for DSP: analog inputs, analog outputs, digital I/O, antialias
and reconstruction filters, etc. The question is: how do you program it? In the
worst case, the manufacturer will give you an assembler, and expect you to
learn the internal architecture of the device. In a more typical scenario, a C
compiler will be provided, allowing you to program without being bothered by
how the microprocessor actually operates.

In the best case, the manufacturer will provide a sophisticated software
package to help in the programming: libraries of algorithms, prewritten
routines for I/O, debugging tools, etc. You might simply connect icons to
form the desired system in an easy-to-use graphical display. The things
you manipulate are signal pathways, algorithms for processing signals,
analog I/O parameters, etc. When you are satisfied with the design, it is
transformed into suitable machine code for execution in the hardware. Other
types of applications packages are used with image processing, spectral
analysis, instrumentation and control, digital filter design, etc. This is the
shape of the future.

Chapter 4- DSP Software 79

The distinction between these three levels can be very fuzzy. For example,
most complied languages allow you to directly manipulate the hardware.
Likewise, a high-level language with a well stocked library of DSP functions
is very close to being an applications package. The point of these three
catagories is understand what you are manipulating: (1) hardware, (2) abstract
variables, or (3) entire procedures and algorithms.

There is also another important concept behind these classifications. When
you use a high-level language, you are relying on the programmer who
wrote the compiler to understand the best techniques for hardware
manipulation. Similarly, when you use an applications package, you are
relying on the programmer who wrote the package to understand the best
DSP techniques. Here's the rub: these programmers have never seen the
particular problem you are dealing with. Therefore, they cannot always
provide you with an optimal solution. As you operate on a higher level,
expect that the final machine code will be less efficient in terms of memory
usage, speed, and precision.

Which programming language should you use? That depends on who you are
and what you plan to do. Most computer scientists and programmers use C (or
the more advanced C++). Power, flexibility, modularity; C has it all. C is so
popular, the question becomes: Why would anyone program their DSP
application in something other than C? Three answers come to mind. First,
DSP has grown so rapidly that some organizations and individuals are stuck in
the mode of other languages, such as FORTRAN and PASCAL. This is
especially true of military and government agencies that are notoriously slow
to change. Second, some applications require the utmost efficiency, only
achievable by assembly programming. This falls into the category of "a little
more speed for a lot more work." Third, C is not an especially easy language
to master, especially for part time programmers. This includes a wide range of
engineers and scientists who occasionally need DSP techniques to assist in their
research or design activities. This group often turns to BASIC because of its
simplicity.

Why was BASIC chosen for this book? This book is about algorithms, not
programming style. You should be concentrating on DSP techniques, and not
be distracted by the quirks of a particular language. For instance, all the
programs in this book have line numbers. This makes it easy to describe how
the program operates: "line 100 does such-and-such, line 110 does this-and
that," etc. Of course, you will probably never use line numbers in your actual
programs. The point is, learning DSP has different requirements than using
DSP. There are many books on the market that provide exquisite source code
for DSP algorithms. If you are simply looking for prewritten code to copy into
your program, you are in the wrong place.

Comparing the execution speed of hardware or software is a thankless task; no
matter what the result, the loser will cry that the match was unfair!
Programmers who like high-level languages (such as traditional computer
scientists), will argue that assembly is only 50% faster than compiled code, but
five times more trouble. Those who like assembly (typically, scientists and

The Scientist and Engineer's Guide to Digital Signal Processing80

hardware engineers) will claim the reverse: assembly is five times faster, but
only 50% more difficult to use. As in most controversies, both sides can
provide selective data to support their claims.

As a rule-of-thumb, expect that a subroutine written in assembly will be
between 1.5 and 3.0 times faster than the comparable high-level program. The
only way to know the exact value is to write the code and conduct speed tests.
Since personal computers are increasing in speed about 40% every year,
writing a routine in assembly is equivalent to about a two year jump in
hardware technology.

Most professional programmers are rather offended at the idea of using
assembly, and gag if you suggest BASIC. Their rational is quite simple:
assembly and BASIC discourage the use of good software practices. Good
code should be portable (able to move from one type of computer to another),
modular (broken into a well defined subroutine structure), and easy to
understand (lots of comments and descriptive variable names). The weak
structure of assembly and BASIC makes it difficult to achieve these standards.
This is compounded by the fact that the people who are attracted to assembly
and BASIC often have little formal training in proper software structure and
documentation.

Assembly lovers respond to this attack with a zinger of their own. Suppose you
write a program in C, and your competitor writes the same program in
assembly. The end user's first impression will be that your program is junk
because it is twice as slow. No one would suggest that you write large
programs in assembly, only those portions of the program that need rapid
execution. For example, many functions in DSP software libraries are written
in assembly, and then accessed from larger programs written in C. Even the
staunchest software purist will use assembly code, as long as they don't have
to write it.

Execution Speed: Hardware
Computing power is increasing so rapidly, any book on the subject will be
obsolete before it is published. It's an author's nightmare! The original IBM
PC was introduced in 1981, based around the 8088 microprocessor with a 4.77
MHz clock and an 8 bit data bus. This was followed by a new generation of
personal computers being introduced every 3-4 years: 8088 ! 80286 ! 80386
! 80486 ! 80586 (Pentium). Each of these new systems boosted the
computing speed by a factor of about five over the previous technology. By
1996, the clock speed had increased to 200 MHz, and the data bus to 32 bits.
With other improvements, this resulted in an increase in computing power of
nearly one thousand in only 15 years! You should expect another factor of
one thousand in the next 15 years.

The only way to obtain up-to-date information in this rapidly changing field is
directly from the manufacturers: advertisements, specification sheets, price
lists, etc. Forget books for performance data, look in magazines and your daily

Chapter 4- DSP Software 81

Central
Processing
Unit (CPU)

Math
Coprocessor

Cache
Memory

Main Memory
(program and data)

FIGURE 4-5
Architecture of a typical computer system.
The computational speed is limited by: (1)
the speed of the individual subsystems, and
(2) the rate at which data can be transferred
between these subsystems.

newspaper. Expect that raw computational speed will more than double each
two years. Learning about the current state of computer power is simply not
enough; you need to understand and track how it is evolving.

Keeping this in mind, we can jump into an overview of how execution speed
is limited by computer hardware. Since computers are composed of many
subsystems, the time required to execute a particular task will depend on two
primary factors: (1) the speed of the individual subsystems, and (2) the time it
takes to transfer data between these blocks. Figure 4-5 shows a simplified
diagram of the most important speed limiting components in a typical personal
computer. The Central Processing Unit (CPU) is the heart of the system.
As previously described, it consists of a dozen or so registers, each capable of
holding 32 bits (in present generation personal computers). Also included in
the CPU is the digital electronics needed for rudimentary operations, such as
moving bits around and fixed point arithmetic.

More involved mathematics is handled by transferring the data to a special
hardware circuit called a math coprocessor (also called an arithmetic logic
unit, or ALU). The math coprocessor may be contained in the same chip
as the CPU, or it may be a separate electronic device. For example, the
addition of two floating point numbers would require the CPU to transfer 8
bytes (4 for each number) to the math coprocessor, and several bytes that
describe what to do with the data. After a short computational time, the math
coprocessor would pass four bytes back to the CPU, containing the
floating point number that is the sum. The most inexpensive computer
systems don't have a math coprocessor, or provide it only as an option. For
example, the 80486DX microprocessor has an internal math coprocessor,
while the 80486SX does not. These lower performance systems replace
hardware with software. Each of the mathematical functions is broken into

The Scientist and Engineer's Guide to Digital Signal Processing82

elementary binary operations that can be handled directly within the CPU.
While this provides the same result, the execution time is much slower, say, a
factor of 10 to 20.

Most personal computer software can be used with or without a math
coprocessor. This is accomplished by having the compiler generate machine
code to handle both cases, all stored in the final executable program. If a math
coprocessor is present on the particular computer being used, one section of the
code will be run. If a math coprocessor is not present, the other section of the
code will be used. The compiler can also be directed to generate code for only
one of these situations. For example, you will occasionally find a program that
requires that a math coprocessor be present, and will crash if run on a computer
that does not have one. Applications such as word processing usually do not
benefit from a math coprocessor. This is because they involve moving data
around in memory, not the calculation of mathematical expressions. Likewise,
calculations involving fixed point variables (integers) are unaffected by the
presence of a math coprocessor, since they are handled within the CPU. On the
other hand, the execution speed of DSP and other computational programs using
floating point calculations can be an order of magnitude different with and
without a math coprocessor.

The CPU and main memory are contained in separate chips in most
computer systems. For obvious reasons, you would like the main memory
to be very large and very fast. Unfortunately, this makes the memory very
expensive. The transfer of data between the main memory and the CPU is
a very common bottleneck for speed. The CPU asks the main memory for
the binary information at a particular memory address, and then must wait
to receive the information. A common technique to get around this problem
is to use a memory cache. This is a small amount of very fast memory
used as a buffer between the CPU and the main memory. A few hundred
kilobytes is typical. When the CPU requests the main memory to provide
the binary data at a particular address, high speed digital electronics copies
a section of the main memory around this address into the memory cache.
The next time that the CPU requests memory information, it is very likely
that it will already be contained in the memory cache, making the retrieval
very rapid. This is based on the fact that programs tend to access memory
locations that are nearby neighbors of previously accessed data. In typical
personal computer applications, the addition of a memory cache can
improve the overall speed by several times. The memory cache may be in
the same chip as the CPU, or it may be an external electronic device.

The rate at which data can be transferred between subsystems depends on the
number of parallel data lines provided, and the maximum rate that digital
signals that can be passed along each line. Digital data can generally be
transferred at a much higher rate within a single chip as compared to
transferring data between chips. Likewise, data paths that must pass through
electrical connectors to other printed circuit boards (i.e., a bus structure) will
be slower still. This is a strong motivation for stuffing as much electronics as
possible inside the CPU.

Chapter 4- DSP Software 83

TABLE 4-6
Measured execution times for various computers. Times are in microseconds. The 80286, 80486,
and Pentium are three generations of personal computers, while the TMS320C40 is a micro-
processor specifically designed for DSP tasks. All of the personal computers include a math
coprocessor. Use these times only as a general estimate; times on your computer will vary according
to the particular hardware and software used.

80286
 (12 MHz)

80486
(33 MHz)

PENTIUM
(100 MHz)

TMS320C40
(40 MHz)

INTEGER
A% = B%+C% 1.6 0.12 0.04
A% = B%!C% 1.6 0.12 0.04
A% = B%×C% 2.7 0.59 0.13
A% = B%÷C% 64 9.2 1.5

FLOATING POINT
A = B+C 33 2.5 0.50 0.10
A = B!C 35 2.5 0.50 0.10
A = B×C 35 2.5 0.50 0.10
A = B÷C 49 4.5 0.87 0.80
A = SQR(B) 45 5.3 1.3 0.90
A = LOG(B) 186 19 3.4 1.7
A = EXP(B) 246 25 5.5 1.7
A = B^C 311 31 5.3 2.4
A = SIN(B) 262 30 6.6 1.1
A = ARCTAN(B) 168 21 4.4 2.2

A particularly nasty problem for computer speed is backward compatibility.
When a computer company introduces a new product, say a data acquisition
card or a software program, they want to sell it into the largest possible market.
This means that it must be compatible with most of the computers currently in
use, which could span several generations of technology. This frequently limits
the performance of the hardware or software to that of a much older system.
For example, suppose you buy an I/O card that plugs into the bus of your 200
MHz Pentium personal computer, providing you with eight digital lines that can
transmit and receive data one byte at a time. You then write an assembly
program to rapidly transfer data between your computer and some external
device, such as a scientific experiment or another computer. Much to your
surprise, the maximum data transfer rate is only about 100,000 bytes per
second, more than one thousand times slower than the microprocessor clock
rate! The villain is the ISA bus, a technology that is backward compatible to
the computers of the early 1980s.

Table 4-6 provides execution times for several generations of computers.
Obviously, you should treat these as very rough approximations. If you want
to understand your system, take measurements on your system. It's quite easy;
write a loop that executes a million of some operation, and use your watch to
time how long it takes. The first three systems, the 80286, 80486, and
Pentium, are the standard desk-top personal computers of 1986, 1993 and 1996,
respectively. The fourth is a 1994 microprocessor designed especially for DSP
tasks, the Texas Instruments TMS320C40.

The Scientist and Engineer's Guide to Digital Signal Processing84

The Pentium is faster than the 80286 system for four reasons, (1) the greater
clock speed, (2) more lines in the data bus, (3) the addition of a memory cache,
and (4) a more efficient internal design, requiring fewer clock cycles per
instruction.

If the Pentium was a Cadillac, the TMS320C40 would be a Ferrari: less
comfort, but blinding speed. This chip is representative of several micro-
processors specifically designed to decrease the execution time of DSP
algorithms. Others in this category are the Intel i860, AT&T DSP3210,
Motorola DSP96002, and the Analog Devices ADSP-2171. These often go by
the names: DSP microprocessor, Digital Signal Processor, and RISC
(Reduced Instruction Set Computer). This last name reflects that the increased
speed results from fewer assembly level instructions being made available to
the programmer. In comparison, more traditional microprocessors, such as
the Pentium, are called CISC (Complex Instruction Set Computer).

DSP microprocessors are used in two ways: as slave modules under the control
of a more conventional computer, or as an imbedded processor in a dedicated
application, such as a cellular telephone. Some models only handle fixed point
numbers, while others can work with floating point. The internal architecture
used to obtain the increased speed includes: (1) lots of very fast cache memory
contained within the chip, (2) separate buses for the program and data,
allowing the two to be accessed simultaneously (called a Harvard
Architecture), (3) fast hardware for math calculations contained directly in
the microprocessor, and (4) a pipeline design.

A pipeline architecture breaks the hardware required for a certain task into
several successive stages. For example, the addition of two numbers may
be done in three pipeline stages. The first stage of the pipeline does nothing
but fetch the numbers to be added from memory. The only task of the
second stage is to add the two numbers together. The third stage does
nothing but store the result in memory. If each stage can complete its task
in a single clock cycle, the entire procedure will take three clock cycles to
execute. The key feature of the pipeline structure is that another task can
be started before the previous task is completed. In this example, we could
begin the addition of another two numbers as soon as the first stage is idle,
at the end of the first clock cycle. For a large number of operations, the
speed of the system will be quoted as one addition per clock cycle, even
though the addition of any two numbers requires three clock cycles to
complete. Pipelines are great for speed, but they can be difficult to
program. The algorithm must allow a new calculation to begin, even though
the results of previous calculations are unavailable (because they are still
in the pipeline).

Chapters 28 and 29 discuss DSP microprocessors in much more detail. These
are amazing devices; their high-power and low-cost will bring DSP to a wide
range of consumer and scientific applications. This is one of the technologies
that will shape the twenty-first century.

Chapter 4- DSP Software 85

EQUATION 4-3
Maclaurin power series expansion for
three transcendental functions. This is
how computers calculate functions of
this type, and why they execute so
slowly.

sin(x) ' x &
x 3

3!
%

x 5

5!
&

x 7

7!
%

x 9

9!
&

x 11

11!
% @@@

cos(x) ' 1 &
x 2

2!
%

x 4

4!
&

x 6

6!
%

x 8

8!
&

x 10

10!
% @@@

e x
' 1 % x %

x 2

2!
%

x 3

3!
%

x 4

4!
%

x 5

5!
% @@@

sin (1) ' 1 & 0.166666 % 0.008333 & 0.000198 % 0.000002 & @@@

Execution Speed: Programming Tips
While computer hardware and programming languages are important for
maximizing execution speed, they are not something you change on a day-to
day basis. In comparison, how you program can be changed at any time, and
will drastically affect how long the program will require to execute. Here are
three suggestions.

First, use integers instead of floating point variables whenever
possible. Conventional microprocessors, such as used in personal computers,
process integers 10 to 20 times faster than floating point numbers. On systems
without a math coprocessor, the difference can be 200 to 1. An exception to
this is integer division, which is often accomplished by converting the values
into floating point. This makes the operation ghastly slow compared to other
integer calculations. See Table 4-6 for details.

Second, avoid using functions such as: , etc. Thesesin(x), log(x), y x
transcendental functions are calculated as a series of additions, subtractions
and multiplications. For example, the Maclaurin power series provides:

While these relations are infinite in length, the terms rapidly become small
enough to be ignored. For example:

These functions require about ten times longer to calculate than a single
addition or multiplication (see Table 4-6). Several tricks can be used to bypass
these calculations, such as: ; , when x is very small;x 3 ' x @ x @ x sin(x) .x

, where you already know one of the values and need to findsin(& x) ' -sin(x)
the other, etc. Most languages only provide a few transcendental functions, and
expect you to derive the others by means of the relations in Table 4-7. Not
surprisingly, these derived calculations are even slower.

The Scientist and Engineer's Guide to Digital Signal Processing86

TABLE 4-7
Calculating rarely used functions from more common ones. All angles are in radians,
ATN(X) is the arctangent, LOG(X) is the natural logarithm, SGN(X) is the sign of X (i.e.,
-1 for X#0, 1 for X>0), EXP(X) is eX.

 FUNCTION EQUATION FOR CALCULATING

Secant (X) = 1/COS(X)
Cosecant (X) = 1/SIN(X)
Cotangent (X) = 1/TAN(X)

Arc Sine (X) = ATN(X/SQR(1-X*X))
Arc Cosine (X) = -ATN(X/SQR(1-X*X)) + PI/2
Arc Secant (X) = ATN(SQR(X*X-1)) + (SGN(X)-1) * PI/2
Arc Cosecant (X) = ATN(1/SQR(X*X-1)) + (SGN(X)-1) * PI/2
Arc Cotangent (X) = -ATN(X) + PI/2

Hyperbolic Sine (X) = (EXP(X)-EXP(-X))/2
Hyperbolic Cosine (X) = (EXP(X)+EXP(-X))/2
Hyperbolic Tangent (X) = (EXP(X)-EXP(-X))/(EXP(X)+EXP(-X))
Hyperbolic Secant (X) = 1/HYPERBOLIC COSINE
Hyperbolic Cosecant (X) = 1/HYPERBOLIC SINE
Hyperbolic Cotangent (X) = 1/HYPERBOLIC TANGENT

Arc Hyperbolic Sine (X) = LOG(X+SQR(X*X+1))
Arc Hyperbolic Cosine (X) = LOG(X+SQR(X*X-1))
Arc Hyperbolic Tangent (X) = LOG((1+X) /(1-X))/2
Arc Hyperbolic Secant (X) = LOG((SQR(1-X*X)+1)/X)
Arc Hyperbolic Cosecant (X) = LOG(1+SGN(X)*SQR(1+X*X))/X
Arc Hyperbolic Cotangent (X) = LOG((X+1)/(X-1))/2

LOG10(X) = LOG(X)/LOG(10) = 0.4342945 LOG(X)
PI = 4*ATN(1) = 3.141592653589794

Another option is to precalculate these slow functions, and store the values in
a look-up table (LUT). For example, imagine an 8 bit data acquisition
system used to continually monitor the voltage across a resistor. If the
parameter of interest is the power being dissipated in the resistor, the measured
voltage can be used to calculate: . As a faster alternative, the powerP'V 2/R
corresponding to each of the possible 256 voltage measurements can be
calculated beforehand, and stored in a LUT. When the system is running, the
measured voltage, a digital number between 0 and 255, becomes an index in
the LUT to find the corresponding power. Look-up tables can be hundreds of
times faster than direct calculation.

Third, learn what is fast and what is slow on your particular system.
This comes with experience and testing, and there will always be surprises. Pay
particular attention to graphics commands and I/O. There are usually several
ways to handle these requirements, and the speeds can be tremendously
different. For example, the BASIC command: BLOAD, transfers a data file
directly into a section of memory. Reading the same file into memory byte-by-
byte (in a loop) can be 100 times as slow. As another example, the BASIC
command: LINE, can be used to draw a colored box on the video screen.
Drawing the same box pixel-by-pixel can also take 100 times as long. Even
putting a print statement within a loop (to keep track of what it is doing) can
slow the operation by thousands!

87

CHAPTER

5 Linear Systems

Most DSP techniques are based on a divide-and-conquer strategy called superposition. The
signal being processed is broken into simple components, each component is processed
individually, and the results reunited. This approach has the tremendous power of breaking a
single complicated problem into many easy ones. Superposition can only be used with linear
systems, a term meaning that certain mathematical rules apply. Fortunately, most of the
applications encountered in science and engineering fall into this category. This chapter presents
the foundation of DSP: what it means for a system to be linear, various ways for breaking signals
into simpler components, and how superposition provides a variety of signal processing
techniques.

Signals and Systems
A signal is a description of how one parameter varies with another parameter.
For instance, voltage changing over time in an electronic circuit, or brightness
varying with distance in an image. A system is any process that produces an
output signal in response to an input signal. This is illustrated by the block
diagram in Fig. 5-1. Continuous systems input and output continuous signals,
such as in analog electronics. Discrete systems input and output discrete
signals, such as computer programs that manipulate the values stored in arrays.

Several rules are used for naming signals. These aren't always followed in
DSP, but they are very common and you should memorize them. The
mathematics is difficult enough without a clear notation. First, continuous
signals use parentheses, such as: and , while discrete signals usex(t) y(t)
brackets, as in: and . Second, signals use lower case letters. Upperx[n] y[n]
case letters are reserved for the frequency domain, discussed in later chapters.
Third, the name given to a signal is usually descriptive of the parameters it
represents. For example, a voltage depending on time might be called: , orv(t)
a stock market price measured each day could be: .p[d]

The Scientist and Engineer's Guide to Digital Signal Processing88

Continuous
System

Discrete
System

x(t) y(t)

x[n] y[n]

FIGURE 5-1
Terminology for signals and systems. A system is any process that generates an output signal in
response to an input signal. Continuous signals are usually represented with parentheses, while
discrete signals use brackets. All signals use lower case letters, reserving the upper case for the
frequency domain (presented in later chapters). Unless there is a better name available, the input
signal is called: x(t) or x[n], while the output is called: y(t) or y[n].

Signals and systems are frequently discussed without knowing the exact
parameters being represented. This is the same as using x and y in algebra,
without assigning a physical meaning to the variables. This brings in a fourth
rule for naming signals. If a more descriptive name is not available, the input
signal to a discrete system is usually called: , and the output signal: .x[n] y[n]
For continuous systems, the signals: and are used. x(t) y(t)

There are many reasons for wanting to understand a system. For example, you
may want to design a system to remove noise in an electrocardiogram, sharpen
an out-of-focus image, or remove echoes in an audio recording. In other cases,
the system might have a distortion or interfering effect that you need to
characterize or measure. For instance, when you speak into a telephone, you
expect the other person to hear something that resembles your voice.
Unfortunately, the input signal to a transmission line is seldom identical to the
output signal. If you understand how the transmission line (the system) is
changing the signal, maybe you can compensate for its effect. In still other
cases, the system may represent some physical process that you want to study
or analyze. Radar and sonar are good examples of this. These methods
operate by comparing the transmitted and reflected signals to find the
characteristics of a remote object. In terms of system theory, the problem is to
find the system that changes the transmitted signal into the received signal.

At first glance, it may seem an overwhelming task to understand all of the
possible systems in the world. Fortunately, most useful systems fall into a
category called linear systems. This fact is extremely important. Without the
linear system concept, we would be forced to examine the individual

Chapter 5- Linear Systems 89

System

System

x[n] y[n]

IF

THEN

k x[n] k y[n]

FIGURE 5-2
Definition of homogeneity. A system is said to be homogeneous if an amplitude change in
the input results in an identical amplitude change in the output. That is, if x[n] results in
y[n], then kx[n] results in ky[n], for any signal, x[n], and any constant, k.

characteristics of many unrelated systems. With this approach, we can focus
on the traits of the linear system category as a whole. Our first task is to
identify what properties make a system linear, and how they fit into the
everyday notion of electronics, software, and other signal processing systems.

Requirements for Linearity
A system is called linear if it has two mathematical properties: homogeneity
(hÇma-gen-~-ity) and additivity. If you can show that a system has both
properties, then you have proven that the system is linear. Likewise, if you can
show that a system doesn't have one or both properties, you have proven that
it isn't linear. A third property, shift invariance, is not a strict requirement
for linearity, but it is a mandatory property for most DSP techniques. When
you see the term linear system used in DSP, you should assume it includes shift
invariance unless you have reason to believe otherwise. These three properties
form the mathematics of how linear system theory is defined and used. Later
in this chapter we will look at more intuitive ways of understanding linearity.
For now, let's go through these formal mathematical properties.

As illustrated in Fig. 5-2, homogeneity means that a change in the input signal's
amplitude results in a corresponding change in the output signal's amplitude.
In mathematical terms, if an input signal of results in an output signal ofx[n]

, an input of results in an output of , for any input signal andy[n] kx[n] ky[n]
constant, k.

The Scientist and Engineer's Guide to Digital Signal Processing90

System

System

IF

THEN

System

AND IF

x1[n] y1[n]

x2[n] y2[n]

y1[n]+y2[n]x1[n]+x2[n]

FIGURE 5-3
Definition of additivity. A system is said to be additive if added signals pass through it
without interacting. Formally, if x1[n] results in y1[n], and if x2[n] results in y2[n], then
x1[n]+x2[n] results in y1[n]+y2[n].

A simple resistor provides a good example of both homogenous and non-
homogeneous systems. If the input to the system is the voltage across the
resistor, , and the output from the system is the current through the resistor,v(t)

, the system is homogeneous. Ohm's law guarantees this; if the voltage isi(t)
increased or decreased, there will be a corresponding increase or decrease in
the current. Now, consider another system where the input signal is the voltage
across the resistor, , but the output signal is the power being dissipated inv(t)
the resistor, . Since power is proportional to the square of the voltage, ifp(t)
the input signal is increased by a factor of two, the output signal is increase by
a factor of four. This system is not homogeneous and therefore cannot be
linear.

The property of additivity is illustrated in Fig. 5-3. Consider a system where
an input of produces an output of . Further suppose that a differentx1[n] y1[n]
input, , produces another output, . The system is said to be additive,x2[n] y2[n]
if an input of results in an output of , for all possiblex1[n] % x2[n] y1[n] % y2[n]
input signals. In words, signals added at the input produce signals that are
added at the output.

Chapter 5- Linear Systems 91

System

System

x[n] y[n]

x[n+s] y[n+s]

IF

THEN

FIGURE 5-4
Definition of shift invariance. A system is said to be shift invariant if a shift in the input
signal causes an identical shift in the output signal. In mathematical terms, if x[n]
produces y[n], then x[n+s] produces y[n+s], for any signal, x[n], and any constant, s.

The important point is that added signals pass through the system without
interacting. As an example, think about a telephone conversation with your
Aunt Edna and Uncle Bernie. Aunt Edna begins a rather lengthy story about
how well her radishes are doing this year. In the background, Uncle Bernie is
yelling at the dog for having an accident in his favorite chair. The two voice
signals are added and electronically transmitted through the telephone network.
Since this system is additive, the sound you hear is the sum of the two voices
as they would sound if transmitted individually. You hear Edna and Bernie,
not the creature, Ednabernie.

A good example of a nonadditive circuit is the mixer stage in a radio
transmitter. Two signals are present: an audio signal that contains the voice
or music, and a carrier wave that can propagate through space when applied
to an antenna. The two signals are added and applied to a nonlinearity,
such as a pn junction diode. This results in the signals merging to form a
third signal, a modulated radio wave capable of carrying the information
over great distances.

As shown in Fig. 5-4, shift invariance means that a shift in the input signal will
result in nothing more than an identical shift in the output signal. In more
formal terms, if an input signal of results in an output of , an inputx[n] y [n]
signal of results in an output of , for any input signal and anyx[n% s] y[n% s]
constant, s. Pay particular notice to how the mathematics of this shift is
written, it will be used in upcoming chapters. By adding a constant, s, to the
independent variable, n, the waveform can be advanced or retarded in the
horizontal direction. For example, when , the signal is shifted left by twos' 2
samples; when , the signal is shifted right by two samples. s' &2

The Scientist and Engineer's Guide to Digital Signal Processing92

Shift invariance is important because it means the characteristics of the
system do not change with time (or whatever the independent variable
happens to be). If a blip in the input causes a blop in the output, you can
be assured that another blip will cause an identical blop. Most of the
systems you encounter will be shift invariant. This is fortunate, because it
is difficult to deal with systems that change their characteristics while in
operation. For example, imagine that you have designed a digital filter to
compensate for the degrading effects of a telephone transmission line. Your
filter makes the voices sound more natural and easier to understand. Much
to your surprise, along comes winter and you find the characteristics of the
telephone line have changed with temperature. Your compensation filter is
now mismatched and doesn't work especially well. This situation may
require a more sophisticated algorithm that can adapt to changing
conditions.

Why do homogeneity and additivity play a critical role in linearity, while shift
invariance is something on the side? This is because linearity is a very broad
concept, encompassing much more than just signals and systems. For example,
consider a farmer selling oranges for $2 per crate and apples for $5 per crate.
If the farmer sells only oranges, he will receive $20 for 10 crates, and $40 for
20 crates, making the exchange homogenous. If he sells 20 crates of oranges
and 10 crates of apples, the farmer will receive: . This20×$2 % 10×$5 ' $90
is the same amount as if the two had been sold individually, making the
transaction additive. Being both homogenous and additive, this sale of goods
is a linear process. However, since there are no signals involved, this is not
a system, and shift invariance has no meaning. Shift invariance can be thought
of as an additional aspect of linearity needed when signals and systems are
involved.

Static Linearity and Sinusoidal Fidelity
Homogeneity, additivity, and shift invariance are important because they
provide the mathematical basis for defining linear systems. Unfortunately,
these properties alone don't provide most scientists and engineers with an
intuitive feeling of what linear systems are about. The properties of static
linearity and sinusoidal fidelity are often of help here. These are not
especially important from a mathematical standpoint, but relate to how humans
think about and understand linear systems. You should pay special attention
to this section.

Static linearity defines how a linear system reacts when the signals aren't
changing, i.e., when they are DC or static. The static response of a linear
system is very simple: the output is the input multiplied by a constant. That
is, a graph of the possible input values plotted against the corresponding
output values is a straight line that passes through the origin. This is shown
in Fig. 5-5 for two common linear systems: Ohm's law for resistors, and
Hooke's law for springs. For comparison, Fig. 5-6 shows the static
relationship for two nonlinear systems: a pn junction diode, and the
magnetic properties of iron.

Chapter 5- Linear Systems 93

Voltage

low
resistance

high
resistance

a. Ohm's law

Force

weak
spring

strong
spring

b. Hooke's law

FIGURE 5-5
Two examples of static linearity. In (a), Ohm's law: the current through a resistor is equal to the
voltage across the resistor divided by the resistance. In (b), Hooke's law: The elongation of a spring
is equal to the applied force multiplied by the spring stiffness coefficient.

C
ur

re
nt

El
on

ga
tio

n

Voltage

a. Silicon diode

0.6 v

b. Iron

H

FIGURE 5-6
Two examples of DC nonlinearity. In (a), a silicon diode has an exponential relationship between
voltage and current. In (b), the relationship between magnetic intensity, H, and flux density, B, in
iron depends on the history of the sample, a behavior called hysteresis.

C
ur

re
nt B

All linear systems have the property of static linearity. The opposite is
usually true, but not always. There are systems that show static linearity,
but are not linear with respect to changing signals. However, a very
common class of systems can be completely understood with static linearity
alone. In these systems it doesn't matter if the input signal is static or
changing. These are called memoryless systems, because the output
depends only on the present state of the input, and not on its history. For
example, the instantaneous current in a resistor depends only on the
instantaneous voltage across it, and not on how the signals came to be the
value they are. If a system has static linearity, and is memoryless, then the
system must be linear. This provides an important way to understand (and
prove) the linearity of these simple systems.

The Scientist and Engineer's Guide to Digital Signal Processing94

An important characteristic of linear systems is how they behave with
sinusoids, a property we will call sinusoidal fidelity: If the input to a
linear system is a sinusoidal wave, the output will also be a sinusoidal
wave, and at exactly the same frequency as the input. Sinusoids are the
only waveform that have this property. For instance, there is no reason to
expect that a square wave entering a linear system will produce a square
wave on the output. Although a sinusoid on the input guarantees a sinusoid
on the output, the two may be different in amplitude and phase. This
should be familiar from your knowledge of electronics: a circuit can be
described by its frequency response, graphs of how the circuit's gain and
phase vary with frequency.

Now for the reverse question: If a system always produces a sinusoidal output
in response to a sinusoidal input, is the system guaranteed to be linear? The
answer is no, but the exceptions are rare and usually obvious. For example,
imagine an evil demon hiding inside a system, with the goal of trying to
mislead you. The demon has an oscilloscope to observe the input signal, and
a sine wave generator to produce an output signal. When you feed a sine
wave into the input, the demon quickly measures the frequency and adjusts his
signal generator to produce a corresponding output. Of course, this system is
not linear, because it is not additive. To show this, place the sum of two sine
waves into the system. The demon can only respond with a single sine wave
for the output. This example is not as contrived as you might think; phase lock
loops operate in much this way.

To get a better feeling for linearity, think about a technician trying to determine
if an electronic device is linear. The technician would attach a sine wave
generator to the input of the device, and an oscilloscope to the output. With a
sine wave input, the technician would look to see if the output is also a sine
wave. For example, the output cannot be clipped on the top or bottom, the top
half cannot look different from the bottom half, there must be no distortion
where the signal crosses zero, etc. Next, the technician would vary the
amplitude of the input and observe the effect on the output signal. If the system
is linear, the amplitude of the output must track the amplitude of the input.
Lastly, the technician would vary the input signal's frequency, and verify that
the output signal's frequency changes accordingly. As the frequency is
changed, there will likely be amplitude and phase changes seen in the output,
but these are perfectly permissible in a linear system. At some frequencies, the
output may even be zero, that is, a sinusoid with zero amplitude. If the
technician sees all these things, he will conclude that the system is linear.
While this conclusion is not a rigorous mathematical proof, the level of
confidence is justifiably high.

Examples of Linear and Nonlinear Systems
Table 5-1 provides examples of common linear and nonlinear systems. As you
go through the lists, keep in mind the mathematician's view of linearity
(homogeneity, additivity, and shift invariance), as well as the informal way
most scientists and engineers use (static linearity and sinusoidal fidelity).

Chapter 5- Linear Systems 95

Table 5-1
Examples of linear and nonlinear systems. Formally, linear systems are defined by the properties
of homogeneity, additivity, and shift invariance. Informally, most scientists and engineers think
of linear systems in terms of static linearity and sinusoidal fidelity.

Examples of Linear Systems

Wave propagation such as sound and electromagnetic waves

Electrical circuits composed of resistors, capacitors, and inductors

Electronic circuits, such as amplifiers and filters

Mechanical motion from the interaction of masses, springs, and dashpots (dampeners)

Systems described by differential equations such as resistor-capacitor-inductor
networks

Multiplication by a constant, that is, amplification or attenuation of the signal

Signal changes, such as echoes, resonances, and image blurring

The unity system where the output is always equal to the input

The null system where the output is always equal to the zero, regardless of the input

Differentiation and integration, and the analogous operations of first difference and
running sum for discrete signals

Small perturbations in an otherwise nonlinear system, for instance, a small signal being
amplified by a properly biased transistor

Convolution, a mathematical operation where each value in the output is expressed as the
sum of values in the input multiplied by a set of weighing coefficients.

Recursion, a technique similar to convolution, except previously calculated values in the
output are used in addition to values from the input

Examples of Nonlinear Systems

Systems that do not have static linearity, for instance, the voltage and power in a
resistor: , the radiant energy emission of a hot object depending on its temperature:P ' V 2R

, the intensity of light transmitted through a thickness of translucent material:R ' kT 4

, etc. I ' e &"T

Systems that do not have sinusoidal fidelity, such as electronics circuits for: peak
detection, squaring, sine wave to square wave conversion, frequency doubling, etc.

Common electronic distortion, such as clipping, crossover distortion and slewing

Multiplication of one signal by another signal, such as in amplitude modulation and
automatic gain controls

Hysteresis phenomena, such as magnetic flux density versus magnetic intensity in iron,
or mechanical stress versus strain in vulcanized rubber

Saturation, such as electronic amplifiers and transformers driven too hard

Systems with a threshold, for example, digital logic gates, or seismic vibrations that are
strong enough to pulverize the intervening rock

The Scientist and Engineer's Guide to Digital Signal Processing96

x[n] y[n]

IF

THEN

x[n] y[n]

System System
A B

System System
B A

FIGURE 5-7
The commutative property for linear
systems. When two or more linear systems
are arranged in a cascade, the order of the
systems does not affect the characteristics
of the overall combination.

Special Properties of Linearity
Linearity is commutative, a property involving the combination of two or
more systems. Figure 5-10 shows the general idea. Imagine two systems
combined in a cascade, that is, the output of one system is the input to the
next. If each system is linear, then the overall combination will also be linear.
The commutative property states that the order of the systems in the cascade
can be rearranged without affecting the characteristics of the overall
combination. You probably have used this principle in electronic circuits. For
example, imagine a circuit composed of two stages, one for amplification, and
one for filtering. Which is best, amplify and then filter, or filter and then
amplify? If both stages are linear, the order doesn't make any difference and
the overall result is the same. Keep in mind that actual electronics has
nonlinear effects that may make the order important, for instance: interference,
DC offsets, internal noise, slew rate distortion, etc.

Figure 5-8 shows the next step in linear system theory: multiple inputs and
outputs. A system with multiple inputs and/or outputs will be linear if it is
composed of linear subsystems and additions of signals. The complexity does
not matter, only that nothing nonlinear is allowed inside of the system.

To understand what linearity means for systems with multiple inputs and/or
outputs, consider the following thought experiment. Start by placing a signal
on one input while the other inputs are held at zero. This will cause the
multiple outputs to respond with some pattern of signals. Next, repeat the
procedure by placing another signal on a different input. Just as before, keep
all of the other inputs at zero. This second input signal will result in another
pattern of signals appearing on the multiple outputs. To finish the experiment,
place both signals on their respective inputs simultaneously. The signals
appearing on the outputs will simply be the superposition (sum) of the output
signals produced when the input signals were applied separately.

Chapter 5- Linear Systems 97

FIGURE 5-8
Any system with multiple inputs and/or
outputs will be linear if it is composed
of linear systems and signal additions.

System System
A B

System System

System
C

D E

x
1
[n]

x
2
[n]

x
3
[n]

y
1
[n]

y
2
[n]

y
3
[n]

Linear

constant

x[n]

y[n]

x
1
[n]

x
2
[n]

y[n]

a. Multiplication by a constant

Nonlinear

b. Multiplication of two signals

FIGURE 5-9
Linearity of multiplication. Multiplying a signal by a constant is a linear operation. In
contrast, the multiplication of two signals is nonlinear.

The use of multiplication in linear systems is frequently misunderstood. This
is because multiplication can be either linear or nonlinear, depending on what
the signal is multiplied by. Figure 5-9 illustrates the two cases. A system that
multiplies the input signal by a constant, is linear. This system is an amplifier
or an attenuator, depending if the constant is greater or less than one,
respectively. In contrast, multiplying a signal by another signal is nonlinear.
Imagine a sinusoid multiplied by another sinusoid of a different frequency; the
resulting waveform is clearly not sinusoidal.

Another commonly misunderstood situation relates to parasitic signals added
in electronics, such as DC offsets and thermal noise. Is the addition of these
extraneous signals linear or nonlinear? The answer depends on where the
contaminating signals are viewed as originating. If they are viewed as coming
from within the system, the process is nonlinear. This is because a sinusoidal
input does not produce a pure sinusoidal output. Conversely, the extraneous
signal can be viewed as externally entering the system on a separate input of
a multiple input system. This makes the process linear, since only a signal
addition is required within the system.

The Scientist and Engineer's Guide to Digital Signal Processing98

decomposition

synthesis

x[n]

x
0
[n]

x1[n]

x
2
[n]

FIGURE 5-10
Illustration of synthesis and decomposition of
signals. In synthesis, two or more signals are
added to form another signal. Decomposition is
the opposite process, breaking one signal into
two or more additive component signals.

Superposition: the Foundation of DSP
When we are dealing with linear systems, the only way signals can be
combined is by scaling (multiplication of the signals by constants) followed by
addition. For instance, a signal cannot be multiplied by another signal. Figure
5-10 shows an example: three signals: , , and are added to formx0[n] x1[n] x2[n]
a fourth signal, . This process of combining signals through scaling andx [n]
addition is called synthesis.

Decomposition is the inverse operation of synthesis, where a single signal is
broken into two or more additive components. This is more involved than
synthesis, because there are infinite possible decompositions for any given
signal. For example, the numbers 15 and 25 can only be synthesized (added)
into the number 40. In comparison, the number 40 can be decomposed into:

 or or , etc.1% 39 2% 38 &30.5% 60% 10.5

Now we come to the heart of DSP: superposition, the overall strategy for
understanding how signals and systems can be analyzed. Consider an input

Chapter 5- Linear Systems 99

System

x[n]

x0[n]

x1[n]

x2[n]

y0[n]

y1[n]

y2[n]

y[n]

System

System

The Fundamental

Concept of DSP

de
co

m
po

si
tio

n

sy
nt

he
si

s

FIGURE 5-11
The fundamental concept in DSP. Any
signal, such as , can be decomposed intox [n]
a group of additive components, shown here
by the signals: and . Passingx1[n], x2[n], x3[n]
these components through a linear system
produces the signals, and .y1[n], y2[n], y3[n]
The synthesis (addition) of these output
signals forms , the same signal producedy [n]
when is passed through the system. x [n]

signal, called , passing through a linear system, resulting in an outputx[n]
signal, . As illustrated in Fig. 5-11, the input signal can be decomposedy[n]
into a group of simpler signals: , , , etc. We will call these thex0[n] x1[n] x2[n]
input signal components. Next, each input signal component is individually
passed through the system, resulting in a set of output signal components:

, , , etc. These output signal components are then synthesizedy0[n] y1[n] y2[n]
into the output signal, .y[n]

The Scientist and Engineer's Guide to Digital Signal Processing100

Here is the important part: the output signal obtained by this method is
identical to the one produced by directly passing the input signal through the
system. This is a very powerful idea. Instead of trying to understanding how
complicated signals are changed by a system, all we need to know is how
simple signals are modified. In the jargon of signal processing, the input and
output signals are viewed as a superposition (sum) of simpler waveforms. This
is the basis of nearly all signal processing techniques.

As a simple example of how superposition is used, multiply the number 2041
by the number 4, in your head. How did you do it? You might have imagined
2041 match sticks floating in your mind, quadrupled the mental image, and
started counting. Much more likely, you used superposition to simplify the
problem. The number 2041 can be decomposed into: . Each of2000 % 40 % 1
these components can be multiplied by 4 and then synthesized to find the final
answer, i.e., . 8000 % 160 % 4 ' 8164

Common Decompositions
Keep in mind that the goal of this method is to replace a complicated problem
with several easy ones. If the decomposition doesn't simplify the situation in
some way, then nothing has been gained. There are two main ways to
decompose signals in signal processing: impulse decomposition and Fourier
decomposition. They are described in detail in the next several chapters. In
addition, several minor decompositions are occasionally used. Here are brief
descriptions of the two major decompositions, along with three of the minor
ones.

Impulse Decomposition
As shown in Fig. 5-12, impulse decomposition breaks an N samples signal into
N component signals, each containing N samples. Each of the component
signals contains one point from the original signal, with the remainder of the
values being zero. A single nonzero point in a string of zeros is called an
impulse. Impulse decomposition is important because it allows signals to be
examined one sample at a time. Similarly, systems are characterized by how
they respond to impulses. By knowing how a system responds to an impulse,
the system's output can be calculated for any given input. This approach is
called convolution, and is the topic of the next two chapters.

Step Decomposition
Step decomposition, shown in Fig. 5-13, also breaks an N sample signal into
N component signals, each composed of N samples. Each component signal
is a step, that is, the first samples have a value of zero, while the last samples
are some constant value. Consider the decomposition of an N point signal,

, into the components: . The componentx[n] x0[n], x1[n], x2[n], ˛xN&1[n] k th

signal, , is composed of zeros for points 0 through , while thexk[n] k&1
remaining points have a value of: . For example, the x[k] & x[k&1] 5 th

component signal, , is composed of zeros for points 0 through 4, whilex5[n]
the remaining samples have a value of: (the difference betweenx[5] & x[4]

Chapter 5- Linear Systems 101

Impulse
Decomposition

Step
Decomposition

x[n]

x0[n]

x1[n]

x2[n]

x27[n]

x[n]

x0[n]

x1[n]

x2[n]

x27[n]

FIGURE 5-12
Example of impulse decomposition. An N
point signal is broken into N components,
each consisting of a single nonzero point.

FIGURE 5-13
Example of step decomposition. An N point
signal is broken into N signals, each consisting
of a step function

sample 4 and 5 of the original signal). As a special case, has all of itsx0[n]
samples equal to . Just as impulse decomposition looks at signals one pointx[0]
at a time, step decomposition characterizes signals by the difference between
adjacent samples. Likewise, systems are characterized by how they respond to
a change in the input signal.

The Scientist and Engineer's Guide to Digital Signal Processing102

xE [n] '
x [n] % x [N&n]

2

xO [n] '
x [n] & x [N&n]

2

EQUATION 5-1
Equations for even/odd decomposition.
These equations separate a signal, ,x [n]
into its even part, , and its odd part,xE [n]

. Since this decomposition is basedxO [n]
on circularly symmetry, the zeroth
samples in the even and odd signals are
calculated: , and .xE [0] ' x [0] xO [0] ' 0
All of the signals are N samples long,
with indexes running from 0 to N-1

Even/Odd Decomposition
The even/odd decomposition, shown in Fig. 5-14, breaks a signal into two
component signals, one having even symmetry and the other having odd
symmetry. An N point signal is said to have even symmetry if it is a mirror
image around point . That is, sample must equal ,N/2 x[N/2% 1] x[N/2& 1]
sample must equal , etc. Similarly, odd symmetry occursx[N/2% 2] x[N/2& 2]
when the matching points have equal magnitudes but are opposite in sign, such
as: , , etc. These definitionsx[N/2% 1] ' & x[N/2&1] x[N/2% 2] ' & x[N/2&2]
assume that the signal is composed of an even number of samples, and that the
indexes run from 0 to . The decomposition is calculated from theN&1
relations:

This may seem a strange definition of left-right symmetry, since N/2& ½
(between two samples) is the exact center of the signal, not . Likewise,N/2
this off-center symmetry means that sample zero needs special handling.
What's this all about?

This decomposition is part of an important concept in DSP called circular
symmetry. It is based on viewing the end of the signal as connected to the
beginning of the signal. Just as point is next to point , point x[4] x[5] x[N&1]
is next to point . Picture a snake biting its own tail. When even and oddx[0]
signals are viewed in this circular manner, there are actually two lines of
symmetry, one at point and another at point . For example, in anx[N/2] x[0]
even signal, this symmetry around means that point equals pointx[0] x[1]

, point equals point , etc. In an odd signal, point 0 andx[N&1] x[2] x[N&2]
point always have a value of zero. In an even signal, point 0 and pointN/2

 are equal to the corresponding points in the original signal.N /2

What is the motivation for viewing the last sample in a signal as being next to
the first sample? There is nothing in conventional data acquisition to support
this circular notion. In fact, the first and last samples generally have less in
common than any other two points in the sequence. It's common sense! The
missing piece to this puzzle is a DSP technique called Fourier analysis. The
mathematics of Fourier analysis inherently views the signal as being circular,
although it usually has no physical meaning in terms of where the data came
from. We will look at this in more detail in Chapter 10. For now, the
important thing to understand is that Eq. 5-1 provides a valid decomposition,
simply because the even and odd parts can be added together to reconstruct the
original signal.

Chapter 5- Linear Systems 103

Even/Odd
Decomposition

Interlaced
Decomposition

x[n]

xE[n]

xO[n]

x[n]

xE[n]

xO[n]

0 N/2 N

even symmetry

odd symmetry

even samples

odd samples

FIGURE 5-14
Example of even/odd decomposition. An N
point signal is broken into two N point signals,
one with even symmetry, and the other with
odd symmetry.

FIGURE 5-15
Example of interlaced decomposition. An N
point signal is broken into two N point signals,
one with the odd samples set to zero, the other
with the even samples set to zero.

Interlaced Decomposition
As shown in Fig. 5-15, the interlaced decomposition breaks the signal into two
component signals, the even sample signal and the odd sample signal (not to
be confused with even and odd symmetry signals). To find the even sample
signal, start with the original signal and set all of the odd numbered samples
to zero. To find the odd sample signal, start with the original signal and set all
of the even numbered samples to zero. It's that simple.

At first glance, this decomposition might seem trivial and uninteresting. This
is ironic, because the interlaced decomposition is the basis for an extremely
important algorithm in DSP, the Fast Fourier Transform (FFT). The procedure
for calculating the Fourier decomposition has been known for several hundred
years. Unfortunately, it is frustratingly slow, often requiring minutes or hours
to execute on present day computers. The FFT is a family of algorithms
developed in the 1960s to reduce this computation time. The strategy is an
exquisite example of DSP: reduce the signal to elementary components by
repeated use of the interlace transform; calculate the Fourier decomposition of
the individual components; synthesize the results into the final answer. The

The Scientist and Engineer's Guide to Digital Signal Processing104

results are dramatic; it is common for the speed to be improved by a factor of
hundreds or thousands.

Fourier Decomposition
Fourier decomposition is very mathematical and not at all obvious. Figure
5-16 shows an example of the technique. Any N point signal can be
decomposed into signals, half of them sine waves and half of themN%2
cosine waves. The lowest frequency cosine wave (called in thisxC0 [n]
illustration), makes zero complete cycles over the N samples, i.e., it is a DC
signal. The next cosine components: , , and , make 1, 2,xC1 [n] xC2 [n] xC3 [n]
and 3 complete cycles over the N samples, respectively. This pattern holds
for the remainder of the cosine waves, as well as for the sine wave
components. Since the frequency of each component is fixed, the only
thing that changes for different signals being decomposed is the amplitude
of each of the sine and cosine waves.

Fourier decomposition is important for three reasons. First, a wide variety
of signals are inherently created from superimposed sinusoids. Audio
signals are a good example of this. Fourier decomposition provides a direct
analysis of the information contained in these types of signals. Second,
linear systems respond to sinusoids in a unique way: a sinusoidal input
always results in a sinusoidal output. In this approach, systems are
characterized by how they change the amplitude and phase of sinusoids
passing through them. Since an input signal can be decomposed into
sinusoids, knowing how a system will react to sinusoids allows the output
of the system to be found. Third, the Fourier decomposition is the basis for
a broad and powerful area of mathematics called Fourier analysis, and the
even more advanced Laplace and z-transforms. Most cutting-edge DSP
algorithms are based on some aspect of these techniques.

Why is it even possible to decompose an arbitrary signal into sine and cosine
waves? How are the amplitudes of these sinusoids determined for a particular
signal? What kinds of systems can be designed with this technique? These are
the questions to be answered in later chapters. The details of the Fourier
decomposition are too involved to be presented in this brief overview. For
now, the important idea to understand is that when all of the component
sinusoids are added together, the original signal is exactly reconstructed. Much
more on this in Chapter 8.

Alternatives to Linearity
To appreciate the importance of linear systems, consider that there is only one
major strategy for analyzing systems that are nonlinear. That strategy is to
make the nonlinear system resemble a linear system. There are three common
ways of doing this:

First, ignore the nonlinearity. If the nonlinearity is small enough, the system
can be approximated as linear. Errors resulting from the original assumption
are tolerated as noise or simply ignored.

Chapter 5- Linear Systems 105

FIGURE 5-16
Illustration of Fourier decomposition. An N point signal is decomposed into N+2 signals, each
having N points. Half of these signals are cosine waves, and half are sine waves. The frequencies
of the sinusoids are fixed; only the amplitudes can change.

Fourier
Decomposition

x[n]

xC1[n]

xC2[n]

xC8[n]

xS1[n]

xS2[n]

xS8[n]

xC0[n] xS0[n]

xC3[n] xS3[n]

cosine waves sine waves

The Scientist and Engineer's Guide to Digital Signal Processing106

Second, keep the signals very small. Many nonlinear systems appear linear if
the signals have a very small amplitude. For instance, transistors are very
nonlinear over their full range of operation, but provide accurate linear
amplification when the signals are kept under a few millivolts. Operational
amplifiers take this idea to the extreme. By using very high open-loop gain
together with negative feedback, the input signal to the op amp (i.e., the
difference between the inverting and noninverting inputs) is kept to only a few
microvolts. This minuscule input signal results in excellent linearity from an
otherwise ghastly nonlinear circuit.

Third, apply a linearizing transform. For example, consider two signals being
multiplied to make a third: . Taking the logarithm of thea[n] ' b[n] × c[n]
signals changes the nonlinear process of multiplication into the linear process
of addition: . The fancy name for thislog(a[n]) ' log(b[n]) % log(c[n])
approach is homomorphic signal processing. For example, a visual image can
be modeled as the reflectivity of the scene (a two-dimensional signal) being
multiplied by the ambient illumination (another two-dimensional signal).
Homomorphic techniques enable the illumination signal to be made more
uniform, thereby improving the image.

In the next chapters we examine the two main techniques of signal processing:
convolution and Fourier analysis. Both are based on the strategy presented in
this chapter: (1) decompose signals into simple additive components, (2)
process the components in some useful manner, and (3) synthesize the
components into a final result. This is DSP.

107

CHAPTER

6 Convolution

Convolution is a mathematical way of combining two signals to form a third signal. It is the
single most important technique in Digital Signal Processing. Using the strategy of impulse
decomposition, systems are described by a signal called the impulse response. Convolution is
important because it relates the three signals of interest: the input signal, the output signal, and
the impulse response. This chapter presents convolution from two different viewpoints, called
the input side algorithm and the output side algorithm. Convolution provides the mathematical
framework for DSP; there is nothing more important in this book.

The Delta Function and Impulse Response
The previous chapter describes how a signal can be decomposed into a group
of components called impulses. An impulse is a signal composed of all zeros,
except a single nonzero point. In effect, impulse decomposition provides a way
to analyze signals one sample at a time. The previous chapter also presented
the fundamental concept of DSP: the input signal is decomposed into simple
additive components, each of these components is passed through a linear
system, and the resulting output components are synthesized (added). The
signal resulting from this divide-and-conquer procedure is identical to that
obtained by directly passing the original signal through the system. While
many different decompositions are possible, two form the backbone of signal
processing: impulse decomposition and Fourier decomposition. When impulse
decomposition is used, the procedure can be described by a mathematical
operation called convolution. In this chapter (and most of the following ones)
we will only be dealing with discrete signals. Convolution also applies to
continuous signals, but the mathematics is more complicated. We will look at
how continious signals are processed in Chapter 13.

Figure 6-1 defines two important terms used in DSP. The first is the delta
function, symbolized by the Greek letter delta, . The delta function is**[n]
a normalized impulse, that is, sample number zero has a value of one, while

The Scientist and Engineer's Guide to Digital Signal Processing108

all other samples have a value of zero. For this reason, the delta function is
frequently called the unit impulse.

The second term defined in Fig. 6-1 is the impulse response. As the name
suggests, the impulse response is the signal that exits a system when a delta
function (unit impulse) is the input. If two systems are different in any way,
they will have different impulse responses. Just as the input and output signals
are often called and , the impulse response is usually given thex[n] y[n]
symbol, . Of course, this can be changed if a more descriptive name ish[n]
available, for instance, might be used to identify the impulse response off [n]
a filter.

Any impulse can be represented as a shifted and scaled delta function.
Consider a signal, , composed of all zeros except sample number 8,a[n]
which has a value of -3. This is the same as a delta function shifted to the
r igh t by 8 samples , and mul t ip l ied by -3 . In equa t ion form:

. Make sure you understand this notation, it is used ina[n] ' &3*[n&8]
nearly all DSP equations.

If the input to a system is an impulse, such as , what is the system's&3*[n&8]
output? This is where the properties of homogeneity and shift invariance are
used. Scaling and shifting the input results in an identical scaling and shifting
of the output. If results in , it follows that results in*[n] h[n] &3*[n&8]

. In words, the output is a version of the impulse response that has&3h[n&8]
been shifted and scaled by the same amount as the delta function on the input.
If you know a system's impulse response, you immediately know how it will
react to any impulse.

Convolution
Let's summarize this way of understanding how a system changes an input
signal into an output signal. First, the input signal can be decomposed into a
set of impulses, each of which can be viewed as a scaled and shifted delta
function. Second, the output resulting from each impulse is a scaled and shifted
version of the impulse response. Third, the overall output signal can be found
by adding these scaled and shifted impulse responses. In other words, if we
know a system's impulse response, then we can calculate what the output will
be for any possible input signal. This means we know everything about the
system. There is nothing more that can be learned about a linear system's
characteristics. (However, in later chapters we will show that this information
can be represented in different forms).

The impulse response goes by a different name in some applications. If the
system being considered is a filter, the impulse response is called the filter
kernel, the convolution kernel, or simply, the kernel. In image processing,
the impulse response is called the point spread function. While these terms
are used in slightly different ways, they all mean the same thing, the signal
produced by a system when the input is a delta function.

Chapter 6- Convolution 109

System

-2 -1 0 1 2 3 4 5 6
-1

0

1

2

-2 -1 0 1 2 3 4 5 6
-1

0

1

2

*[n] h[n]

Delta Impulse
Response

Linear

Function

FIGURE 6-1
Definition of delta function and impulse response. The delta function is a normalized impulse. All of
its samples have a value of zero, except for sample number zero, which has a value of one. The Greek
letter delta, , is used to identify the delta function. The impulse response of a linear system, usually*[n]
denoted by , is the output of the system when the input is a delta function.h[n]

x[n] h[n] = y[n]

x[n] y[n]
Linear
System

h[n]

FIGURE 6-2
How convolution is used in DSP. The
output signal from a linear system is
equal to the input signal convolved
with the system's impulse response.
Convolution is denoted by a star when
writing equations.

Convolution is a formal mathematical operation, just as multiplication,
addition, and integration. Addition takes two numbers and produces a third
number, while convolution takes two signals and produces a third signal.
Convolution is used in the mathematics of many fields, such as probability and
statistics. In linear systems, convolution is used to describe the relationship
between three signals of interest: the input signal, the impulse response, and the
output signal.

Figure 6-2 shows the notation when convolution is used with linear systems.
An input signal, , enters a linear system with an impulse response, ,x[n] h[n]
resulting in an output signal, . In equation form: .y[n] x[n] t h[n] ' y[n]
Expressed in words, the input signal convolved with the impulse response is
equal to the output signal. Just as addition is represented by the plus, +, and
multiplication by the cross, ×, convolution is represented by the star, t. It is
unfortunate that most programming languages also use the star to indicate
multiplication. A star in a computer program means multiplication, while a star
in an equation means convolution.

The Scientist and Engineer's Guide to Digital Signal Processing110

Sample number
0 10 20 30 40 50 60 70 80 90 100 110

-2

-1

0

1

2

3

4

S
0 10 20 30

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

S
0 10 20 30

-0.02

0.00

0.02

0.04

0.06

0.08

a. Low-pass Filter

b. High-pass Filter

Sample number
0 10 20 30 40 50 60 70 80

-2

-1

0

1

2

3

4

Sample number
0 10 20 30 40 50 60 70 80 90 100 110

-2

-1

0

1

2

3

4

Sample number
0 10 20 30 40 50 60 70 80

-2

-1

0

1

2

3

4

Sample number

Sample number

Input Signal Impulse Response Output Signal

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

FIGURE 6-3
Examples of low-pass and high-pass filtering using convolution. In this example, the input signal
is a few cycles of a sine wave plus a slowly rising ramp. These two components are separated by
using properly selected impulse responses.

Figure 6-3 shows convolution being used for low-pass and high-pass filtering.
The example input signal is the sum of two components: three cycles of a sine
wave (representing a high frequency), plus a slowly rising ramp (composed of
low frequencies). In (a), the impulse response for the low-pass filter is a
smooth arch, resulting in only the slowly changing ramp waveform being
passed to the output. Similarly, the high-pass filter, (b), allows only the more
rapidly changing sinusoid to pass.

Figure 6-4 illustrates two additional examples of how convolution is used to
process signals. The inverting attenuator, (a), flips the signal top-for-bottom,
and reduces its amplitude. The discrete derivative (also called the first
difference), shown in (b), results in an output signal related to the slope of the
input signal.

Notice the lengths of the signals in Figs. 6-3 and 6-4. The input signals are
81 samples long, while each impulse response is composed of 31 samples.
In most DSP applications, the input signal is hundreds, thousands, or even
millions of samples in length. The impulse response is usually much shorter,
say, a few points to a few hundred points. The mathematics behind
convolution doesn't restrict how long these signals are. It does, however,
specify the length of the output signal. The length of the output signal is

Chapter 6- Convolution 111

S
0 10 20 30

-2.00

-1.00

0.00

1.00

2.00

S
0 10 20 30

-2.00

-1.00

0.00

1.00

2.00

a. Inverting Attenuator

b. Discrete Derivative

Sample number
0 10 20 30 40 50 60 70 80 90 100 110

-2

-1

0

1

2

3

4

Sample number
0 10 20 30 40 50 60 70 80 90 100 110

-2

-1

0

1

2

3

4

Sample number
0 10 20 30 40 50 60 70 80

-2

-1

0

1

2

3

4

Sample number
0 10 20 30 40 50 60 70 80

-2

-1

0

1

2

3

4

Input Signal Impulse Response Output Signal

Sample number

Sample number

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

FIGURE 6-4
Examples of signals being processed using convolution. Many signal processing tasks use very
simple impulse responses. As shown in these examples, dramatic changes can be achieved with only
a few nonzero points.

equal to the length of the input signal, plus the length of the impulse
response, minus one. For the signals in Figs. 6-3 and 6-4, each output
signal is: samples long. The input signal runs from sample81% 31& 1 ' 111
0 to 80, the impulse response from sample 0 to 30, and the output signal
from sample 0 to 110.

Now we come to the detailed mathematics of convolution. As used in Digital
Signal Processing, convolution can be understood in two separate ways. The
first looks at convolution from the viewpoint of the input signal. This
involves analyzing how each sample in the input signal contributes to many
points in the output signal. The second way looks at convolution from the
viewpoint of the output signal. This examines how each sample in the
output signal has received information from many points in the input signal.

Keep in mind that these two perspectives are different ways of thinking
about the same mathematical operation. The first viewpoint is important
because it provides a conceptual understanding of how convolution pertains
to DSP. The second viewpoint describes the mathematics of convolution.
This typifies one of the most difficult tasks you will encounter in DSP:
making your conceptual understanding fit with the jumble of mathematics
used to communicate the ideas.

The Scientist and Engineer's Guide to Digital Signal Processing112

0 1 2 3 4 5 6 7 8 9 10 11
-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8
-3

-2

-1

0

1

2

3

0 1 2 3
-3

-2

-1

0

1

2

3

h[n]x[n] y[n]

FIGURE 6-5
Example convolution problem. A nine point input signal, convolved with a four point impulse response, results
in a twelve point output signal. Each point in the input signal contributes a scaled and shifted impulse response
to the output signal. These nine scaled and shifted impulse responses are shown in Fig. 6-6.

Now examine sample , the last point in the input signal. This sample is atx[8]
index number eight, and has a value of -0.5. As shown in the lower-right graph
of Fig. 6-6, results in an impulse response that has been shifted to the rightx[8]
by eight points and multiplied by -0.5. Place holding zeros have been added at
points 0-7. Lastly, examine the effect of points and . Both thesex[0] x[7]
samples have a value of zero, and therefore produce output components
consisting of all zeros.

The Input Side Algorithm
Figure 6-5 shows a simple convolution problem: a 9 point input signal, ,x[n]
is passed through a system with a 4 point impulse response, , resultingh[n]
in a point output signal, . In mathematical terms, is9% 4& 1 ' 12 y[n] x[n]
convolved with to produce . This first viewpoint of convolution ish[n] y[n]
based on the fundamental concept of DSP: decompose the input, pass the
components through the system, and synthesize the output. In this example,
each of the nine samples in the input signal will contribute a scaled and
shifted version of the impulse response to the output signal. These nine
signals are shown in Fig. 6-6. Adding these nine signals produces the
output signal, .y[n]

Let's look at several of these nine signals in detail. We will start with sample
number four in the input signal, i.e., . This sample is at index number four,x[4]
and has a value of 1.4. When the signal is decomposed, this turns into an
impulse represented as: . After passing through the system, the1.4*[n&4]
resulting output component will be: . This signal is shown in the1.4 h[n&4]
center box of the nine signals in Fig. 6-6. Notice that this is the impulse
response, , multiplied by 1.4, and shifted four samples to the right. Zerosh[n]
have been added at samples 0-3 and at samples 8-11 to serve as place holders.
To make this more clear, Fig. 6-6 uses squares to represent the data points that
come from the shifted and scaled impulse response, and diamonds for the added
zeros.

Chapter 6- Convolution 113

FIGURE 6-6
Output signal components for the convolution in Fig. 6-5. In these signals, each point that results from a scaled
and shifted impulse response is represented by a square marker. The remaining data points, represented by
diamonds, are zeros that have been added as place holders.

0 1 2 3 4 5 6 7 8 9 10 11
-3

-2

-1

0

1

2

3

contribution
from x[] h[n-]

0 1 2 3 4 5 6 7 8 9 10 11
-3
-2
-1
0
1
2
3

contribution
from x[] h[n-]

0 1 2 3 4 5 6 7 8 9 10 11
-3
-2
-1
0
1
2
3

contribution
from x[] h[n-]

0 1 2 3 4 5 6 7 8 9 10 11
-3
-2
-1
0
1
2
3

contribution
from x[] h[n-]

0 1 2 3 4 5 6 7 8 9 10 11
-3
-2
-1
0
1
2
3

contribution
from x[] h[n-]

0 1 2 3 4 5 6 7 8 9 10 11
-3
-2
-1
0
1
2
3

contribution
from x[] h[n-]

0 1 2 3 4 5 6 7 8 9 10 11
-3
-2
-1
0
1
2
3

contribution
from x[] h[n-]

0 1 2 3 4 5 6 7 8 9 10 11
-3
-2
-1
0
1
2
3

contribution
from x[] h[n-]

0 1 2 3 4 5 6 7 8 9 10 11
-3
-2
-1
0
1
2
3

contribution
from x[] h[n-]

0 0 1 1 2 2

3 3 4 4 5 5

6 6 7 7 8 8

In this example, is a nine point signal and is a four point signal. Inx[n] h[n]
our next example, shown in Fig. 6-7, we will reverse the situation by making x[n]
a four point signal, and a nine point signal. The same two waveforms areh[n]
used, they are just swapped. As shown by the output signal components, the
four samples in result in four shifted and scaled versions of the nine pointx[n]
impulse response. Just as before, leading and trailing zeros are added as place
holders.

But wait just one moment! The output signal in Fig. 6-7 is identical to the
output signal in Fig. 6-5. This isn't a mistake, but an important property.
Convolution is commutative: . The mathematics doesa[n]tb[n] ' b[n]ta[n]
not care which is the input signal and which is the impulse response, only
that two signals are convolved with each other. Although the mathematics
may allow it, exchanging the two signals has no physical meaning in system
theory. The input signal and impulse response are two totally different
things and exchanging them doesn't make sense. What the commutative
property provides is a mathematical tool for manipulating equations to
achieve various results.

The Scientist and Engineer's Guide to Digital Signal Processing114

TABLE 6-1

100 'CONVOLUTION USING THE INPUT SIDE ALGORITHM
110 '
120 DIM X[80] 'The input signal, 81 points
130 DIM H[30] 'The impulse response, 31 points
140 DIM Y[110] 'The output signal, 111 points
150 '
160 GOSUB XXXX 'Mythical subroutine to load X[] and H[]
170 '
180 FOR I% = 0 TO 110 'Zero the output array
190 Y(I%) = 0
200 NEXT I%
210 '
220 FOR I% = 0 TO 80 'Loop for each point in X[]
230 FOR J% = 0 TO 30 'Loop for each point in H[]
240 Y[I%+J%] = Y[I%+J%] + X[I%]tH[J%]
250 NEXT J%
260 NEXT I% '(remember, t is multiplication in programs!)
270 '
280 GOSUB XXXX 'Mythical subroutine to store Y[]
290 '
300 END

A program for calculating convolutions using the input side algorithm is shown
in Table 6-1. Remember, the programs in this book are meant to convey
algorithms in the simplest form, even at the expense of good programming
style. For instance, all of the input and output is handled in mythical
subroutines (lines 160 and 280), meaning we do not define how these
operations are conducted. Do not skip over these programs; they are a key
part of the material and you need to understand them in detail.

The program convolves an 81 point input signal, held in array X[], with a 31
point impulse response, held in array H[], resulting in a 111 point output
signal, held in array Y[]. These are the same lengths shown in Figs. 6-3 and
6-4. Notice that the names of these arrays use upper case letters. This is a
violation of the naming conventions previously discussed, because upper case
letters are reserved for frequency domain signals. Unfortunately, the simple
BASIC used in this book does not allow lower case variable names. Also
notice that line 240 uses a star for multiplication. Remember, a star in a
program means multiplication, while a star in an equation means convolution.
A star in text (such as documentation or program comments) can mean either.

The mythical subroutine in line 160 places the input signal into X[] and the
impulse response into H[]. Lines 180-200 set all of the values in Y[] to
zero. This is necessary because Y[] is used as an accumulator to sum the
output components as they are calculated. Lines 220 to 260 are the heart of
the program. The FOR statement in line 220 controls a loop that steps through
each point in the input signal, X[]. For each sample in the input signal, an
inner loop (lines 230-250) calculates a scaled and shifted version of the
impulse response, and adds it to the array accumulating the output signal,
Y[]. This nested loop structure (one loop within another loop) is a key
characteristic of convolution programs; become familiar with it.

Chapter 6- Convolution 115

FIGURE 6-7
A second example of convolution. The waveforms for the input signal and impulse response
are exchanged from the example of Fig. 6-5. Since convolution is commutative, the output
signals for the two examples are identical.

0 1 2 3 4 5 6 7 8 9 10 11
-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8
-3

-2

-1

0

1

2

3

0 1 2 3
-3

-2

-1

0

1

2

3

h[n]x[n] y[n]

0 1 2 3 4 5 6 7 8 9 10 11
-3

-2

-1

0

1

2

3

contribution
from x[] h[n-]

0 1 2 3 4 5 6 7 8 9 10 11
-3

-2

-1

0

1

2

3

contribution
from x[] h[n-]

0 1 2 3 4 5 6 7 8 9 10 11
-3

-2

-1

0

1

2

3

contribution
from x[] h[n-]

0 1 2 3 4 5 6 7 8 9 10 11
-3

-2

-1

0

1

2

3

contribution
from x[] h[n-]

0 0 1 1

2 2 3 3

Output signal components

Keeping the indexing straight in line 240 can drive you crazy! Let's say we
are halfway through the execution of this program, so that we have just
begun action on sample X[40], i.e., I% = 40. The inner loop runs through
each point in the impulse response doing three things. First, the impulse
response is scaled by multiplying it by the value of the input sample. If this
were the only action taken by the inner loop, line 240 could be written,
Y[J%] = X[40]tH[J%]. Second, the scaled impulse is shifted 40 samples
to the right by adding this number to the index used in the output signal.
This second action would change line 240 to: Y[40+J%] = X[40]tH[J%].
Third, Y[] must accumulate (synthesize) all the signals resulting from each
sample in the input signal. Therefore, the new information must be added
to the information that is already in the array. This results in the final
command: Y[40+J%] = Y[40+J%] + X[40]tH[J%]. Study this carefully;
it is very confusing, but very important.

The Scientist and Engineer's Guide to Digital Signal Processing116

The Output Side Algorithm
The first viewpoint of convolution analyzes how each sample in the input
signal affects many samples in the output signal. In this second viewpoint,
we reverse this by looking at individual samples in the output signal, and
finding the contributing points from the input. This is important from both
mathematical and practical standpoints. Suppose that we are given some
input signal and impulse response, and want to find the convolution of the
two. The most straightforward method would be to write a program that
loops through the output signal, calculating one sample on each loop cycle.
Likewise, equations are written in the form: some combination ofy[n] '
other variables. That is, sample n in the output signal is equal to some
combination of the many values in the input signal and impulse response.
This requires a knowledge of how each sample in the output signal can be
calculated independently of all other samples in the output signal. The
output side algorithm provides this information.

Let's look at an example of how a single point in the output signal is influenced
by several points from the input. The example point we will use is in Fig.y[6]
6-5. This point is equal to the sum of all the sixth points in the nine output
components, shown in Fig. 6-6. Now, look closely at these nine output
components and identify which can affect . That is, find which of thesey[6]
nine signals contains a nonzero sample at the sixth position. Five of the output
components only have added zeros (the diamond markers) at the sixth sample,
and can therefore be ignored. Only four of the output components are capable
of having a nonzero value in the sixth position. These are the output
components generated from the input samples: . Byx[3], x[4], x[5], and x[6]
adding the sixth sample from each of these output components, isy[6]
determined as: . That is, foury[6] ' x[3]h[3] % x[4]h[2] % x[5]h[1] % x[6]h[0]
samples from the input signal are multiplied by the four samples in the impulse
response, and the products added.

Figure 6-8 illustrates the output side algorithm as a convolution machine, a
flow diagram of how convolution occurs. Think of the input signal, , andx[n]
the output signal, , as fixed on the page. The convolution machine,y[n]
everything inside the dashed box, is free to move left and right as needed. The
convolution machine is positioned so that its output is aligned with the output
sample being calculated. Four samples from the input signal fall into the inputs
of the convolution machine. These values are multiplied by the indicated
samples in the impulse response, and the products are added. This produces the
value for the output signal, which drops into its proper place. For example,

 i s s h o w n b e i n g c a l c u l a t e d f r o m t h e f o u r i n p u t s a m p l e s :y[6]
.x[3], x[4], x[5], and x[6]

To calculate , the convolution machine moves one sample to the right. Thisy[7]
results in another four samples entering the machine, through , and thex[4] x[7]
value for dropping into the proper place. This process is repeated for ally[7]
points in the output signal needing to be calculated.

Chapter 6- Convolution 117

0 1 2 3 4 5 6 7 8
-3

-2

-1

0

1

2

3

-3 -2 -1 0
-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

x[n]

y[n]

h[n] 0

-1

-2

-3

2

3

1

(flipped)

FIGURE 6-8
The convolution machine. This is a flow diagram showing how each sample in the output signal
is influenced by the input signal and impulse response. See the text for details.

0 1 2 3 4 5 6 7 8 9 10 11
-3

-2

-1

0

1

2

3

The arrangement of the impulse response inside the convolution machine is
very important. The impulse response is flipped left-for-right. This places
sample number zero on the right, and increasingly positive sample numbers
running to the left. Compare this to the normal impulse response in Fig. 6-5
to understand the geometry of this flip. Why is this flip needed? It simply
falls out of the mathematics. The impulse response describes how each point
in the input signal affects the output signal. This results in each point in the
output signal being affected by points in the input signal weighted by a flipped
impulse response.

The Scientist and Engineer's Guide to Digital Signal Processing118

FIGURE 6-9
The convolution machine in action. Figures (a) through (d) show the convolution machine
set to calculate four different output signal samples, y[0], y[3], y[8], and y[11].

0 1 2 3 4 5 6 7 8
-3

-2

-1

0

1

2

3

-3 -2 -1 0
-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

x[n]

y[n]

h[n] 0

-1

-2

-3

2

3

1

(flipped)

a. Set to calculate y[0]

0 1 2 3 4 5 6 7 8
-3

-2

-1

0

1

2

3

-3 -2 -1 0
-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

x[n]

y[n]

h[n] 0

-1

-2

-3

2

3

1

(flipped)

b. Set to calculate y[3]

0 1 2 3 4 5 6 7 8 9 10 11
-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11
-3

-2

-1

0

1

2

3

Figure 6-9 shows the convolution machine being used to calculate several
samples in the output signal. This diagram also illustrates a real nuisance in
convolution. In (a), the convolution machine is located fully to the left with its
output aimed at . In this position, it is trying to receive input fromy[0]
samples: . The problem is, three of these samples:x[&3], x[&2], x[&1], and x[0]

, do not exist! This same dilemma arises in (d), wherex[&3], x[&2], and x[&1]
the convolution machine tries to accept samples to the right of the defined input
signal, points . x[9], x[10], and x[11]

One way to handle this problem is by inventing the nonexistent samples. This
involves adding samples to the ends of the input signal, with each of the added
samples having a value of zero. This is called padding the signal with zeros.
Instead of trying to access a nonexistent value, the convolution machine
receives a sample that has a value of zero. Since this zero is eliminated
during the multiplication, the result is mathematically the same as ignoring the
nonexistent inputs.

Chapter 6- Convolution 119

0 1 2 3 4 5 6 7 8 9 10 11
-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11
-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8
-3

-2

-1

0

1

2

3

-3 -2 -1 0
-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

x[n]

y[n]

h[n] 0

-1

-2

-3

2

3

1

(flipped)

c. Set to calculate y[8]

0 1 2 3 4 5 6 7 8
-3

-2

-1

0

1

2

3

-3 -2 -1 0
-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

x[n]

y[n]

h[n] 0

-1

-2

-3

2

3

1

(flipped)

d. Set to calculate y[11]

 Figure 6-9 (continued)

The important part is that the far left and far right samples in the output signal
are based on incomplete information. In DSP jargon, the impulse response
is not fully immersed in the input signal. If the impulse response is M
points in length, the first and last samples in the output signal are basedM&1
on less information than the samples between. This is analogous to an
electronic circuit requiring a certain amount of time to stabilize after the power
is applied. The difference is that this transient is easy to ignore in electronics,
but very prominent in DSP.

Figure 6-10 shows an example of the trouble these end effects can cause. The
input signal is a sine wave plus a DC component. The desire is to remove the
DC part of the signal, while leaving the sine wave intact. This calls for a high-
pass filter, such as the impulse response shown in the figure. The problem is,
the first and last 30 points are a mess! The shape of these end regions can be
understood by imagining the input signal padded with 30 zeros on the left side,
samples through , and 30 zeros on the right, samples x[&1] x[&30] x[81]
through . The output signal can then be viewed as a filtered versionx[110]
of this longer waveform. These "end effect" problems are widespread in

The Scientist and Engineer's Guide to Digital Signal Processing120

EQUATION 6-1
The convolution summation. This is the
formal definition of convolution, written in
the shorthand: . In thisy [n] ' x [n] t h [n]
equation, is an M point signal withh [n]
indexes running from 0 to M-1.

y [i] ' j
M&1

j'0
h [j] x [i& j]

DSP. As a general rule, expect that the beginning and ending samples in
processed signals will be quite useless.

Now the math. Using the convolution machine as a guideline, we can write the
standard equation for convolution. If is an N point signal running from 0x[n]
to N-1, and is an M point signal running from 0 to M-1, the convolutionh[n]
of the two: , is an N+M-1 point signal running from 0 toy[n] ' x[n] t h[n]
N+M-2, given by:

This equation is called the convolution sum. It allows each point in the
output signal to be calculated independently of all other points in the output
signal. The index, i, determines which sample in the output signal is being
calculated, and therefore corresponds to the left-right position of the
convolution machine. In computer programs performing convolution, a loop
makes this index run through each sample in the output signal. To
calculate one of the output samples, the index, j, is used inside of the
convolution machine. As j runs through 0 to M-1, each sample in the
impulse response, is multiplied by the proper sample from the inputh[j],
signal, All these products are added to produce the output samplex[i& j].
being calculated. Study Eq. 6-1 until you fully understand how it is
implemented by the convolution machine. Much of DSP is based on this
equation. (Don't be confused by the n in . This is merelyy[n] ' x[n] t h[n]
a place holder to indicate that some variable is the index into the array.
Sometimes the equations are written: , just to avoid havingy[] ' x[] t h[]
to bring in a meaningless symbol).

Table 6-2 shows a program for performing convolutions using the output side
algorithm, a direct use of Eq. 6-1. This program produces the same output
signal as the program for the input side algorithm, shown previously in Table
6-1. Notice the main difference between these two programs: the input side
algorithm loops through each sample in the input signal (line 220 of Table 6-
1), while the output side algorithm loops through each sample in the output
signal (line 180 of Table 6-2).

Here is a detailed operation of this program. The FOR-NEXT loop in lines 180
to 250 steps through each sample in the output signal, using I% as the index.
For each of these values, an inner loop, composed of lines 200 to 230,
calculates the value of the output sample, Y[I%]. The value of Y[I%] is set
to zero in line 190, allowing it to accumulate the products inside of the
convolution machine. The FOR-NEXT loop in lines 200 to 240 provide a
direct implementation of Eq. 6-1. The index, J%, steps through each

Chapter 6- Convolution 121

sample in the impulse response. Line 230 provides the multiplication of each
sample in the impulse response, H[J%], with the appropriate sample from the
input signal, X[I%-J%], and adds the result to the accumulator.

In line 230, the sample taken from the input signal is: X[I%-J%]. Lines 210
and 220 prevent this from being outside the defined array, X[0] to X[80]. In
other words, this program handles undefined samples in the input signal by
ignoring them. Another alternative would be to define the input signal's array
from X[-30] to X[110], allowing 30 zeros to be padded on each side of the true
data. As a third alternative, the FOR-NEXT loop in line 180 could be changed
to run from 30 to 80, rather than 0 to 110. That is, the program would only
calculate the samples in the output signal where the impulse response is fully
immersed in the input signal. The important thing is that you must use one of
these three techniques. If you don't, the program will crash when it tries to read
the out-of-bounds data.

S
0 10 20 30

-0.5

0.0

0.5

1.0

1.5

Sample number
0 10 20 30 40 50 60 70 80

-4

-2

0

2

4

Sample number
0 10 20 30 40 50 60 70 80 90 100 110

-4

-2

0

2

4

Input signal Impulse response Output signal
unusableusableunusable

Sample number

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 6-10
End effects in convolution. When an input signal is convolved with an M point impulse response,
the first and last M-1 points in the output signal may not be usable. In this example, the impulse
response is a high-pass filter used to remove the DC component from the input signal.

100 'CONVOLUTION USING THE OUTPUT SIDE ALGORITHM
110 '
120 DIM X[80] 'The input signal, 81 points
130 DIM H[30] 'The impulse response, 31 points
140 DIM Y[110] 'The output signal, 111 points
150 '
160 GOSUB XXXX 'Mythical subroutine to load X[] and H[]
170 '
180 FOR I% = 0 TO 110 'Loop for each point in Y[]
190 Y[I%] = 0 'Zero the sample in the output array
200 FOR J% = 0 TO 30 'Loop for each point in H[]
210 IF (I%-J% < 0) THEN GOTO 240
220 IF (I%-J% > 80) THEN GOTO 240
230 Y(I%) = Y(I%) + H(J%) t X(I%-J%)
240 NEXT J%
250 NEXT I%
260 '
270 GOSUB XXXX 'Mythical subroutine to store Y[]
280 '
290 END

TABLE 6-2

The Scientist and Engineer's Guide to Digital Signal Processing122

The Sum of Weighted Inputs
The characteristics of a linear system are completely described by its impulse
response. This is the basis of the input side algorithm: each point in the input
signal contributes a scaled and shifted version of the impulse response to the
output signal. The mathematical consequences of this lead to the output side
algorithm: each point in the output signal receives a contribution from many
points in the input signal, multiplied by a flipped impulse response. While this
is all true, it doesn't provide the full story on why convolution is important in
signal processing.

Look back at the convolution machine in Fig. 6-8, and ignore that the signal
inside the dotted box is an impulse response. Think of it as a set of weighing
coefficients that happen to be embedded in the flow diagram. In this view,
each sample in the output signal is equal to a sum of weighted inputs. Each
sample in the output is influenced by a region of samples in the input signal,
as determined by what the weighing coefficients are chosen to be. For
example, imagine there are ten weighing coefficients, each with a value of one-
tenth. This makes each sample in the output signal the average of ten samples
from the input.

Taking this further, the weighing coefficients do not need to be restricted to the
left side of the output sample being calculated. For instance, Fig. 6-8 shows y[6]
being calculated from: . Viewing the convolutionx[3], x[4], x[5], and x[6]
machine as a sum of weighted inputs, the weighing coefficients could be chosen
symmetrically around the output sample. For example, might receivey[6]
contributions from: . Using the same indexingx[4], x[5], x[6], x[7], and x[8]
notation as in Fig. 6-8, the weighing coefficients for these five inputs would be
held in: . In other words, the impulseh[2], h[1], h[0], h[&1], and h[&2]
response that corresponds to our selection of symmetrical weighing coefficients
requires the use of negative indexes. We will return to this in the next chapter.

Mathematically, there is only one concept here: convolution as defined by Eq.
6-1. However, science and engineering problems approach this single concept
from two distinct directions. Sometimes you will want to think of a system in
terms of what its impulse response looks like. Other times you will understand
the system as a set of weighing coefficients. You need to become familiar with
both views, and how to toggle between them.

123

CHAPTER

7

EQUATION 7-1
The delta function is the identity for
convolution. Any signal convolved with
a delta function is left unchanged.

x[n](*[n] ' x[n]

Properties of Convolution

A linear system's characteristics are completely specified by the system's impulse response, as
governed by the mathematics of convolution. This is the basis of many signal processing
techniques. For example: Digital filters are created by designing an appropriate impulse
response. Enemy aircraft are detected with radar by analyzing a measured impulse response.
Echo suppression in long distance telephone calls is accomplished by creating an impulse
response that counteracts the impulse response of the reverberation. The list goes on and on.
This chapter expands on the properties and usage of convolution in several areas. First, several
common impulse responses are discussed. Second, methods are presented for dealing with
cascade and parallel combinations of linear systems. Third, the technique of correlation is
introduced. Fourth, a nasty problem with convolution is examined, the computation time can be
unacceptably long using conventional algorithms and computers.

Common Impulse Responses
Delta Function
The simplest impulse response is nothing more that a delta function, as shown
in Fig. 7-1a. That is, an impulse on the input produces an identical impulse on
the output. This means that all signals are passed through the system without
change. Convolving any signal with a delta function results in exactly the
same signal. Mathematically, this is written:

This property makes the delta function the identity for convolution. This is
analogous to zero being the identity for addition , and one being the(a% 0 ' a)
identity for multiplication . At first glance, this type of system(a×1 ' a)

The Scientist and Engineer's Guide to Digital Signal Processing124

EQUATION 7-2
A system that amplifies or attenuates has
a scaled delta function for an impulse
response. In this equation, k determines
the amplification or attenuation.

x [n] (k*[n] ' kx[n]

EQUATION 7-3
A relative shift between the input and
output signals corresponds to an impulse
response that is a shifted delta function.
The variable, s, determines the amount of
shift in this equation.

x [n](*[n% s] ' x[n% s]

may seem trivial and uninteresting. Not so! Such systems are the ideal for
data storage, communication and measurement. Much of DSP is concerned
with passing information through systems without change or degradation.

Figure 7-1b shows a slight modification to the delta function impulse
response. If the delta function is made larger or smaller in amplitude, the
resulting system is an amplifier or attenuator, respectively. In equation
form, amplification results if k is greater than one, and attenuation results
if k is less than one:

The impulse response in Fig. 7-1c is a delta function with a shift. This results
in a system that introduces an identical shift between the input and output
signals. This could be described as a signal delay, or a signal advance,
depending on the direction of the shift. Letting the shift be represented by the
parameter, s, this can be written as the equation:

Science and engineering are filled with cases where one signal is a shifted
version of another. For example, consider a radio signal transmitted from
a remote space probe, and the corresponding signal received on the earth.
The time it takes the radio wave to propagate over the distance causes a
delay between the transmitted and received signals. In biology, the
electrical signals in adjacent nerve cells are shifted versions of each other,
as determined by the time it takes an action potential to cross the synaptic
junction that connects the two.

Figure 7-1d shows an impulse response composed of a delta function plus a
shifted and scaled delta function. By superposition, the output of this system
is the input signal plus a delayed version of the input signal, i.e., an echo.
Echoes are important in many DSP applications. The addition of echoes is a
key part in making audio recordings sound natural and pleasant. Radar and
sonar analyze echoes to detect aircraft and submarines. Geophysicists use
echoes to find oil. Echoes are also very important in telephone networks,
because you want to avoid them.

Chapter 7- Properties of Convolution 125

Sample number
-2 -1 0 1 2 3 4 5 6

-2

-1

0

1

2

Sample number
-2 -1 0 1 2 3 4 5 6

-2

-1

0

1

2

Sample number
-2 -1 0 1 2 3 4 5 6

-2

-1

0

1

2

Sample number
-2 -1 0 1 2 3 4 5 6

-2

-1

0

1

2

FIGURE 7-1
Simple impulse responses using shifted and scaled delta functions.

a. Identity
The delta function is the identity for
convolution. Convolving a signal with
the delta function leaves the signal
unchanged. This is the goal of systems
that transmit or store signals.

b. Amplification & Attenuation
Increasing or decreasing the amplitude
of the delta function forms an impulse
response that amplifies or attenuates,
respectively. This impulse response will
amplify the signal by 1.6.

c. Shift
Shifting the delta function produces a
corresponding shift between the input
and output signals. Depending on the
direction, this can be called a delay or
an advance. This impulse response
delays the signal by four samples.

d. Echo
A delta function plus a shifted and
scaled delta function results in an echo
being added to the original signal. In
this example, the echo is delayed by four
samples and has an amplitude of 60% of
the original signal.

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

Calculus-like Operations
Convolution can change discrete signals in ways that resemble integration and
differentiation. Since the terms "derivative" and "integral" specifically refer
to operations on continuous signals, other names are given to their discrete
counterparts. The discrete operation that mimics the first derivative is called
the first difference. Likewise, the discrete form of the integral is called the

The Scientist and Engineer's Guide to Digital Signal Processing126

EQUATION 7-4
Calculation of the first difference. In
this relation, is the original signal,x [n]
and is the first difference. y [n]

y[n] ' x [n] & x [n&1]

Sample number
-2 -1 0 1 2 3 4 5 6

-2

-1

0

1

2

Sample number
-2 -1 0 1 2 3 4 5 6

-2

-1

0

1

2

FIGURE 7-2
Impulse responses that mimic calculus operations.

a. First Difference
This is the discrete version of the first
derivative. Each sample in the output
signal is equal to the difference between
adjacent samples in the input signal. In
other words, the output signal is the
slope of the input signal.

b. Running Sum
The running sum is the discrete version
of the integral. Each sample in the
output signal is equal to the sum of all
samples in the input signal to the left.
Note that the impulse response extends
to infinity, a rather nasty feature.

A
m

pl
itu

de
A

m
pl

itu
de

running sum. It is also common to hear these operations called the discrete
derivative and the discrete integral, although mathematicians frown when
they hear these informal terms used.

Figure 7-2 shows the impulse responses that implement the first difference and
the running sum. Figure 7-3 shows an example using these operations. In 7-
3a, the original signal is composed of several sections with varying slopes.
Convolving this signal with the first difference impulse response produces the
signal in Fig. 7-3b. Just as with the first derivative, the amplitude of each
point in the first difference signal is equal to the slope at the corresponding
location in the original signal. The running sum is the inverse operation of the
first difference. That is, convolving the signal in (b), with the running sum's
impulse response, produces the signal in (a).

These impulse responses are simple enough that a full convolution program is
usually not needed to implement them. Rather, think of them in the alternative
mode: each sample in the output signal is a sum of weighted samples from the
input. For instance, the first difference can be calculated:

That is, each sample in the output signal is equal to the difference between two
adjacent samples in the input signal. For instance, . Ity[40] ' x[40] & x[39]
should be mentioned that this is not the only way to define a discrete
derivative. Another common method is to define the slope symmetrically
around the point being examined, such as: . y[n] ' (x[n%1]& x[n&1])/2

Chapter 7- Properties of Convolution 127

FIGURE 7-3
Example of calculus-like operations. The
signal in (b) is the first difference of the
signal in (a). Correspondingly, the signal is
(a) is the running sum of the signal in (b).
These processing methods are used with
discrete signals the same as differentiation
and integration are used with continuous
signals.

Sample number
0 10 20 30 40 50 60 70 80

-0.2

-0.1

0.0

0.1

0.2

Sample number
0 10 20 30 40 50 60 70 80

-2.0

-1.0

0.0

1.0

2.0

First
Difference

Running
Sum

a. Original signal

b. First difference
A

m
pl

itu
de

A
m

pl
itu

de

EQUATION 7-5
Calculation of the running sum. In this
relation, is the original signal, and x [n] y [n]
is the running sum.

y[n] ' x [n] % y [n&1]

Using this same approach, each sample in the running sum can be calculated
by summing all points in the original signal to the left of the sample's location.
For instance, if is the running sum of , then sample is found byy[n] x[n] y[40]
adding samples through . Likewise, sample is found by addingx[0] x[40] y[41]
samples through . Of course, it would be very inefficient to calculatex[0] x[41]
the running sum in this manner. For example, if has already beeny[40]
ca lcula ted , can be calcula ted with only a s ingle addi t ion:y[41]

. In equation form:y[41] ' x[41]% y[40]

Relations of this type are called recursion equations or difference
equations. We will revisit them in Chapter 19. For now, the important idea
to understand is that these relations are identical to convolution using the
impulse responses of Fig. 7-2. Table 7-1 provides computer programs that
implement these calculus-like operations.

The Scientist and Engineer's Guide to Digital Signal Processing128

100 'Calculation of the running sum
110 Y[0] = X[0]
120 FOR I% = 1 TO N%-1
130 Y[I%] = Y[I%-1] + X[I%]
140 NEXT I%

100 'Calculation of the First Difference
110 Y[0] = 0
120 FOR I% = 1 TO N%-1
130 Y[I%] = X[I%] - X[I%-1]
140 NEXT I%

Table 7-1
Programs for calculating the first difference and running sum. The original signal is held in X[], and the
processed signal (the first difference or running sum) is held in Y[]. Both arrays run from 0 to N%-1.

Sample number
-20 -15 -10 -5 0 5 10 15 20

-0.1

0.0

0.1

0.2

0.3

0.4

b. Square pulse

Sample number
-20 -15 -10 -5 0 5 10 15 20

-0.1

0.0

0.1

0.2

0.3

0.4

a. Exponential

FIGURE 7-4
Typical low-pass filter kernels. Low-pass
filter kernels are formed from a group of
adjacent positive points that provide an
averaging (smoothing) of the signal. As
discussed in later chapters, each of these filter
kernels is best for a particular purpose. The
exponential, (a), is the simplest recursive
filter. The rectangular pulse, (b), is best at
reducing noise while maintaining edge
sharpness. The sinc function in (c), a curve of
the form: , is used to separate onesin(x)/(x)
band of frequencies from another.

Sample number
-20 -15 -10 -5 0 5 10 15 20

-0.1

0.0

0.1

0.2

0.3

0.4

c. Sinc

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Low-pass and High-pass Filters
The design of digital filters is covered in detail in later chapters. For now, be
satisfied to understand the general shape of low-pass and high-pass filter
kernels (another name for a filter's impulse response). Figure 7-4 shows
several common low-pass filter kernels. In general, low-pass filter kernels are
composed of a group of adjacent positive points. This results in each sample
in the output signal being a weighted average of many adjacent points from the
input signal. This averaging smoothes the signal, thereby removing high-
frequency components. As shown by the sinc function in (c), some low-pass
filter kernels include a few negative valued samples in the tails. Just as in
analog electronics, digital low-pass filters are used for noise reduction, signal
separation, wave shaping, etc.

Chapter 7- Properties of Convolution 129

Sample number
-20 -15 -10 -5 0 5 10 15 20

-0.50

0.00

0.50

1.00

1.50

b. Square pulse

Sample number
-20 -15 -10 -5 0 5 10 15 20

-0.5

0.0

0.5

1.0

1.5

a. Exponential

FIGURE 7-5
Typical high-pass filter kernels. These are
formed by subtracting the corresponding low-
pass filter kernels in Fig. 7-4 from a delta
function. The distinguishing characteristic of
high-pass filter kernels is a spike surrounded
by many adjacent negative samples.

Sample number
-20 -15 -10 -5 0 5 10 15 20

-0.50

0.00

0.50

1.00

1.50

c. Sinc

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

The cutoff frequency of the filter is changed by making filter kernel wider or
narrower. If a low-pass filter has a gain of one at DC (zero frequency), then
the sum of all of the points in the impulse response must be equal to one. As
illustrated in (a) and (c), some filter kernels theoretically extend to infinity
without dropping to a value of zero. In actual practice, the tails are truncated
after a certain number of samples, allowing it to be represented by a finite
number of points. How else could it be stored in a computer?

Figure 7-5 shows three common high-pass filter kernels, derived from the
corresponding low-pass filter kernels in Fig. 7-4. This is a common strategy
in filter design: first devise a low-pass filter and then transform it to what you
need, high-pass, band-pass, band-reject, etc. To understand the low-pass to
high-pass transform, remember that a delta function impulse response passes
the entire signal, while a low-pass impulse response passes only the low-
frequency components. By superposition, a filter kernel consisting of a delta
function minus the low-pass filter kernel will pass the entire signal minus the
low-frequency components. A high-pass filter is born! As shown in Fig. 7-5,
the delta function is usually added at the center of symmetry, or sample zero
if the filter kernel is not symmetrical. High-pass filters have zero gain at DC
(zero frequency), achieved by making the sum of all the points in the filter
kernel equal to zero.

The Scientist and Engineer's Guide to Digital Signal Processing130

Sample number
-20 -15 -10 -5 0 5 10 15 20

-0.1

0.0

0.1

0.2

0.3

0.4

b. Causal

Sample number
-20 -15 -10 -5 0 5 10 15 20

-0.1

0.0

0.1

0.2

0.3

0.4

a. Causal

FIGURE 7-6
Examples of causal signals. An impulse
response, or any signal, is said to be causal if
all negative numbered samples have a value of
zero. Three examples are shown here. Any
noncausal signal with a finite number of
points can be turned into a causal signal
simply by shifting.

Sample number
-20 -15 -10 -5 0 5 10 15 20

-0.1

0.0

0.1

0.2

0.3

0.4

c. Noncausal

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Causal and Noncausal Signals
Imagine a simple analog electronic circuit. If you apply a short pulse to the
input, you will see a response on the output. This is the kind of cause and
effect that our universe is based on. One thing we definitely know: any effect
must happen after the cause. This is a basic characteristic of what we call
time. Now compare this to a DSP system that changes an input signal into an
output signal, both stored in arrays in a computer. If this mimics a real world
system, it must follow the same principle of causality as the real world does.
For example, the value at sample number eight in the input signal can only
affect sample number eight or greater in the output signal. Systems that
operate in this manner are said to be causal. Of course, digital processing
doesn't necessarily have to function this way. Since both the input and output
signals are arrays of numbers stored in a computer, any of the input signal
values can affect any of the output signal values.

As shown by the examples in Fig. 7-6, the impulse response of a causal system
must have a value of zero for all negative numbered samples. Think of this
from the input side view of convolution. To be causal, an impulse in the input
signal at sample number n must only affect those points in the output signal
with a sample number of n or greater. In common usage, the term causal is
applied to any signal where all the negative numbered samples have a value of
zero, whether it is an impulse response or not.

Chapter 7- Properties of Convolution 131

Sample number
-20 -15 -10 -5 0 5 10 15 20

-0.1

0.0

0.1

0.2

0.3

0.4

b. Linear phase

Sample number
-20 -15 -10 -5 0 5 10 15 20

-0.1

0.0

0.1

0.2

0.3

0.4

a. Zero phase

FIGURE 7-7
Examples of phase linearity. Signals that have
a left-right symmetry are said to be linear
phase. If the axis of symmetry occurs at
sample number zero, they are additionally said
to be zero phase. Any linear phase signal can
be transformed into a zero phase signal simply
by shifting. Signals that do not have a left-
right symmetry are said to be nonlinear
phase. Do not confuse these terms with the
linear in linear systems. They are completely
different concepts.

Sample number
-20 -15 -10 -5 0 5 10 15 20

-0.1

0.0

0.1

0.2

0.3

0.4

c. Nonlinear phase

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Zero Phase, Linear Phase, and Nonlinear Phase
As shown in Fig. 7-7, a signal is said to be zero phase if it has left-right
symmetry around sample number zero. A signal is said to be linear phase if
it has left-right symmetry, but around some point other than zero. This means
that any linear phase signal can be changed into a zero phase signal simply by
shifting left or right. Lastly, a signal is said to be nonlinear phase if it does
not have left-right symmetry.

You are probably thinking that these names don't seem to follow from their
definitions. What does phase have to do with symmetry? The answer lies in
the frequency spectrum, and will be discussed in more detail in later chapters.
Briefly, the frequency spectrum of any signal is composed of two parts, the
magnitude and the phase. The frequency spectrum of a signal that is
symmetrical around zero has a phase that is zero. Likewise, the frequency
spectrum of a signal that is symmetrical around some nonzero point has a phase
that is a straight line, i.e., a linear phase. Lastly, the frequency spectrum of a
signal that is not symmetrical has a phase that is not a straight line, i.e., it has
a nonlinear phase.

A special note about the potentially confusing terms: linear and nonlinear
phase. What does this have to do the concept of system linearity discussed in
previous chapters? Absolutely nothing! System linearity is the broad concept

The Scientist and Engineer's Guide to Digital Signal Processing132

EQUATION 7-6
The commutative property of convolution.
This states that the order in which signals
are convolved can be exchanged.

a [n](b [n] ' b [n](a [n]

b[n]a[n] y[n]

a[n]b[n] y[n]

IF

THEN

FIGURE 7-8
The commutative property in system theory. The commutative property of convolution allows the
input signal and the impulse response of a system to be exchanged without changing the output.
While interesting, this usually has no physical significance. (A signal appearing inside of a box, such
as b[n] and a[n] in this figure, represent the impulse response of the system).

that nearly all of DSP is based on (superposition, homogeneity, additivity, etc).
Linear and nonlinear phase mean that the phase is, or is not, a straight line.
In fact, a system must be linear even to say that the phase is zero, linear, or
nonlinear.

Mathematical Properties
Commutative Property
The commutative property for convolution is expressed in mathematical form:

In words, the order in which two signals are convolved makes no difference;
the results are identical. As shown in Fig. 7-8, this has a strange meaning for
system theory. In any linear system, the input signal and the system's impulse
response can be exchanged without changing the output signal. This is
interesting, but usually doesn't have any physical meaning. The input signal
and the impulse response are very different things. Just because the
mathematics allows you to do something, doesn't mean that it makes sense to
do it. For example, suppose you make: $10/hour × 2,000 hours/year =
$20,000/year. The commutative property for multiplication provides that you
can make the same annual salary by only working 10 hours/year at $2000/hour.
Let's see you convince your boss that this is meaningful! In spite of this, the
commutative property sees great use in DSP for manipulating equations, just
as in ordinary algebra.

Chapter 7- Properties of Convolution 133

EQUATION 7-7
The associative property of con-
volution describes how three or
more signals are convolved.

(a [n](b [n]) (c[n] ' a [n] ((b [n](c[n])

IF

THEN

h1[n]x[n] h2[n] y[n]

h2[n]x[n] h1[n] y[n]

ALSO

h1[n] h2[n]x[n] y[n]

FIGURE 7-9
The associative property in system theory. The associative property provides two important
characteristics of cascaded linear systems. First, the order of the systems can be rearranged
without changing the overall operation of the cascade. Second, two or more systems in a cascade
can be replaced by a single system. The impulse response of the replacement system is found by
convolving the impulse responses of the stages being replaced.

Associative Property
Is it possible to convolve three or more signals? The answer is yes, and the
associative property describes how: convolve two of the signals to produce an
intermediate signal, then convolve the intermediate signal with the third signal.
The associative property provides that the order of the convolutions doesn't
matter. As an equation:

The associative property is used in system theory to describe how cascaded
systems behave. As shown in Fig. 7-9, two or more systems are said to be in
a cascade if the output of one system is used as the input for the next system.
From the associative property, the order of the systems can be rearranged
without changing the overall response of the cascade. Further, any number of
cascaded systems can be replaced with a single system. The impulse response
of the replacement system is found by convolving the impulse responses of all
of the original systems.

The Scientist and Engineer's Guide to Digital Signal Processing134

EQUATION 7-8
The distributive property of con-
volution describes how parallel
systems are analyzed.

a [n](b [n] % a [n](c[n] ' a [n] ((b [n]% c [n])

IF

THEN

x[n] y[n]

h1[n] + h2[n]x[n] y[n]

h1[n]

h2[n]

FIGURE 7-10
The distributive property in system theory. The distributive property shows that parallel
systems with added outputs can be replaced with a single system. The impulse response
of the replacement system is equal to the sum of the impulse responses of all the original
systems.

Distributive Property
In equation form, the distributive property is written:

The distributive property describes the operation of parallel systems with
added outputs. As shown in Fig. 7-10, two or more systems can share the
same input, , and have their outputs added to produce . Thex[n] y[n]
distributive property allows this combination of systems to be replaced with a
single system, having an impulse response equal to the sum of the impulse
responses of the original systems.

Transference between the Input and Output
Rather than being a formal mathematical property, this is a way of thinking
about a common situation in signal processing. As illustrated in Fig. 7-11,
imagine a linear system receiving an input signal, , and generating anx[n]
output signal, . Now suppose that the input signal is changed in somey[n]
linear way, resulting in a new input signal, which we will call . Thisx 3[n]
results in a new output signal, . The question is, how does the change iny 3[n]

Chapter 7- Properties of Convolution 135

h[n]x[n] y[n]

h[n]x [n] y [n]

IF

THEN

Linear
Change

SameLinear
Change

FIGURE 7-11
Tranference between the input and output. This is a way of thinking about a common
situation in signal processing. A linear change made to the input signal results in the same
linear change being made to the output signal.

the input signal relate to the change in the output signal? The answer is:
the output signal is changed in exactly the same linear way that the input
signal was changed. For example, if the input signal is amplified by a
factor of two, the output signal will also be amplified by a factor of two.
If the derivative is taken of the input signal, the derivative will also be
taken of the output signal. If the input is filtered in some way, the output
will be filtered in an identical manner. This can easily be proven by using
the associative property.

The Central Limit Theorem
The Central Limit Theorem is an important tool in probability theory because
it mathematically explains why the Gaussian probability distribution is
observed so commonly in nature. For example: the amplitude of thermal noise
in electronic circuits follows a Gaussian distribution; the cross-sectional
intensity of a laser beam is Gaussian; even the pattern of holes around a dart
board bull's eye is Gaussian. In its simplest form, the Central Limit Theorem
states that a Gaussian distribution results when the observed variable is the
sum of many random processes. Even if the component processes do not have
a Gaussian distribution, the sum of them will.

The Central Limit Theorem has an interesting implication for convolution. If
a pulse-like signal is convolved with itself many times, a Gaussian is
produced. Figure 7-12 shows an example of this. The signal in (a) is an

The Scientist and Engineer's Guide to Digital Signal Processing136

Sample number
-25 -20 -15 -10 -5 0 5 10 15 20 25

-6.0

0.0

6.0

12.0

18.0

b. x[n] x[n]

Sample number
-25 -20 -15 -10 -5 0 5 10 15 20 25

-1.00

0.00

1.00

2.00

3.00

a. x[n]

FIGURE 7-12
Example of convolving a pulse waveform
with itself. The Central Limit Theorem shows
that a Gaussian waveform is produced when
an arbitrary shaped pulse is convolved with
itself many times. Figure (a) is an example
pulse. In (b), the pulse is convolved with
itself once, and begins to appear smooth and
regular. In (c), the pulse is convolved with
itself three times, and closely approximates a
Gaussian.

Sample number
-25 -20 -15 -10 -5 0 5 10 15 20 25

-500

0

500

1000

1500

c. x[n] x[n] x[n] x[n]

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

irregular pulse, purposely chosen to be very unlike a Gaussian. Figure (b)
shows the result of convolving this signal with itself one time. Figure (c)
shows the result of convolving this signal with itself three times. Even with
only three convolutions, the waveform looks very much like a Gaussian. In
mathematics jargon, the procedure converges to a Gaussian very quickly. The
width of the resulting Gaussian (i.e., F in Eq. 2-7 or 2-8) is equal to the width
of the original pulse (expressed as F in Eq. 2-7) multiplied by the square root
of the number of convolutions.

Correlation
The concept of correlation can best be presented with an example. Figure 7-13
shows the key elements of a radar system. A specially designed antenna
transmits a short burst of radio wave energy in a selected direction. If the
propagating wave strikes an object, such as the helicopter in this illustration,
a small fraction of the energy is reflected back toward a radio receiver located
near the transmitter. The transmitted pulse is a specific shape that we have
selected, such as the triangle shown in this example. The received signal will
consist of two parts: (1) a shifted and scaled version of the transmitted pulse,
and (2) random noise, resulting from interfering radio waves, thermal noise in
the electronics, etc. Since radio signals travel at a known rate, the speed of

Chapter 7- Properties of Convolution 137

TRANSMIT RECEIVE

Sample number (or time)
-10 0 10 20 30 40 50 60 70 80

-100

0

100

200

Sample number (or time)
-10 0 10 20 30 40 50 60 70 80

-0.1

0

0.1

0.2

FIGURE 7-13
Key elements of a radar system. Like other
echo location systems, radar transmits a
short pulse of energy that is reflected by
objects being examined. This makes the
received waveform a shifted version of the
transmitted waveform, plus random noise.
Detection of a known waveform in a noisy
signal is the fundamental problem in echo
location. The answer to this problem is
correlation.

R
ec

ei
ve

d
am

pl
itu

de
T

ra
ns

m
itt

ed
 a

m
pl

itu
de

light, the shift between the transmitted and received pulse is a direct measure
of the distance to the object being detected. This is the problem: given a
signal of some known shape, what is the best way to determine where (or if)
the signal occurs in another signal. Correlation is the answer.

Correlation is a mathematical operation that is very similar to convolution.
Just as with convolution, correlation uses two signals to produce a third
signal. This third signal is called the cross-correlation of the two input
signals. If a signal is correlated with itself, the resulting signal is instead
called the autocorrelation. The convolution machine was presented in the
last chapter to show how convolution is performed. Figure 7-14 is a similar

The Scientist and Engineer's Guide to Digital Signal Processing138

illustration of a correlation machine. The received signal, , and thex[n]
cross-correlation signal, , are fixed on the page. The waveform we arey[n]
looking for, , commonly called the target signal, is contained within thet[n]
correlation machine. Each sample in is calculated by moving they[n]
correlation machine left or right until it points to the sample being worked on.
Next, the indicated samples from the received signal fall into the correlation
machine, and are multiplied by the corresponding points in the target signal.
The sum of these products then moves into the proper sample in the cross-
correlation signal.

The amplitude of each sample in the cross-correlation signal is a measure of
how much the received signal resembles the target signal, at that location. This
means that a peak will occur in the cross-correlation signal for every target
signal that is present in the received signal. In other words, the value of the
cross-correlation is maximized when the target signal is aligned with the same
features in the received signal.

What if the target signal contains samples with a negative value? Nothing
changes. Imagine that the correlation machine is positioned such that the target
signal is perfectly aligned with the matching waveform in the received signal.
As samples from the received signal fall into the correlation machine, they are
multiplied by their matching samples in the target signal. Neglecting noise, a
positive sample will be multiplied by itself, resulting in a positive number.
Likewise, a negative sample will be multiplied by itself, also resulting in a
positive number. Even if the target signal is completely negative, the peak in
the cross-correlation will still be positive.

If there is noise on the received signal, there will also be noise on the cross-
correlation signal. It is an unavoidable fact that random noise looks a
certain amount like any target signal you can choose. The noise on the
cross-correlation signal is simply measuring this similarity. Except for this
noise, the peak generated in the cross-correlation signal is symmetrical
between its left and right. This is true even if the target signal isn't
symmetrical. In addition, the width of the peak is twice the width of the
target signal. Remember, the cross-correlation is trying to detect the target
signal, not recreate it. There is no reason to expect that the peak will even
look like the target signal.

Correlation is the optimal technique for detecting a known waveform in
random noise. That is, the peak is higher above the noise using correlation
than can be produced by any other linear system. (To be perfectly correct,
it is only optimal for random white noise). Using correlation to detect a
known waveform is frequently called matched filtering. More on this in
Chapter 17.

The correlation machine and convolution machine are identical, except for
one small difference. As discussed in the last chapter, the signal inside of
the convolution machine is flipped left-for-right. This means that samples
numbers: run from the right to the left. In the correlation machine1, 2, 3˛
this flip doesn't take place, and the samples run in the normal direction.

Chapter 7- Properties of Convolution 139

FIGURE 7-14
The correlation machine. This is a flowchart showing how the cross-correlation of two signals is calculated. In this
example, is the cross-correlation of and . The dashed box is moved left or right so that its output points aty [n] x [n] t [n]
the sample being calculated in . The indicated samples from are multiplied by the corresponding samples in ,y [n] x [n] t [n]
and the products added. The correlation machine is identical to the convolution machine (Figs. 6-8 and 6-9), except that
the signal inside of the dashed box is not reversed. In this illustration, the only samples calculated in are where y [n] t [n]
is fully immersed in .x [n]

Sample number (or time)
0 10 20 30 40 50 60 70 80

-1

0

1

2

Sample number (or time)
0 10 20 30 40 50 60 70 80

-1

0

1

2

3

0 10 20
-1

0

1

2

x[n]

t[n]

y[n]

Since this signal reversal is the only difference between the two operations, it
is possible to represent correlation using the same mathematics as convolution.
This requires preflipping one of the two signals being correlated, so that the
left-for-right flip inherent in convolution is canceled. For instance, when a[n]
and , are convolved to produce , the equation is writ ten:b[n] c[n]

. In comparison, the cross-correlation of and cana[n](b [n] ' c [n] a[n] b[n]

The Scientist and Engineer's Guide to Digital Signal Processing140

be written: . That is, flipping left-for-right isa[n](b [&n] ' c [n] b [n]
accomplished by reversing the sign of the index, i.e., .b [&n]

Don't let the mathematical similarity between convolution and correlation fool
you; they represent very different DSP procedures. Convolution is the
relationship between a system's input signal, output signal, and impulse
response. Correlation is a way to detect a known waveform in a noisy
background. The similar mathematics is only a convenient coincidence.

Speed
Writing a program to convolve one signal by another is a simple task, only
requiring a few lines of code. Executing the program may be more painful. The
problem is the large number of additions and multiplications required by the
algorithm, resulting in long execution times. As shown by the programs in the
last chapter, the time-consuming operation is composed of multiplying two
numbers and adding the result to an accumulator. Other parts of the algorithm,
such as indexing the arrays, are very quick. The multiply-accumulate is a basic
building block in DSP, and we will see it repeated in several other important
algorithms. In fact, the speed of DSP computers is often specified by how long
it takes to preform a multiply-accumulate operation.

If a signal composed of N samples is convolved with a signal composed of M
samples, multiply-accumulations must be preformed. This can be seenN×M
from the programs of the last chapter. Personal computers of the mid 1990's
requires about one microsecond per multiply-accumulation (100 MHz Pentium
using single precision floating point, see Table 4-6). Therefore, convolving a
10,000 sample signal with a 100 sample signal requires about one second. To
process a one million point signal with a 3000 point impulse response requires
nearly an hour. A decade earlier (80286 at 12 MHz), this calculation would
have required three days!

The problem of excessive execution time is commonly handled in one of three
ways. First, simply keep the signals as short as possible and use integers
instead of floating point. If you only need to run the convolution a few times,
this will probably be the best trade-off between execution time and
programming effort. Second, use a computer designed for DSP. DSP
microprocessors are available with multiply-accumulate times of only a few
tens of nanoseconds. This is the route to go if you plan to perform the
convolution many times, such as in the design of commercial products.

The third solution is to use a better algorithm for implementing the convolution.
Chapter 17 describes a very sophisticated algorithm called FFT convolution.
FFT convolution produces exactly the same result as the convolution algorithms
presented in the last chapter; however, the execution time is dramatically
reduced. For signals with thousands of samples, FFT convolution can be
hundreds of times faster. The disadvantage is program complexity. Even if
you are familiar with the technique, expect to spend several hours getting the
program to run.

141

CHAPTER

8 The Discrete Fourier Transform

Fourier analysis is a family of mathematical techniques, all based on decomposing signals into
sinusoids. The discrete Fourier transform (DFT) is the family member used with digitized
signals. This is the first of four chapters on the real DFT, a version of the discrete Fourier
transform that uses real numbers to represent the input and output signals. The complex DFT,
a more advanced technique that uses complex numbers, will be discussed in Chapter 31. In this
chapter we look at the mathematics and algorithms of the Fourier decomposition, the heart of the
DFT.

The Family of Fourier Transform
Fourier analysis is named after Jean Baptiste Joseph Fourier (1768-1830),
a French mathematician and physicist. (Fourier is pronounced: , and isfor@ ē@ā
always capitalized). While many contributed to the field, Fourier is honored
for his mathematical discoveries and insight into the practical usefulness of the
techniques. Fourier was interested in heat propagation, and presented a paper
in 1807 to the Institut de France on the use of sinusoids to represent
temperature distributions. The paper contained the controversial claim that any
continuous periodic signal could be represented as the sum of properly chosen
sinusoidal waves. Among the reviewers were two of history's most famous
mathematicians, Joseph Louis Lagrange (1736-1813), and Pierre Simon de
Laplace (1749-1827).

While Laplace and the other reviewers voted to publish the paper, Lagrange
adamantly protested. For nearly 50 years, Lagrange had insisted that such an
approach could not be used to represent signals with corners , i.e.,
discontinuous slopes, such as in square waves. The Institut de France bowed
to the prestige of Lagrange, and rejected Fourier's work. It was only after
Lagrange died that the paper was finally published, some 15 years later.
Luckily, Fourier had other things to keep him busy, political activities,
expeditions to Egypt with Napoleon, and trying to avoid the guillotine after the
French Revolution (literally!).

The Scientist and Engineer's Guide to Digital Signal Processing142

Sample number
0 4 8 12 16

-40

-20

0

20

40

60

80

DECOMPOSE

SYNTHESIZE

FIGURE 8-1a
(see facing page)

A
m

pl
itu

de

Who was right? It's a split decision. Lagrange was correct in his assertion that
a summation of sinusoids cannot form a signal with a corner. However, you
can get very close. So close that the difference between the two has zero
energy. In this sense, Fourier was right, although 18th century science knew
little about the concept of energy. This phenomenon now goes by the name:
Gibbs Effect, and will be discussed in Chapter 11.

Figure 8-1 illustrates how a signal can be decomposed into sine and cosine
waves. Figure (a) shows an example signal, 16 points long, running from
sample number 0 to 15. Figure (b) shows the Fourier decomposition of this
signal, nine cosine waves and nine sine waves, each with a different
frequency and amplitude. Although far from obvious, these 18 sinusoids

add to produce the waveform in (a). It should be noted that the objection
made by Lagrange only applies to continuous signals. For discrete signals,
this decomposition is mathematically exact. There is no difference between the
signal in (a) and the sum of the signals in (b), just as there is no difference
between 7 and 3+4.

Why are sinusoids used instead of, for instance, square or triangular waves?
Remember, there are an infinite number of ways that a signal can be
decomposed. The goal of decomposition is to end up with something easier to
deal with than the original signal. For example, impulse decomposition allows
signals to be examined one point at a time, leading to the powerful technique
of convolution. The component sine and cosine waves are simpler than the
original signal because they have a property that the original signal does not
have: sinusoidal fidelity. As discussed in Chapter 5, a sinusoidal input to a
system is guaranteed to produce a sinusoidal output. Only the amplitude and
phase of the signal can change; the frequency and wave shape must remain the
same. Sinusoids are the only waveform that have this useful property. While
square and triangular decompositions are possible, there is no general reason
for them to be useful.

The general term: Fourier transform, can be broken into four categories,
resulting from the four basic types of signals that can be encountered.

Chapter 8- The Discrete Fourier Transform 143

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

0 2 4 6 8 10 12 14 16
-8

-4

0

4

8

Cosine Waves

Sine Waves

FIGURE 8-1b
Example of Fourier decomposition. A 16 point signal (opposite page) is decomposed into 9 cosine
waves and 9 sine waves. The frequency of each sinusoid is fixed; only the amplitude is changed
depending on the shape of the waveform being decomposed.

The Scientist and Engineer's Guide to Digital Signal Processing144

A signal can be either continuous or discrete, and it can be either periodic or
aperiodic. The combination of these two features generates the four categories,
described below and illustrated in Fig. 8-2.

Aperiodic-Continuous
This includes, for example, decaying exponentials and the Gaussian curve.
These signals extend to both positive and negative infinity without repeating in
a periodic pattern. The Fourier Transform for this type of signal is simply
called the Fourier Transform.

Periodic-Continuous
Here the examples include: sine waves, square waves, and any waveform that
repeats itself in a regular pattern from negative to positive infinity. This
version of the Fourier transform is called the Fourier Series.

Aperiodic-Discrete
These signals are only defined at discrete points between positive and negative
infinity, and do not repeat themselves in a periodic fashion. This type of
Fourier transform is called the Discrete Time Fourier Transform.

Periodic-Discrete
These are discrete signals that repeat themselves in a periodic fashion from
negative to positive infinity. This class of Fourier Transform is sometimes
called the Discrete Fourier Series, but is most often called the Discrete
Fourier Transform.

You might be thinking that the names given to these four types of Fourier
transforms are confusing and poorly organized. You're right; the names have
evolved rather haphazardly over 200 years. There is nothing you can do but
memorize them and move on.

These four classes of signals all extend to positive and negative infinity. Hold
on, you say! What if you only have a finite number of samples stored in your
computer, say a signal formed from 1024 points. Isn't there a version of the
Fourier Transform that uses finite length signals? No, there isn't. Sine and
cosine waves are defined as extending from negative infinity to positive
infinity. You cannot use a group of infinitely long signals to synthesize
something finite in length. The way around this dilemma is to make the finite
data look like an infinite length signal. This is done by imagining that the
signal has an infinite number of samples on the left and right of the actual
points. If all these “imagined” samples have a value of zero, the signal looks
discrete and aperiodic, and the Discrete Time Fourier Transform applies. As
an alternative, the imagined samples can be a duplication of the actual 1024
points. In this case, the signal looks discrete and periodic, with a period of
1024 samples. This calls for the Discrete Fourier Transform to be used.

As it turns out, an infinite number of sinusoids are required to synthesize a
signal that is aperiodic. This makes it impossible to calculate the Discrete
Time Fourier Transform in a computer algorithm. By elimination, the only

Chapter 8- The Discrete Fourier Transform 145

Type of Transform Example Signal

Fourier Transform

Fourier Series

Discrete Time Fourier Transform

Discrete Fourier Transform

signals that are continious and aperiodic

signals that are continious and periodic

signals that are discrete and aperiodic

signals that are discrete and periodic

FIGURE 8-2
Illustration of the four Fourier transforms. A signal may be continuous or discrete, and it may be
periodic or aperiodic. Together these define four possible combinations, each having its own version
of the Fourier transform. The names are not well organized; simply memorize them.

type of Fourier transform that can be used in DSP is the DFT. In other words,
digital computers can only work with information that is discrete and finite in
length. When you struggle with theoretical issues, grapple with homework
problems, and ponder mathematical mysteries, you may find yourself using the
first three members of the Fourier transform family. When you sit down to
your computer, you will only use the DFT. We will briefly look at these other
Fourier transforms in future chapters. For now, concentrate on understanding
the Discrete Fourier Transform.

Look back at the example DFT decomposition in Fig. 8-1. On the face of it,
it appears to be a 16 point signal being decomposed into 18 sinusoids, each
consisting of 16 points. In more formal terms, the 16 point signal, shown in
(a), must be viewed as a single period of an infinitely long periodic signal.
Likewise, each of the 18 sinusoids, shown in (b), represents a 16 point segment
from an infinitely long sinusoid. Does it really matter if we view this as a 16
point signal being synthesized from 16 point sinusoids, or as an infinitely long
periodic signal being synthesized from infinitely long sinusoids? The answer
is: usually no, but sometimes, yes. In upcoming chapters we will encounter
properties of the DFT that seem baffling if the signals are viewed as finite, but
become obvious when the periodic nature is considered. The key point to
understand is that this periodicity is invoked in order to use a mathematical
tool, i.e., the DFT. It is usually meaningless in terms of where the signal
originated or how it was acquired.

The Scientist and Engineer's Guide to Digital Signal Processing146

Each of the four Fourier Transforms can be subdivided into real and
complex versions. The real version is the simplest, using ordinary numbers
and algebra for the synthesis and decomposition. For instance, Fig. 8-1 is
an example of the real DFT. The complex versions of the four Fourier
transforms are immensely more complicated, requiring the use of complex
numbers. These are numbers such as: , where j is equal to 3%4 j &1
(electrical engineers use the variable j, while mathematicians use the
variable, i). Complex mathematics can quickly become overwhelming, even
to those that specialize in DSP. In fact, a primary goal of this book is to
present the fundamentals of DSP without the use of complex math, allowing
the material to be understood by a wider range of scientists and engineers.
The complex Fourier transforms are the realm of those that specialize in
DSP, and are willing to sink to their necks in the swamp of mathematics.
If you are so inclined, Chapters 30-33 will take you there.

The mathematical term: transform, is extensively used in Digital Signal
Processing, such as: Fourier transform, Laplace transform, Z transform,
Hilbert transform, Discrete Cosine transform, etc. Just what is a transform?
To answer this question, remember what a function is. A function is an
algorithm or procedure that changes one value into another value. For
example, is a function. You pick some value for x, plug it into they ' 2x%1
equation, and out pops a value for y. Functions can also change several
values into a single value, such as: , where and c arey ' 2a % 3b % 4c a, b,
changed into y.

Transforms are a direct extension of this, allowing both the input and output to
have multiple values. Suppose you have a signal composed of 100 samples.
If you devise some equation, algorithm, or procedure for changing these 100
samples into another 100 samples, you have yourself a transform. If you think
it is useful enough, you have the perfect right to attach your last name to it and
expound its merits to your colleagues. (This works best if you are an eminent
18th century French mathematician). Transforms are not limited to any specific
type or number of data. For example, you might have 100 samples of discrete
data for the input and 200 samples of discrete data for the output. Likewise,
you might have a continuous signal for the input and a continuous signal for the
output. Mixed signals are also allowed, discrete in and continuous out, and
vice versa. In short, a transform is any fixed procedure that changes one chunk
of data into another chunk of data. Let's see how this applies to the topic at
hand: the Discrete Fourier transform.

Notation and Format of the Real DFT
As shown in Fig. 8-3, the discrete Fourier transform changes an N point input
signal into two point output signals. The input signal contains theN/2%1
signal being decomposed, while the two output signals contain the amplitudes
of the component sine and cosine waves (scaled in a way we will discuss
shortly). The input signal is said to be in the time domain. This is because
the most common type of signal entering the DFT is composed of

Chapter 8- The Discrete Fourier Transform 147

Time Domain Frequency Domain

x[] Re X[] Im X[]

0 N-1 0 N/2 0 N/2

Forward DFT

Inverse DFT
N/2+1 samples

(cosine wave amplitudes)
N/2+1 samples

(sine wave amplitudes)

collectively referred to as X[]

N samples

FIGURE 8-3
DFT terminology. In the time domain, consists of N points running from 0 to . In the frequency domain,x[] N&1
the DFT produces two signals, the real part, written: , and the imaginary part, written: . Each ofReX[] Im X []
these frequency domain signals are points long, and run from 0 to . The Forward DFT transforms fromN/2%1 N/2
the time domain to the frequency domain, while the Inverse DFT transforms from the frequency domain to the
time domain. (Take note: this figure describes the real DFT. The complex DFT, discussed in Chapter 31,
changes N complex points into another set of N complex points).

samples taken at regular intervals of time. Of course, any kind of sampled
data can be fed into the DFT, regardless of how it was acquired. When you
see the term "time domain" in Fourier analysis, it may actually refer to
samples taken over time, or it might be a general reference to any discrete
signal that is being decomposed. The term frequency domain is used to
describe the amplitudes of the sine and cosine waves (including the special
scaling we promised to explain).

The frequency domain contains exactly the same information as the time
domain, just in a different form. If you know one domain, you can calculate
the other. Given the time domain signal, the process of calculating the
frequency domain is called decomposition, analysis, the forward DFT, or
simply, the DFT. If you know the frequency domain, calculation of the time
domain is called synthesis, or the inverse DFT. Both synthesis and analysis
can be represented in equation form and computer algorithms.

The number of samples in the time domain is usually represented by the
variable N. While N can be any positive integer, a power of two is usually
chosen, i.e., 128, 256, 512, 1024, etc. There are two reasons for this. First,
digital data storage uses binary addressing, making powers of two a natural
signal length. Second, the most efficient algorithm for calculating the DFT, the
Fast Fourier Transform (FFT), usually operates with N that is a power of two.
Typically, N is selected between 32 and 4096. In most cases, the samples run
from 0 to , rather than 1 to N. N&1

Standard DSP notation uses lower case letters to represent time domain
signals, such as , , and . The corresponding upper case letters arex[] y[] z[]

The Scientist and Engineer's Guide to Digital Signal Processing148

used to represent their frequency domains, that is, , , and . ForX [] Y[] Z []
illustration, assume an N point time domain signal is contained in . Thex[]
frequency domain of this signal is called , and consists of two parts, eachX []
an array of samples. These are called the Real part of , writtenN/2%1 X []
as: , and the Imaginary part of , written as: . The valuesRe X [] X [] Im X []
in are the amplitudes of the cosine waves, while the values in Re X [] Im X []
are the amplitudes of the sine waves (not worrying about the scaling factors for
the moment). Just as the time domain runs from to , the frequencyx[0] x[N&1]
domain signals run from to , and from to .ReX[0] ReX[N/2] ImX[0] Im X [N/2]
Study these notations carefully; they are critical to understanding the equations
in DSP. Unfortunately, some computer languages don't distinguish between
lower and upper case, making the variable names up to the individual
programmer. The programs in this book use the array XX[] to hold the time
domain signal, and the arrays REX[] and IMX[] to hold the frequency domain
signals.

The names real part and imaginary part originate from the complex DFT,
where they are used to distinguish between real and imaginary numbers.
Nothing so complicated is required for the real DFT. Until you get to Chapter
31, simply think that "real part" means the cosine wave amplitudes, while
"imaginary part" means the sine wave amplitudes. Don't let these suggestive
names mislead you; everything here uses ordinary numbers.

Likewise, don't be misled by the lengths of the frequency domain signals. It
is common in the DSP literature to see statements such as: "The DFT changes
an N point time domain signal into an N point frequency domain signal." This
is referring to the complex DFT, where each "point" is a complex number
(consisting of real and imaginary parts). For now, focus on learning the real
DFT, the difficult math will come soon enough.

The Frequency Domain's Independent Variable
Figure 8-4 shows an example DFT with . The time domain signal isN ' 128
contained in the array: to . The frequency domain signals arex[0] x[127]
contained in the two arrays: to , and to .ReX[0] ReX[64] Im X [0] Im X [64]
Notice that 128 points in the time domain corresponds to 65 points in each of
the frequency domain signals, with the frequency indexes running from 0 to 64.
That is, N points in the time domain corresponds to points in theN/2%1
frequency domain (not points). Forgetting about this extra point is aN/2
common bug in DFT programs.

The horizontal axis of the frequency domain can be referred to in four
different ways, all of which are common in DSP. In the first method, the
horizontal axis is labeled from 0 to 64, corresponding to the 0 to N/2
samples in the arrays. When this labeling is used, the index for the
frequency domain is an integer, for example, and , where kRe X [k] Im X [k]
runs from 0 to in steps of one. Programmers like this method becauseN/2
it is how they write code, using an index to access array locations. This
notation is used in Fig. 8-4b.

Chapter 8- The Discrete Fourier Transform 149

Sample number
0 16 32 48 64 80 96 112 128

-2

-1

0

1

2

a. x[]

127
Frequency (sample number)

0 16 32 48 64
-8

-4

0

4

8

b. Re X[]

Frequency (fraction of sampling rate)
0 0.1 0.2 0.3 0.4 0.5

-8

-4

0

4

8

c. Im X[]

Frequency DomainTime Domain

FIGURE 8-4
Example of the DFT. The DFT converts the
time domain signal, , into the frequencyx[]
domain signals, and . TheReX[] Im X []
horizontal axis of the frequency domain can be
labeled in one of three ways: (1) as an array
index that runs between 0 and , (2) as aN/2
fraction of the sampling frequency, running
between 0 and 0.5, (3) as a natural frequency,
running between 0 and B. In the example
shown here, (b) uses the first method, while (c)
use the second method.

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

In the second method, used in (c), the horizontal axis is labeled as a fraction
of the sampling rate. This means that the values along the horizonal axis
always run between 0 and 0.5, since discrete data can only contain frequencies
between DC and one-half the sampling rate. The index used with this notation
is f, for frequency. The real and imaginary parts are written: andReX [f]

, where takes on equally spaced values between 0 and 0.5.ImX [f] f N/2%1
To convert from the first notation, k, to the second notation, , divide thef
horizontal axis by N. That is, . Most of the graphs in this book use thisf ' k/N
second method, reinforcing that discrete signals only contain frequencies
between 0 and 0.5 of the sampling rate.

The third style is similar to the second, except the horizontal axis is
multiplied by 2B. The index used with this labeling is T, a lower case
Greek omega. In this notation, the real and imaginary parts are written:

 and , where T takes on equally spaced valuesReX [T] ImX [T] N/2%1
between 0 and B. The parameter, T, is called the natural frequency, and
has the units of radians. This is based on the idea that there are 2B radians
in a circle. Mathematicians like this method because it makes the equations
shorter. For instance, consider how a cosine wave is written in each of
these f i r s t th ree nota t ions : us ing k : , us ing :c [n] ' cos(2Bkn /N) f

, and using T: . c [n] ' cos(2B fn) c [n] ' cos(Tn)

The Scientist and Engineer's Guide to Digital Signal Processing150

ck [i] ' cos(2Bki /N)
EQUATION 8-1
Equations for the DFT basis functions. In
these equations, and are theck[i] sk[i]
cosine and sine waves, each N points in
length, running from to . Thei ' 0 N&1
parameter, k, determines the frequency of
the wave. In an N point DFT, k takes on
values between 0 and .N/2

sk [i] ' sin (2Bki /N)

The fourth method is to label the horizontal axis in terms of the analog
frequencies used in a particular application. For instance, if the system being
examined has a sampling rate of 10 kHz (i.e., 10,000 samples per second),
graphs of the frequency domain would run from 0 to 5 kHz. This method has
the advantage of presenting the frequency data in terms of a real world
meaning. The disadvantage is that it is tied to a particular sampling rate, and
is therefore not applicable to general DSP algorithm development, such as
designing digital filters.

All of these four notations are used in DSP, and you need to become
comfortable with converting between them. This includes both graphs and
mathematical equations. To find which notation is being used, look at the
independent variable and its range of values. You should find one of four
notations: k (or some other integer index), running from 0 to ; f, runningN/2
from 0 to 0.5; T, running from 0 to B; or a frequency expressed in hertz,
running from DC to one-half of an actual sampling rate.

DFT Basis Functions

The sine and cosine waves used in the DFT are commonly called the DFT
basis functions. In other words, the output of the DFT is a set of numbers
that represent amplitudes. The basis functions are a set of sine and cosine
waves with unity amplitude. If you assign each amplitude (the frequency
domain) to the proper sine or cosine wave (the basis functions), the result
is a set of scaled sine and cosine waves that can be added to form the time
domain signal.

The DFT basis functions are generated from the equations:

where: is the cosine wave for the amplitude held in , and isck[] ReX[k] sk[]
the sine wave for the amplitude held in . For example, Fig. 8-5 showsIm X [k]
some of the 17 sine and 17 cosine waves used in an point DFT. SinceN ' 32
these sinusoids add to form the input signal, they must be the same length as
the input signal. In this case, each has 32 points running from to 31. Thei ' 0
parameter, k, sets the frequency of each sinusoid. In particular, is thec1[]
cosine wave that makes one complete cycle in N points, is the cosinec5[]
wave that makes five complete cycles in N points, etc. This is an important
concept in understanding the basis functions; the frequency parameter, k, is
equal to the number of complete cycles that occur over the N points of the
signal.

Chapter 8- The Discrete Fourier Transform 151

Sample number
0 8 16 24 32

-2

-1

0

1

2

a. c0[]

Sample number
0 8 16 24 32

-2

-1

0

1

2

c. c2[]

Sample number
0 8 16 24 32

-2

-1

0

1

2

e. c10[]

Sample number
0 8 16 24 32

-2

-1

0

1

2

f. s10[]

Sample number
0 8 16 24 32

-2

-1

0

1

2

h. s16[]

Sample number
0 8 16 24 32

-2

-1

0

1

2

b. s0[]

Sample number
0 8 16 24 32

-2

-1

0

1

2

d. s2[]

Sample number
0 8 16 24 32

-2

-1

0

1

2

g. c16[]

FIGURE 8-5
DFT basis functions. A 32 point DFT has 17 discrete cosine waves and 17 discrete sine waves for
its basis functions. Eight of these are shown in this figure. These are discrete signals; the continuous
lines are shown in these graphs only to help the reader's eye follow the waveforms.

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

The Scientist and Engineer's Guide to Digital Signal Processing152

EQUATION 8-2
The synthesis equation. In this relation, is the signal beingx [i]
synthesized, with the index, i, running from 0 to . N&1 Re X̄ [k]
and hold the amplitudes of the cosine and sine waves,Im X̄ [k]
respectively, with k running from 0 to . Equation 8-3 providesN/2
the normalization to change this equation into the inverse DFT.

x[i] ' j
N /2

k'0
ReX̄ [k] cos(2Bki /N) % j

N /2

k'0
ImX̄ [k] sin(2Bki /N)

Let's look at several of these basis functions in detail. Figure (a) shows the
cosine wave . This is a cosine wave of zero frequency, which is a constantc0[]
value of one. This means that holds the average value of all the pointsReX[0]
in the time domain signal. In electronics, it would be said that holdsReX[0]
the DC offset. The sine wave of zero frequency, , is shown in (b), as0[]
signal composed of all zeros. Since this can not affect the time domain signal
being synthesized, the value of is irrelevant, and always set to zero.Im X [0]
More about this shortly.

Figures (c) & (d) show & , the sinusoids that complete two cycles inc2[] s2[]
the N points. These correspond to & , respectively. Likewise,Re X [2] Im X [2]
(e) & (f) show & , the sinusoids that complete ten cycles in the Nc10[] s10[]
points. These sinusoids correspond to the amplitudes held in the arrays

 & . The problem is, the samples in (e) and (f) no longerReX[10] Im X [10]
look like sine and cosine waves. If the continuous curves were not present in
these graphs, you would have a difficult time even detecting the pattern of the
waveforms. This may make you a little uneasy, but don't worry about it. From
a mathematical point of view, these samples do form discrete sinusoids, even
if your eye cannot follow the pattern.

The highest frequencies in the basis functions are shown in (g) and (h). These
are & , or in this example, & . The discrete cosinecN/2[] sN/2[] c16[] s16[]
wave alternates in value between 1 and -1, which can be interpreted as
sampling a continuous sinusoid at the peaks. In contrast, the discrete sine wave
contains all zeros, resulting from sampling at the zero crossings. This makes
the value of the same as , always equal to zero, and notIm X [N/2] Im X [0]
affecting the synthesis of the time domain signal.

Here's a puzzle: If there are N samples entering the DFT, and samplesN%2
exiting, where did the extra information come from? The answer: two of the
output samples contain no information, allowing the other N samples to be fully
independent. As you might have guessed, the points that carry no information
are and , the samples that always have a value of zero.Im X [0] Im X [N/2]

Synthesis, Calculating the Inverse DFT
Pulling together everything said so far, we can write the synthesis equation:

Chapter 8- The Discrete Fourier Transform 153

EQUATIONS 8-3
Conversion between the sinusoidal
amplitudes and the frequency domain
values. In these equations, Re X̄ [k]
and hold the amplitudes ofIm X̄ [k]
the cosine and sine waves needed for
synthesis, while and Re X [k] Im X [k]
hold the real and imaginary parts of
the frequency domain. As usual, N is
the number of points in the time
domain signal, and k is an index that
runs from 0 to N/2.

ReX̄ [k] '
ReX [k]

N / 2

ImX̄ [k] ' &
ImX [k]

N / 2

ReX̄ [0] '
ReX [0]

N

ReX̄ [N/2] ' ReX [N/2]
N

except for two special cases:

In words, any N point signal, , can be created by adding cosinex[i] N/2% 1
waves and sine waves. The amplitudes of the cosine and sine wavesN/2% 1
are held in the arrays and , respectively. The synthesisIm X̄ [k] Re X̄ [k]
equation multiplies these amplitudes by the basis functions to create a set of
scaled sine and cosine waves. Adding the scaled sine and cosine waves
produces the time domain signal, .x[i]

In Eq. 8-2, the arrays are called and , rather than andIm X̄ [k] Re X̄ [k] Im X [k]
. This is because the amplitudes needed for synthesis (called in thisRe X [k]

discussion: and), are slightly different from the frequencyIm X̄ [k] Re X̄ [k]
domain of a signal (denoted by: and). This is the scalingIm X [k] Re X [k]
factor issue we referred to earlier. Although the conversion is only a simple
normalization, it is a common bug in computer programs. Look out for it! In
equation form, the conversion between the two is given by:

Suppose you are given a frequency domain representation, and asked to
synthesize the corresponding time domain signal. To start, you must find the
amplitudes of the sine and cosine waves. In other words, given andIm X [k]

, you must find and . Equation 8-3 shows this in aRe X [k] Im X̄ [k] Re X̄ [k]
mathematical form. To do this in a computer program, three actions must be
taken. First, divide all the values in the frequency domain by . Second,N/2
change the sign of all the imaginary values. Third, divide the first and last
samples in the real part, and , by two. This provides theReX[0] ReX[N/2]
amplitudes needed for the synthesis described by Eq. 8-2. Taken together, Eqs.
8-2 and 8-3 define the inverse DFT.

The entire Inverse DFT is shown in the computer program listed in Table
8-1. There are two ways that the synthesis (Eq. 8-2) can be programmed,
and both are shown. In the first method, each of the scaled sinusoids are
generated one at a time and added to an accumulation array, which ends
up becoming the time domain signal. In the second method, each sample in
the time domain signal is calculated one at a time, as the sum of all the

The Scientist and Engineer's Guide to Digital Signal Processing154

100 'THE INVERSE DISCRETE FOURIER TRANSFORM
110 'The time domain signal, held in XX[], is calculated from the frequency domain signals,
120 'held in REX[] and IMX[].
130 '
140 DIM XX[511] 'XX[] holds the time domain signal
150 DIM REX[256] 'REX[] holds the real part of the frequency domain
160 DIM IMX[256] 'IMX[] holds the imaginary part of the frequency domain
170 '
180 PI = 3.14159265 'Set the constant, PI
190 N% = 512 'N% is the number of points in XX[]
200 '
210 GOSUB XXXX 'Mythical subroutine to load data into REX[] and IMX[]
220 '
230
240 ' 'Find the cosine and sine wave amplitudes using Eq. 8-3
250 FOR K% = 0 TO 256
260 REX[K%] = REX[K%] / (N%/2)
270 IMX[K%] = -IMX[K%] / (N%/2)
280 NEXT K%
290 '
300 REX[0] = REX[0] / 2
310 REX[256] = REX[256] / 2
320 '
330 '
340 FOR I% = 0 TO 511 'Zero XX[] so it can be used as an accumulator
350 XX[I%] = 0
360 NEXT I%
370 '
380 ' Eq. 8-2 SYNTHESIS METHOD #1. Loop through each
390 ' frequency generating the entire length of the sine and cosine
400 ' waves, and add them to the accumulator signal, XX[]
410 '
420 FOR K% = 0 TO 256 'K% loops through each sample in REX[] and IMX[]
430 FOR I% = 0 TO 511 'I% loops through each sample in XX[]
440 '
450 XX[I%] = XX[I%] + REX[K%] * COS(2*PI*K%*I%/N%)
460 XX[I%] = XX[I%] + IMX[K%] * SIN(2*PI*K%*I%/N%)
470 '
480 NEXT I%
490 NEXT K%
500 '
510 END

 Alternate code for lines 380 to 510

380 ' Eq. 8-2 SYNTHESIS METHOD #2. Loop through each
390 ' sample in the time domain, and sum the corresponding
400 ' samples from each cosine and sine wave
410 '
420 FOR I% = 0 TO 511 'I% loops through each sample in XX[]
430 FOR K% = 0 TO 256 'K% loops through each sample in REX[] and IMX[]
440 '
450 XX[I%] = XX[I%] + REX[K%] * COS(2*PI*K%*I%/N%)
460 XX[I%] = XX[I%] + IMX[K%] * SIN(2*PI*K%*I%/N%)
470 '
480 NEXT K%
490 NEXT I%
500 '
510 END

TABLE 8-1

Chapter 8- The Discrete Fourier Transform 155

Sample number
0 8 16 24 32

0

10

20

30

40

50

a. The time domain signal

Frequency sample number
0 4 8 12 16

0

10

20

30

40

50

b. Re X[] (the frequency domain)

Frequency sample number
0 4 8 12 16

0.0

1.0

2.0

3.0

c. Re X[] (cosine wave amplitudes)

Frequency DomainTime Domain

FIGURE 8-6
Example of the Inverse DFT. Figure (a) shows an example time domain signal, an impulse at sample zero with
an amplitude of 32. Figure (b) shows the real part of the frequency domain of this signal, a constant value of
32. The imaginary part of the frequency domain (not shown) is composed of all zeros. Figure(c) shows the
amplitudes of the cosine waves needed to reconstruct (a) using Eq. 8-2. The values in (c) are found from (b)
by using Eq. 8-3.

I DFT

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

Eq. 8.2 Eq. 8.3

corresponding samples in the cosine and sine waves. Both methods produce the
same result. The difference between these two programs is very minor; the
inner and outer loops are swapped during the synthesis.

Figure 8-6 illustrates the operation of the Inverse DFT, and the slight
differences between the frequency domain and the amplitudes needed for
synthesis. Figure 8-6a is an example signal we wish to synthesize, an impulse
at sample zero with an amplitude of 32. Figure 8-6b shows the frequency
domain representation of this signal. The real part of the frequency domain is
a constant value of 32. The imaginary part (not shown) is composed of all
zeros. As discussed in the next chapter, this is an important DFT pair: an
impulse in the time domain corresponds to a constant value in the frequency
domain. For now, the important point is that (b) is the DFT of (a), and (a) is
the Inverse DFT of (b).

The Scientist and Engineer's Guide to Digital Signal Processing156

Frequency sample number
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

1

2

3

4

5

6

7

8

9

10

1/N
width:
1/N

width:
2/N

width:
1/N

FIGURE 8-7
The bandwidth of frequency domain
samples. Each sample in the frequency
domain can be thought of as being
contained in a frequency band of width
2/N, expressed as a fraction of the total
bandwidth. An exception to this is the
first and last samples, which have a
bandwidth only one-half this wide, 1/N.

A
m

pl
itu

de

Equation 8-3 is used to convert the frequency domain signal, (b), into the
amplitudes of the cosine waves, (c). As shown, all of the cosine waves have
an amplitude of two, except for samples 0 and 16, which have a value of one.
The amplitudes of the sine waves are not shown in this example because they
have a value of zero, and therefore provide no contribution. The synthesis
equation, Eq. 8-2, is then used to convert the amplitudes of the cosine waves,
(b), into the time domain signal, (a).

This describes how the frequency domain is different from the sinusoidal
amplitudes, but it doesn't explain why it is different. The difference occurs
because the frequency domain is defined as a spectral density. Figure 8-7
shows how this works. The example in this figure is the real part of the
frequency domain of a 32 point signal. As you should expect, the samples run
from 0 to 16, representing 17 frequencies equally spaced between 0 and 1/2
of the sampling rate. Spectral density describes how much signal (amplitude)
is present per unit of bandwidth. To convert the sinusoidal amplitudes into a
spectral density, divide each amplitude by the bandwidth represented by each
amplitude. This brings up the next issue: how do we determine the bandwidth
of each of the discrete frequencies in the frequency domain?

As shown in the figure, the bandwidth can be defined by drawing dividing
lines between the samples. For instance, sample number 5 occurs in the
band between 4.5 and 5.5; sample number 6 occurs in the band between 5.5
and 6.5, etc. Expressed as a fraction of the total bandwidth (i.e.,), theN/2
bandwidth of each sample is . An exception to this is the samples on2/N
each end, which have one-half of this bandwidth, . This accounts for1/N
the scaling factor between the sinusoidal amplitudes and frequency2/N
domain, as well as the additional factor of two needed for the first and last
samples.

Why the negation of the imaginary part? This is done solely to make the real
DFT consistent with its big brother, the complex DFT. In Chapter 29 we will
show that it is necessary to make the mathematics of the complex DFT work.
When dealing only with the real DFT, many authors do not include this
negat ion . For tha t mat ter , many authors do not even inc lude

Chapter 8- The Discrete Fourier Transform 157

the scaling factor. Be prepared to find both of these missing in some2/N
discussions. They are included here for a tremendously important reason: The
most efficient way to calculate the DFT is through the Fast Fourier Transform
(FFT) algorithm, presented in Chapter 12. The FFT generates a frequency
domain defined according to Eq. 8-2 and 8-3. If you start messing with these
normalization factors, your programs containing the FFT are not going to work
as expected.

Analysis, Calculating the DFT
The DFT can be calculated in three completely different ways. First, the
problem can be approached as a set of simultaneous equations. This
method is useful for understanding the DFT, but it is too inefficient to be
of practical use. The second method brings in an idea from the last chapter:
correlation. This is based on detecting a known waveform in another
signal. The third method, called the Fast Fourier Transform (FFT), is an
ingenious algorithm that decomposes a DFT with N points, into N DFTs
each with a single point. The FFT is typically hundreds of times faster than
the other methods. The first two methods are discussed here, while the FFT
is the topic of Chapter 12. It is important to remember that all three of
these methods produce an identical output. Which should you use? In actual
practice, correlation is the preferred technique if the DFT has less than
about 32 points, otherwise the FFT is used.

DFT by Simultaneous Equations
Think about the DFT calculation in the following way. You are given N values
from the time domain, and asked to calculate the N values of the frequency
domain (ignoring the two frequency domain values that you know must be
zero). Basic algebra provides the answer: to solve for N unknowns, you must
be able to write N linearly independent equations. To do this, take the first
sample from each sinusoid and add them together. The sum must be equal to
the first sample in the time domain signal, thus providing the first equation.
Likewise, an equation can be written for each of the remaining points in the
time domain signal, resulting in the required N equations. The solution can
then be found by using established methods for solving simultaneous equations,
such as Gauss Elimination. Unfortunately, this method requires a tremendous
number of calculations, and is virtually never used in DSP. However, it is
important for another reason, it shows why it is possible to decompose a signal
into sinusoids, how many sinusoids are needed, and that the basis functions
must be linearly independent (more about this shortly).

DFT by Correlation
Let's move on to a better way, the standard way of calculating the DFT. An
example will show how this method works. Suppose we are trying to calculate
the DFT of a 64 point signal. This means we need to calculate the 33 points
in the real part, and the 33 points in the imaginary part of the frequency
domain. In this example we will only show how to calculate a single sample,

, i.e., the amplitude of the sine wave that makes three complete cyclesIm X [3]

The Scientist and Engineer's Guide to Digital Signal Processing158

EQUATION 8-4
The analysis equations for calculating
the DFT. In these equations, is thex[i]
time domain signal being analyzed, and

 & are the frequencyRe X [k] Im X [k]
domain signals being calculated. The
index i runs from 0 to , while theN&1
index k runs from 0 to .N/2

ReX [k] ' j
N & 1

i ' 0
x [i] cos(2Bk i /N)

ImX [k] ' & j
N & 1

i ' 0
x [i] sin(2Bk i /N)

between point 0 and point 63. All of the other frequency domain values are
calculated in a similar manner.

Figure 8-8 illustrates using correlation to calculate . Figures (a) andIm X [3]
(b) show two example time domain signals, called: and ,x1[] x2[]
respectively. The first signal, , is composed of nothing but a sine wavex1[]
that makes three cycles between points 0 and 63. In contrast, isx2[]
composed of several sine and cosine waves, none of which make three cycles
between points 0 and 63. These two signals illustrate what the algorithm for
calculating must do. When fed , the algorithm must produce aIm X [3] x1[]
value of 32, the amplitude of the sine wave present in the signal (modified by
the scaling factors of Eq. 8-3). In comparison, when the algorithm is fed the
other signal, , a value of zero must be produced, indicating that thisx2[]
particular sine wave is not present in this signal.

The concept of correlation was introduced in Chapter 7. As you recall, to
detect a known waveform contained in another signal, multiply the two
signals and add all the points in the resulting signal. The single number
that results from this procedure is a measure of how similar the two signals
are. Figure 8-8 illustrates this approach. Figures (c) and (d) both display
the signal we are looking for, a sine wave that makes 3 cycles between
samples 0 and 63. Figure (e) shows the result of multiplying (a) and (c).
Likewise, (f) shows the result of multiplying (b) and (d). The sum of all
the points in (e) is 32, while the sum of all the points in (f) is zero, showing
we have found the desired algorithm.

The other samples in the frequency domain are calculated in the same way.
This procedure is formalized in the analysis equation, the mathematical way
to calculate the frequency domain from the time domain:

In words, each sample in the frequency domain is found by multiplying the time
domain signal by the sine or cosine wave being looked for, and adding the
resulting points. If someone asks you what you are doing, say with confidence:
"I am correlating the input signal with each basis function." Table 8-2 shows
a computer program for calculating the DFT in this way.

The analysis equation does not require special handling of the first and last
points, as did the synthesis equation. There is, however, a negative sign in the
imaginary part in Eq. 8-4. Just as before, this negative sign makes the real
DFT consistent with the complex DFT, and is not always included.

Chapter 8- The Discrete Fourier Transform 159

Sample number
0 16 32 48 64

-2

-1

0

1

2

a. x1[], signal being analyzed

Sample number
0 16 32 48 64

-2

-1

0

1

2

b. x2[], signal being analyzed

Sample number
0 16 32 48 64

-2

-1

0

1

2

d. s3[], basis function being sought

Sample number
0 16 32 48 64

-2

-1

0

1

2

c. s3[], basis function being sought

Sample number
0 16 32 48 64

-2

-1

0

1

2

e. x1[] × s3[]

Sample number
0 16 32 48 64

-2

-1

0

1

2

f. x2[] × s3[]

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

Example 2Example 1

FIGURE 8-8
Two example signals, (a) and (b), are analyzed for containing the specific basis function shown in (c) and (d).
Figures (e) and (f) show the result of multiplying each example signal by the basis function. Figure (e) has an
average of 0.5, indicating that contains the basis function with an amplitude of 1.0. Conversely, (f) hasx1[]
a zero average, indicating that does not contain the basis function.x2[]

A
m

pl
itu

de

A
m

pl
itu

de

In order for this correlation algorithm to work, the basis functions must have
an interesting property: each of them must be completely uncorrelated with
all of the others. This means that if you multiply any two of the basis
functions, the sum of the resulting points will be equal to zero. Basis
functions that have this property are called orthognal . Many other

The Scientist and Engineer's Guide to Digital Signal Processing160

100 'THE DISCRETE FOURIER TRANSFORM
110 'The frequency domain signals, held in REX[] and IMX[], are calculated from
120 'the time domain signal, held in XX[].
130 '
140 DIM XX[511] 'XX[] holds the time domain signal
150 DIM REX[256] 'REX[] holds the real part of the frequency domain
160 DIM IMX[256] 'IMX[] holds the imaginary part of the frequency domain
170 '
180 PI = 3.14159265 'Set the constant, PI
190 N% = 512 'N% is the number of points in XX[]
200 '
210 GOSUB XXXX 'Mythical subroutine to load data into XX[]
220 '
230 '
240 FOR K% = 0 TO 256 'Zero REX[] & IMX[] so they can be used as accumulators
250 REX[K%] = 0
260 IMX[K%] = 0
270 NEXT K%
280 '
290 ' 'Correlate XX[] with the cosine and sine waves, Eq. 8-4
300 '
310 FOR K% = 0 TO 256 'K% loops through each sample in REX[] and IMX[]
320 FOR I% = 0 TO 511 'I% loops through each sample in XX[]
330 '
340 REX[K%] = REX[K%] + XX[I%] * COS(2*PI*K%*I%/N%)
350 IMX[K%] = IMX[K%] - XX[I%] * SIN(2*PI*K%*I%/N%)
360 '
370 NEXT I%
380 NEXT K%
390 '
400 END

TABLE 8-2

orthognal basis functions exist, including: square waves, triangle waves,
impulses, etc. Signals can be decomposed into these other orthognal basis
functions using correlation, just as done here with sinusoids. This is not to
suggest that this is useful, only that it is possible.

As previously shown in Table 8-1, the Inverse DFT has two ways to be
implemented in a computer program. This difference involves swapping the
inner and outer loops during the synthesis. While this does not change the
output of the program, it makes a difference in how you view what is being
done. The DFT program in Table 8-2 can also be changed in this fashion, by
swapping the inner and outer loops in lines 310 to 380. Just as before, the
output of the program is the same, but the way you think about the calculation
is different. (These two different ways of viewing the DFT and inverse DFT
could be described as "input side" and "output side" algorithms, just as for
convolution).

As the program in Table 8-2 is written, it describes how an individual sample
in the frequency domain is affected by all of the samples in the time domain.
That is, the program calculates each of the values in the frequency domain in
succession, not as a group. When the inner and outer loops are exchanged,
the program loops through each sample in the time domain, calculating the

Chapter 8- The Discrete Fourier Transform 161

contribution of that point to the frequency domain. The overall frequency
domain is found by adding the contributions from the individual time
domain points. This brings up our next question: what kind of contribution
does an individual sample in the time domain provide to the frequency
domain? The answer is contained in an interesting aspect of Fourier
analysis called duality.

Duality
The synthesis and analysis equations (Eqs. 8-2 and 8-4) are strikingly
similar. To move from one domain to the other, the known values are
multiplied by the basis functions, and the resulting products added. The
fact that the DFT and the Inverse DFT use this same mathematical
approach is really quite remarkable, considering the totally different way
we arrived at the two procedures. In fact, the only significant difference
between the two equations is a result of the time domain being one signal
of N points, while the frequency domain is two signals of points.N/2% 1
As discussed in later chapters, the complex DFT expresses both the time
and the frequency domains as complex signals of N points each. This
makes the two domains completely symmetrical, and the equations for
moving between them virtually identical.

This symmetry between the time and frequency domains is called duality,
and gives rise to many interesting properties. For example, a single point
in the frequency domain corresponds to a sinusoid in the time domain. By
duality, the inverse is also true, a single point in the time domain
corresponds to a sinusoid in the frequency domain. As another example,
convolution in the time domain corresponds to multiplication in the
frequency domain. By duality, the reverse is also true: convolution in the
frequency domain corresponds to multiplication in the time domain. These
and other duality relationships are discussed in more detail in Chapters 10
and 11.

Polar Notation
As it has been described so far, the frequency domain is a group of
amplitudes of cosine and sine waves (with slight scaling modifications).
This is called rectangular notation. Alternatively, the frequency domain
can be expressed in polar form. In this notation, & areReX[] Im X []
replaced with two other arrays, called the Magnitude of , written inX []
equations as: , and the Phase of , written as: .Mag X [] X [] Phase X []
The magnitude and phase are a pair-for-pair replacement for the real and
imaginary parts. For example, and are calculatedMag X [0] Phase X [0]
using only and . Likewise, and areReX[0] Im X [0] Mag X [14] Phase X [14]
calculated using only and , and so forth. To understandReX[14] Im X [14]
the conversion, consider what happens when you add a cosine wave and a
sine wave of the same frequency. The result is a cosine wave of the same

The Scientist and Engineer's Guide to Digital Signal Processing162

EQUATION 8-5
The addition of a cosine and sine wave
results in a cosine wave with a different
amplitude and phase shift. The infor-
mation contained in A & B is transferred to
two other variables, M and 2.

A cos(x) % B sin(x) ' M cos(x % 2)

FIGURE 8-9
Rectangular-to-polar conversion. The
addition of a cosine wave and a sine
wave (of the same frequency) follows
the same mathematics as the addition of
simple vectors.

B

A

M

2

M = (A + B)
2 = arctan(B/A)

2 2 1/2

EQUATION 8-6
Rectangular-to-polar conversion. The
rectangular representation of the freq-
uency domain, and , isReX[k] Im X [k]
changed into the polar form, Mag X [k]
and .Phase X [k]

MagX [k] ' (ReX [k]2 % ImX [k]2)1/2

PhaseX [k] ' arctan ImX [k]
ReX [k]

EQUATION 8-7
Polar-to-rectangular conversion. The
two arrays, and , areMag X [k] Phase X [k]
converted into and .ReX[k] Im X [k]

ReX [k] ' MagX [k] cos(PhaseX [k])

ImX [k] ' MagX [k] sin(PhaseX [k])

frequency, but with a new amplitude and a new phase shift. In equation form,
the two representations are related:

The important point is that no information is lost in this process; given one
representation you can calculate the other. In other words, the information
contained in the amplitudes A and B, is also contained in the variables M and
2. Although this equation involves sine and cosine waves, it follows the same
conversion equations as do simple vectors. Figure 8-9 shows the analogous
vector representation of how the two variables, A and B, can be viewed in a
rectangular coordinate system, while M and 2 are parameters in polar
coordinates.

In polar notation, holds the amplitude of the cosine wave (M in Eq.Mag X []
8-5 and Fig. 8-9), while holds the phase angle of the cosine wavePhase X []
(2 in Eq. 8-5 and Fig. 8-9). The following equations convert the frequency
domain from rectangular to polar notation, and vice versa:

Chapter 8- The Discrete Fourier Transform 163

Frequency
0 0.1 0.2 0.3 0.4 0.5

-2

-1

0

1

2

a. Re X[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

-1

0

1

2

c. Mag X[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

-6

-4

-2

0

2

4

6

d. Phase X[]

PolarRectangular

FIGURE 8-10
Example of rectangular and polar frequency domains. This example shows a frequency domain expressed
in both rectangular and polar notation. As in this case, polar notation usually provides human observers with
a better understanding of the characteristics of the signal. In comparison, the rectangular form is almost
always used when math computations are required. Pay special notice to the fact that the first and last
samples in the phase must be zero, just as they are in the imaginary part.

Frequency
0 0.1 0.2 0.3 0.4 0.5

-2

-1

0

1

2

b. Im X[]

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

Ph
as

e
(r

ad
ia

ns
)

Rectangular and polar notation allow you to think of the DFT in two different
ways. With rectangular notation, the DFT decomposes an N point signal into N/2% 1
cosine waves and sine waves, each with a specified amplitude. InN/2% 1
polar notation, the DFT decomposes an N point signal into cosineN/2% 1
waves, each with a specified amplitude (called the magnitude) and phase shift.
Why does polar notation use cosine waves instead of sine waves? Sine waves
cannot represent the DC component of a signal, since a sine wave of zero
frequency is composed of all zeros (see Figs. 8-5 a&b).

Even though the polar and rectangular representations contain exactly the same
information, there are many instances where one is easier to use that the other.
For example, Fig. 8-10 shows a frequency domain signal in both rectangular
and polar form. Warning: Don't try to understand the shape of the real and
imaginary parts; your head will explode! In comparison, the polar curves are
straightforward: only frequencies below about 0.25 are present, and the phase
shift is approximately proportional to the frequency. This is the frequency
response of a low-pass filter.

The Scientist and Engineer's Guide to Digital Signal Processing164

When should you use rectangular notation and when should you use polar?
Rectangular notation is usually the best choice for calculations, such as in
equations and computer programs. In comparison, graphs are almost always
in polar form. As shown by the previous example, it is nearly impossible for
humans to understand the characteristics of a frequency domain signal by
looking at the real and imaginary parts. In a typical program, the frequency
domain signals are kept in rectangular notation until an observer needs to look
at them, at which time a rectangular-to-polar conversion is done.

Why is it easier to understand the frequency domain in polar notation? This
question goes to the heart of why decomposing a signal into sinusoids is useful.
Recall the property of sinusoidal fidelity from Chapter 5: if a sinusoid enters
a linear system, the output will also be a sinusoid, and at exactly the same
frequency as the input. Only the amplitude and phase can change. Polar
notation directly represents signals in terms of the amplitude and phase of the
component cosine waves. In turn, systems can be represented by how they
modify the amplitude and phase of each of these cosine waves.

Now consider what happens if rectangular notation is used with this
scenario. A mixture of cosine and sine waves enter the linear system,
resulting in a mixture of cosine and sine waves leaving the system. The
problem is, a cosine wave on the input may result in both cosine and sine
waves on the output. Likewise, a sine wave on the input can result in both
cosine and sine waves on the output. While these cross-terms can be
straightened out, the overall method doesn't match with why we wanted to
use sinusoids in the first place.

Polar Nuisances
There are many nuisances associated with using polar notation. None of these
are overwhelming, just really annoying! Table 8-3 shows a computer program
for converting between rectangular and polar notation, and provides solutions
for some of these pests.

Nuisance 1: Radians vs. Degrees
It is possible to express the phase in either degrees or radians. When
expressed in degrees, the values in the phase signal are between -180 and 180.
Using radians, each of the values will be between -B and B, that is, between
-3.141592 to 3.141592. Most computer languages require the use radians for
their trigonometric functions, such as cosine, sine, arctangent, etc. It can be
irritating to work with these long decimal numbers, and difficult to interpret the
data you receive. For example, if you want to introduce a 90 degree phase
shift into a signal, you need to add 1.570796 to the phase. While it isn't going
to kill you to type this into your program, it does become tiresome. The best
way to handle this problem is to define the constant, PI = 3.141592, at the
beginning of your program. A 90 degree phase shift can then be written as

. Degrees and radians are both widely used in DSP and you need toPI /2
become comfortable with both.

Chapter 8- The Discrete Fourier Transform 165

100 'RECTANGULAR-TO-POLAR & POLAR-TO-RECTANGULAR CONVERSION
110 '
120 DIM REX[256] 'REX[] holds the real part
130 DIM IMX[256] 'IMX[] holds the imaginary part
140 DIM MAG[256] 'MAG[] holds the magnitude
150 DIM PHASE[256] 'PHASE[] holds the phase
160 '
170 PI = 3.14159265
180 '
190 GOSUB XXXX 'Mythical subroutine to load data into REX[] and IMX[]
200 '
210 '
220 ' 'Rectangular-to-polar conversion, Eq. 8-6
230 FOR K% = 0 TO 256
240 MAG[K%] = SQR(REX[K%]^2 + IMX[K%]^2) 'from Eq. 8-6
250 IF REX[K%] = 0 THEN REX[K%] = 1E-20 'prevent divide by 0 (nuisance 2)
260 PHASE[K%] = ATN(IMX[K%] / REX[K%]) 'from Eq. 8-6
270 ' 'correct the arctan (nuisance 3)
280 IF REX[K%] < 0 AND IMX[K%] < 0 THEN PHASE[K%] = PHASE[K%] - PI
290 IF REX[K%] < 0 AND IMX[K%] >= 0 THEN PHASE[K%] = PHASE[K%] + PI
300 NEXT K%
310 '
320 '
330 ' 'Polar-to-rectangular conversion, Eq. 8-7
340 FOR K% = 0 TO 256
350 REX[K%] = MAG[K%] * COS(PHASE[K%])
360 IMX[K%] = MAG[K%] * SIN(PHASE[K%])
370 NEXT K%
380 '
390 END

 TABLE 8-3

Nuisance 2: Divide by zero error
When converting from rectangular to polar notation, it is very common to
find frequencies where the real part is zero and the imaginary part is some
nonzero value. This simply means that the phase is exactly 90 or -90
degrees. Try to tell your computer this! When your program tries to
calculate the phase from: , a divide byPhase X [k] ' arctan(Im X [k] / Re X [k])
zero error occurs. Even if the program execution doesn't halt, the phase
you obtain for this frequency won't be correct. To avoid this problem, the
real part must be tested for being zero before the division. If it is zero, the
imaginary part must be tested for being positive or negative, to determine
whether to set the phase to B/2 or -B/2, respectively. Lastly, the division
needs to be bypassed. Nothing difficult in all these steps, just the potential
for aggravation. An alternative way to handle this problem is shown in
line 250 of Table 8-3. If the real part is zero, change it to a negligibly
small number to keep the math processor happy during the division.

Nuisance 3: Incorrect arctan
Consider a frequency domain sample where and .ReX[k] ' 1 Im X [k] ' 1
Equation 8-6 provides the corresponding polar values of andMag X[k] ' 1.414

. Now consider another sample where andPhase X [k] ' 45E ReX[k] ' &1

The Scientist and Engineer's Guide to Digital Signal Processing166

FIGURE 8-11
The phase of small magnitude signals. At frequencies where the magnitude drops to a very low value, round-off
noise can cause wild excursions of the phase. Don't make the mistake of thinking this is a meaningful signal.

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

a. Mag X[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

-5

-4

-3

-2

-1

0

1

2

3

4

5

b. Phase X[]

A
m

pl
itu

de

Ph
as

e
(r

ad
ia

ns
)

. Again, Eq. 8-6 provides the values of andIm X [k] ' &1 Mag X [k] ' 1.414
. The problem is, the phase is wrong! It should be .Phase X [k] ' 45E &135E

This error occurs whenever the real part is negative. This problem can be
corrected by testing the real and imaginary parts after the phase has been
calculated. If both the real and imaginary parts are negative, subtract 180E
(or B radians) from the calculated phase. If the real part is negative and the
imaginary part is positive, add (or B radians). Lines 340 and 350 of the180E
program in Table 8-3 show how this is done. If you fail to catch this problem,
the calculated value of the phase will only run between -B/2 and B/2, rather
than between -B and B. Drill this into your mind. If you see the phase only
extending to ±1.5708, you have forgotten to correct the ambiguity in the
arctangent calculation.

Nuisance 4: Phase of very small magnitudes
Imagine the following scenario. You are grinding away at some DSP task, and
suddenly notice that part of the phase doesn't look right. It might be noisy,
jumping all over, or just plain wrong. After spending the next hour looking
through hundreds of lines of computer code, you find the answer. The
corresponding values in the magnitude are so small that they are buried in
round-off noise. If the magnitude is negligibly small, the phase doesn't have
any meaning, and can assume unusual values. An example of this is shown in
Fig. 8-11. It is usually obvious when an amplitude signal is lost in noise; the
values are so small that you are forced to suspect that the values are
meaningless. The phase is different. When a polar signal is contaminated
with noise, the values in the phase are random numbers between -B and B.
Unfortunately, this often looks like a real signal, rather than the nonsense it
really is.

Nuisance 5: 2BB ambiguity of the phase
Look again at Fig. 8-10d, and notice the several discontinuities in the data.
Every time a point looks as if it is going to dip below -3.14592, it snaps
back to 3.141592. This is a result of the periodic nature of sinusoids. For

Chapter 8- The Discrete Fourier Transform 167

FIGURE 8-12
Example of phase unwrapping. The top curve
shows a typical phase signal obtained from a
rectangular-to-polar conversion routine. Each
value in the signal must be between -B and B
(i.e., -3.14159 and 3.14159). As shown in the
lower curve, the phase can be unwrapped by
adding or subtracting integer multiplies of 2B
from each sample, where the integer is chosen
to minimize the discontinuities between points.

Frequency
0 0.1 0.2 0.3 0.4 0.5

-40

-30

-20

-10

0

10

wrapped

unwrapped

Ph
as

e
(r

ad
ia

ns
)

100 ' PHASE UNWRAPPING
110 '
120 DIM PHASE[256] 'PHASE[] holds the original phase
130 DIM UWPHASE[256] 'UWPHASE[] holds the unwrapped phase
140 '
150 PI = 3.14159265
160 '
170 GOSUB XXXX 'Mythical subroutine to load data into PHASE[]
180 '
190 UWPHASE[0] = 0 'The first point of all phase signals is zero
200 '
210 ' 'Go through the unwrapping algorithm
220 FOR K% = 1 TO 256
230 C% = CINT((UWPHASE[K%-1] - PHASE[K%]) / (2 * PI))
240 UWPHASE[K%] = PHASE[K%] + C%*2*PI
250 NEXT K%
260 '
270 END

 TABLE 8-4

example, a phase shift of is exactly the same as a phase shift of θ θ π+ 2 , θ π+ 4 ,
 etc. Any sinusoid is unchanged when you add an integer multiple ofθ π+ 6 ,

2B to the phase. The apparent discontinuities in the signal are a result of the
computer algorithm picking its favorite choice from an infinite number of
equivalent possibilities. The smallest possible value is always chosen, keeping
the phase between -B and B.

It is often easier to understand the phase if it does not have these
discontinuities, even if it means that the phase extends above B, or below -B.
This is called unwrapping the phase, and an example is shown in Fig. 8-12.
As shown by the program in Table 8-4, a multiple of 2B is added or subtracted
from each value of the phase. The exact value is determined by an algorithm
that minimizes the difference between adjacent samples.

Nuisance 6: The magnitude is always positive (BB ambiguity of the phase)
Figure 8-13 shows a frequency domain signal in rectangular and polar form.
The real part is smooth and quite easy to understand, while the imaginary
part is entirely zero. In comparison, the polar signals contain abrupt

The Scientist and Engineer's Guide to Digital Signal Processing168

Frequency
0 0.1 0.2 0.3 0.4 0.5

-1

0

1

2

3

a. Re X[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

-1

0

1

2

3

c. Mag X[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

-5

-4

-3

-2

-1

0

1

2

3

4

5

d. Phase X[]

PolarRectangular

FIGURE 8-13
Example signals in rectangular and polar form. Since the magnitude must always be positive (by definition),
the magnitude and phase may contain abrupt discontinuities and sharp corners. Figure (d) also shows
another nuisance: random noise can cause the phase to rapidly oscillate between B or -B.

Frequency
0 0.1 0.2 0.3 0.4 0.5

-3

-2

-1

0

1

2

3

b. Im X[]

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

Ph
as

e
(r

ad
ia

ns
)

discontinuities and sharp corners. This is because the magnitude must always
be positive, by definition. Whenever the real part dips below zero, the
magnitude remains positive by changing the phase by B (or -B, which is the
same thing). While this is not a problem for the mathematics, the irregular
curves can be difficult to interpret.

One solution is to allow the magnitude to have negative values. In the example
of Fig. 8-13, this would make the magnitude appear the same as the real part,
while the phase would be entirely zero. There is nothing wrong with this if it
helps your understanding. Just be careful not to call a signal with negative
values the "magnitude" since this violates its formal definition. In this book we
use the weasel words: unwrapped magnitude to indicate a "magnitude" that is
allowed to have negative values.

Nuisance 7: Spikes between BB and -BB
Since B and -B represent the same phase shift, round-off noise can cause
adjacent points in the phase to rapidly switch between the two values. As
shown in Fig. 8-13d, this can produce sharp breaks and spikes in an otherwise
smooth curve. Don't be fooled, the phase isn't really this discontinuous.

169

CHAPTER

9 Applications of the DFT

The Discrete Fourier Transform (DFT) is one of the most important tools in Digital Signal
Processing. This chapter discusses three common ways it is used. First, the DFT can calculate
a signal's frequency spectrum. This is a direct examination of information encoded in the
frequency, phase, and amplitude of the component sinusoids. For example, human speech and
hearing use signals with this type of encoding. Second, the DFT can find a system's frequency
response from the system's impulse response, and vice versa. This allows systems to be analyzed
in the frequency domain, just as convolution allows systems to be analyzed in the time domain.
Third, the DFT can be used as an intermediate step in more elaborate signal processing
techniques. The classic example of this is FFT convolution, an algorithm for convolving signals
that is hundreds of times faster than conventional methods.

Spectral Analysis of Signals
It is very common for information to be encoded in the sinusoids that form
a signal. This is true of naturally occurring signals, as well as those that
have been created by humans. Many things oscillate in our universe. For
example, speech is a result of vibration of the human vocal cords; stars
and planets change their brightness as they rotate on their axes and revolve
around each other; ship's propellers generate periodic displacement of the
water, and so on. The shape of the time domain waveform is not important
in these signals; the key information is in the frequency, phase and
amplitude of the component sinusoids. The DFT is used to extract this
information.

An example will show how this works. Suppose we want to investigate the
sounds that travel through the ocean. To begin, a microphone is placed in the
water and the resulting electronic signal amplified to a reasonable level, say a
few volts. An analog low-pass filter is then used to remove all frequencies
above 80 hertz, so that the signal can be digitized at 160 samples per second.
After acquiring and storing several thousand samples, what next?

The Scientist and Engineer's Guide to Digital Signal Processing170

The first thing is to simply look at the data. Figure 9-1a shows 256 samples
from our imaginary experiment. All that can be seen is a noisy waveform that
conveys little information to the human eye. For reasons explained shortly, the
next step is to multiply this signal by a smooth curve called a Hamming
window, shown in (b). (Chapter 16 provides the equations for the Hamming
and other windows; see Eqs. 16-1 and 16-2, and Fig. 16-2a). This results in
a 256 point signal where the samples near the ends have been reduced in
amplitude, as shown in (c).

Taking the DFT, and converting to polar notation, results in the 129 point
frequency spectrum in (d). Unfortunately, this also looks like a noisy mess.
This is because there is not enough information in the original 256 points to
obtain a well behaved curve. Using a longer DFT does nothing to help this
problem. For example, if a 2048 point DFT is used, the frequency spectrum
becomes 1025 samples long. Even though the original 2048 points contain
more information, the greater number of samples in the spectrum dilutes the
information by the same factor. Longer DFTs provide better frequency
resolution, but the same noise level.

The answer is to use more of the original signal in a way that doesn't
increase the number of points in the frequency spectrum. This can be done
by breaking the input signal into many 256 point segments. Each of these
segments is multiplied by the Hamming window, run through a 256 point
DFT, and converted to polar notation. The resulting frequency spectra are
then averaged to form a single 129 point frequency spectrum. Figure (e)
shows an example of averaging 100 of the frequency spectra typified by (d).
The improvement is obvious; the noise has been reduced to a level that
allows interesting features of the signal to be observed. Only the
magnitude of the frequency domain is averaged in this manner; the phase
is usually discarded because it doesn't contain useful information. The
random noise reduces in proportion to the square-root of the number of
segments. While 100 segments is typical, some applications might average
millions of segments to bring out weak features.

There is also a second method for reducing spectral noise. Start by taking a
very long DFT, say 16,384 points. The resulting frequency spectrum is high
resolution (8193 samples), but very noisy. A low-pass digital filter is then
used to smooth the spectrum, reducing the noise at the expense of the
resolution. For example, the simplest digital filter might average 64 adjacent
samples in the original spectrum to produce each sample in the filtered
spectrum. Going through the calculations, this provides about the same noise
and resolution as the first method, where the 16,384 points would be broken
into 64 segments of 256 points each.

Which method should you use? The first method is easier, because the
digital filter isn't needed. The second method has the potential of better
performance, because the digital filter can be tailored to optimize the trade-
off between noise and resolution. However, this improved performance is
seldom worth the trouble. This is because both noise and resolution can
be improved by using more data from the input signal. For example,

Chapter 9- Applications of the DFT 171

Sample number
0 32 64 96 128 160 192 224 256

-0.5

0.0

0.5

1.0

1.5

255

b. Hamming window

Sample number
0 32 64 96 128 160 192 224 256

-1.0

-0.5

0.0

0.5

1.0

255

c. Windowed signal

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

5

6

7

8

9

10

d. Single spectrum

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

5

6

7

8

9

10

e. Averaged spectrumFIGURE 9-1
An example of spectral analysis. Figure (a) shows
256 samples taken from a (simulated) undersea
microphone at a rate of 160 samples per second.
This signal is multiplied by the Hamming window
shown in (b), resulting in the windowed signal in
(c). The frequency spectrum of the windowed
signal is found using the DFT, and is displayed in
(d) (magnitude only). Averaging 100 of these
spectra reduces the random noise, resulting in the
averaged frequency spectrum shown in (e).

Sample number
0 32 64 96 128 160 192 224 256

-1.0

-0.5

0.0

0.5

1.0

255

a. Measured signal

DFT

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Time Domain Frequency Domain

The Scientist and Engineer's Guide to Digital Signal Processing172

imagine breaking the acquired data into 10,000 segments of 16,384 samples
each. This resulting frequency spectrum is high resolution (8193 points) and
low noise (10,000 averages). Problem solved! For this reason, we will only
look at the averaged segment method in this discussion.

Figure 9-2 shows an example spectrum from our undersea microphone,
illustrating the features that commonly appear in the frequency spectra of
acquired signals. Ignore the sharp peaks for a moment. Between 10 and 70
hertz, the signal consists of a relatively flat region. This is called white noise
because it contains an equal amount of all frequencies, the same as white light.
It results from the noise on the time domain waveform being uncorrelated from
sample-to-sample. That is, knowing the noise value present on any one sample
provides no information on the noise value present on any other sample. For
example, the random motion of electrons in electronic circuits produces white
noise. As a more familiar example, the sound of the water spray hitting the
shower floor is white noise. The white noise shown in Fig. 9-2 could be
originating from any of several sources, including the analog electronics, or the
ocean itself.

Above 70 hertz, the white noise rapidly decreases in amplitude. This is a result
of the roll-off of the antialias filter. An ideal filter would pass all frequencies
below 80 hertz, and block all frequencies above. In practice, a perfectly sharp
cutoff isn't possible, and you should expect to see this gradual drop. If you
don't, suspect that an aliasing problem is present.

Below about 10 hertz, the noise rapidly increases due to a curiosity called 1/f
noise (one-over-f noise). 1/f noise is a mystery. It has been measured in very
diverse systems, such as traffic density on freeways and electronic noise in
transistors. It probably could be measured in all systems, if you look low
enough in frequency. In spite of its wide occurrence, a general theory and
understanding of 1/f noise has eluded researchers. The cause of this noise can
be identified in some specific systems; however, this doesn't answer the
question of why 1/f noise is everywhere. For common analog electronics and
most physical systems, the transition between white noise and 1/f noise occurs
between about 1 and 100 hertz.

Now we come to the sharp peaks in Fig. 9-2. The easiest to explain is at 60
hertz, a result of electromagnetic interference from commercial electrical
power. Also expect to see smaller peaks at multiples of this frequency (120,
180, 240 hertz, etc.) since the power line waveform is not a perfect sinusoid.
It is also common to find interfering peaks between 25-40 kHz, a favorite for
designers of switching power supplies. Nearby radio and television stations
produce interfering peaks in the megahertz range. Low frequency peaks can be
caused by components in the system vibrating when shaken. This is called
microphonics, and typically creates peaks at 10 to 100 hertz.

Now we come to the actual signals. There is a strong peak at 13 hertz, with
weaker peaks at 26 and 39 hertz. As discussed in the next chapter, this is the
frequency spectrum of a nonsinusoidal periodic waveform. The peak at 13
hertz is called the fundamental frequency, while the peaks at 26 and 39

Chapter 9- Applications of the DFT 173

Frequency (hertz)
0 10 20 30 40 50 60 70 80

0

1

2

3

4

5

6

7

8

9

10

1/f noise

13 Hz.

26 Hz.
39 Hz. 60 Hz.

white noise antialias filter roll-off

FIGURE 9-2
Example frequency spectrum. Three types of
features appear in the spectra of acquired
signals: (1) random noise, such as white noise
and 1/f noise, (2) interfering signals from power
lines, switching power supplies, radio and TV
stations, microphonics, etc., and (3) real signals,
usually appearing as a fundamental plus
harmonics. This example spectrum (magnitude
only) shows several of these features.

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

20

40

60

80

100

a. N = 128

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

80

160

240

320

b. N = 512

FIGURE 9-3
Frequency spectrum resolution. The longer the DFT, the better the ability to separate closely spaced features. In
these example magnitudes, a 128 point DFT cannot resolve the two peaks, while a 512 point DFT can.

A
m

pl
itu

de

A
m

pl
itu

de

hertz are referred to as the second and third harmonic respectively. You
would also expect to find peaks at other multiples of 13 hertz, such as 52,
65, 78 hertz, etc. You don't see these in Fig. 9-2 because they are buried
in the white noise. This 13 hertz signal might be generated, for example,
by a submarines's three bladed propeller turning at 4.33 revolutions per
second. This is the basis of passive sonar, identifying undersea sounds by
their frequency and harmonic content.

Suppose there are peaks very close together, such as shown in Fig. 9-3. There
are two factors that limit the frequency resolution that can be obtained, that is,
how close the peaks can be without merging into a single entity. The first
factor is the length of the DFT. The frequency spectrum produced by an N
point DFT consists of samples equally spaced between zero and one-N/2%1
half of the sampling frequency. To separate two closely spaced frequencies,
the sample spacing must be smaller than the distance between the two peaks.
For example, a 512 point DFT is sufficient to separate the peaks in Fig. 9-3,
while a 128 point DFT is not.

The Scientist and Engineer's Guide to Digital Signal Processing174

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

40

80

120

160

200

a. No window

on basis
function between

basis functions

tails

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

20

40

60

80

100

on basis
function between

basis functions

b. With Hamming window

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 9-4
Example of using a window in spectral analysis. Figure (a) shows the frequency spectrum (magnitude only) of a signal
consisting of two sine waves. One sine wave has a frequency exactly equal to a basis function, allowing it to be
represented by a single sample. The other sine wave has a frequency between two of the basis functions, resulting in
tails on the peak. Figure (b) shows the frequency spectrum of the same signal, but with a Hamming window applied
before taking the DFT. The window makes the peaks look the same and reduces the tails, but broadens the peaks.

The second factor limiting resolution is more subtle. Imagine a signal
created by adding two sine waves with only a slight difference in their
frequencies. Over a short segment of this signal, say a few periods, the
waveform will look like a single sine wave. The closer the frequencies, the
longer the segment must be to conclude that more than one frequency is
present. In other words, the length of the signal limits the frequency
resolution. This is distinct from the first factor, because the length of the
input signal does not have to be the same as the length of the DFT. For
example, a 256 point signal could be padded with zeros to make it 2048
points long. Taking a 2048 point DFT produces a frequency spectrum with
1025 samples. The added zeros don't change the shape of the spectrum,
they only provide more samples in the frequency domain. In spite of this
very close sampling, the ability to separate closely spaced peaks would be
only slightly better than using a 256 point DFT. When the DFT is the same
length as the input signal, the resolution is limited about equally by these
two factors. We will come back to this issue shortly.

Next question: What happens if the input signal contains a sinusoid with a
frequency between two of the basis functions? Figure 9-4a shows the answer.
This is the frequency spectrum of a signal composed of two sine waves, one
having a frequency matching a basis function, and the other with a frequency
between two of the basis functions. As you should expect, the first sine wave
is represented as a single point. The other peak is more difficult to understand.
Since it cannot be represented by a single sample, it becomes a peak with tails
that extend a significant distance away.

The solution? Multiply the signal by a Hamming window before taking the
DFT, as was previously discussed. Figure (b) shows that the spectrum is
changed in three ways by using the window. First, the two peaks are made
to look more alike. This is good. Second, the tails are greatly reduced.

Chapter 9- Applications of the DFT 175

This is also good. Third, the window reduces the resolution in the spectrum by
making the peaks wider. This is bad. In DSP jargon, windows provide a trade-
off between resolution (the width of the peak) and spectral leakage (the
amplitude of the tails).

To explore the theoretical aspects of this in more detail, imagine an infinitely
long discrete sine wave at a frequency of 0.1 the sampling rate. The frequency
spectrum of this signal is an infinitesimally narrow peak, with all other
frequencies being zero. Of course, neither this signal nor its frequency
spectrum can be brought into a digital computer, because of their infinite and
infinitesimal nature. To get around this, we change the signal in two ways,
both of which distort the true frequency spectrum.

First, we truncate the information in the signal, by multiplying it by a window.
For example, a 256 point rectangular window would allow 256 points to retain
their correct value, while all the other samples in the infinitely long signal
would be set to a value of zero. Likewise, the Hamming window would shape
the retained samples, besides setting all points outside the window to zero. The
signal is still infinitely long, but only a finite number of the samples have a
nonzero value.

How does this windowing affect the frequency domain? As discussed in
Chapter 10, when two time domain signals are multiplied, the corresponding
frequency domains are convolved. Since the original spectrum is an
infinitesimally narrow peak (i.e., a delta function), the spectrum of the
windowed signal is the spectrum of the window shifted to the location of the
peak. Figure 9-5 shows how the spectral peak would appear using four
different window options (If you need a refresher on dB, look ahead to Chapter
14). Figure 9-5a results from a rectangular window. Figures (b) and (c)
result from using two popular windows, the Hamming and the Blackman (as
previously mentioned, see Eqs. 16-1 and 16-2, and Fig. 16-2a for information
on these windows).

As shown in Fig. 9-5, all these windows have degraded the original spectrum
by broadening the peak and adding tails composed of numerous side lobes.
This is an unavoidable result of using only a portion of the original time
domain signal. Here we can see the tradeoff between the three windows. The
Blackman has the widest main lobe (bad), but the lowest amplitude tails
(good). The rectangular window has the narrowest main lobe (good) but the
largest tails (bad). The Hamming window sits between these two.

Notice in Fig. 9-5 that the frequency spectra are continuous curves, not discrete
samples. After windowing, the time domain signal is still infinitely long, even
though most of the samples are zero. This means that the frequency spectrum
consists of samples between 0 and 0.5, the same as a continuous line.4 /2%1

This brings in the second way we need to modify the time domain signal to
allow it to be represented in a computer: select N points from the signal.
These N points must contain all the nonzero points identified by the window,
but may also include any number of the zeros. This has the effect

The Scientist and Engineer's Guide to Digital Signal Processing176

Frequency
0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

-120

-100

-80

-60

-40

-20

0

20
a. Rectangular window

0.15

Frequency
0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

-120

-100

-80

-60

-40

-20

0

20
d. Flat-top window

0.15
Frequency

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
-120

-100

-80

-60

-40

-20

0

20

main lobe

tails

c. Blackman window

0.15

Frequency
0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

-120

-100

-80

-60

-40

-20

0

20
b. Hamming window

0.15

A
m

pl
itu

de
 (d

B
)

A
m

pl
itu

de
 (d

B
)

A
m

pl
itu

de
 (d

B
)

A
m

pl
itu

de
 (d

B
)

FIGURE 9-5
Detailed view of a spectral peak using various windows. Each peak in the frequency spectrum is a central lobe
surrounded by tails formed from side lobes. By changing the window shape, the amplitude of the side lobes can be
reduced at the expense of making the main lobe wider. The rectangular window, (a), has the narrowest main lobe but
the largest amplitude side lobes. The Hamming window, (b), and the Blackman window, (c), have lower amplitude side
lobes at the expense of a wider main lobe. The flat-top window, (d), is used when the amplitude of a peak must be
accurately measured. These curves are for 255 point windows; longer windows produce proportionately narrower peaks.

of sampling the frequency spectrum's continuous curve. For example, if N is
chosen to be 1024, the spectrum's continuous curve will be sampled 513 times
between 0 and 0.5. If N is chosen to be much larger than the window length, the
samples in the frequency domain will be close enough that the peaks and valleys
of the continuous curve will be preserved in the new spectrum. If N is made the
same as the window length, the fewer number of samples in the spectrum results
in the regular pattern of peaks and valleys turning into irregular tails, depending
on where the samples happen to fall. This explains why the two peaks in Fig. 9-
4a do not look alike. Each peak in Fig 9-4a is a sampling of the underlying curve
in Fig. 9-5a. The presence or absence of the tails depends on where the samples
are taken in relation to the peaks and valleys. If the sine wave exactly matches
a basis function, the samples occur exactly at the valleys, eliminating the tails.
If the sine wave is between two basis functions, the samples occur somewhere
along the peaks and valleys, resulting in various patterns of tails.

Chapter 9- Applications of the DFT 177

This leads us to the flat-top window, shown in Fig. 9-5d. In some applications
the amplitude of a spectral peak must be measured very accurately. Since the
DFT’s frequency spectrum is formed from samples, there is nothing to
guarantee that a sample will occur exactly at the top of a peak. More than
likely, the nearest sample will be slightly off-center, giving a value lower than
the true amplitude. The solution is to use a window that produces a spectral
peak with a flat top, insuring that one or more of the samples will always have
the correct peak value. As shown in Fig. 9-5d, the penalty for this is a very
broad main lobe, resulting in poor frequency resolution.

As it turns out, the shape we want for a flat-top window is exactly the same
shape as the filter kernel of a low-pass filter. We will discuss the theoretical
reasons for this in later chapters; for now, here is a cookbook description of
how the technique is used. Chapter 16 discusses a low-pass filter called the
windowed-sinc. Equation 16-4 describes how to generate the filter kernel
(which we want to use as a window), and Fig. 16-4a illustrates the typical
shape of the curve. To use this equation, you will need to know the value of
two parameters: M and . These are found from the relations: , andfc M ' N&2

, where N is the length of the DFT being used, and s is the number offc ' s /N
samples you want on the flat portion of the peak (usually between 3 and 5).
Table 16-1 shows a program for calculating the filter kernel (our window),
including two subtle features: the normalization constant, K, and how to avoid
a divide-by-zero error on the center sample. When using this method, remember
that a DC value of one in the time domain will produce a peak of amplitude
one in the frequency domain. However, a sinusoid of amplitude one in the time
domain will only produce a spectral peak of amplitude one-half. (This is
discussed in the last chapter: Synthesis, Calculating the Inverse DFT).

Frequency Response of Systems
Systems are analyzed in the time domain by using convolution. A similar
analysis can be done in the frequency domain. Using the Fourier transform,
every input signal can be represented as a group of cosine waves, each with a
specified amplitude and phase shift. Likewise, the DFT can be used to
represent every output signal in a similar form. This means that any linear
system can be completely described by how it changes the amplitude and phase
of cosine waves passing through it. This information is called the system's
frequency response. Since both the impulse response and the frequency
response contain complete information about the system, there must be a one-
to-one correspondence between the two. Given one, you can calculate the
other. The relationship between the impulse response and the frequency
response is one of the foundations of signal processing: A system's frequency
response is the Fourier Transform of its impulse response. Figure 9-6
illustrates these relationships.

Keeping with standard DSP notation, impulse responses use lower case
variables, while the corresponding frequency responses are upper case. Since h[]
is the common symbol for the impulse response, is used for the frequencyH[]
response. Systems are described in the time domain by convolution, that is:

The Scientist and Engineer's Guide to Digital Signal Processing178

h[n]x[n] y[n]

H[f]X[f] Y[f]

TIME
DOMAIN

FREQUENCY
DOMAIN

FIGURE 9-6
Comparing system operation in the time and frequency domains. In the time domain, an input signal is
convolved with an impulse response, resulting in the output signal, that is, . In the frequencyx[n] t h[n] ' y[n]
domain, an input spectrum is multiplied by a frequency response, resulting in the output spectrum, that is,

. The DFT and the Inverse DFT relate the signals in the two domain.X[f] × H[f] ' Y[f]

D
FT

ID
FT

ID
FT

D
FT

ID
FT

D
FT

. In the frequency domain, the input spectrum is multipliedx[n] t h[n] ' y[n]
by the frequency response, resulting in the output spectrum. As an equation:

. That is, convolution in the time domain corresponds toX [f] ×H[f] ' Y[f]
multiplication in the frequency domain.

Figure 9-7 shows an example of using the DFT to convert a system's impulse
response into its frequency response. Figure (a) is the impulse response of the
system. Looking at this curve isn't going to give you the slightest idea what
the system does. Taking a 64 point DFT of this impulse response produces the
frequency response of the system, shown in (b). Now the function of this
system becomes obvious, it passes frequencies between 0.2 and 0.3, and rejects
all others. It is a band-pass filter. The phase of the frequency response could
also be examined; however, it is more difficult to interpret and less interesting.
It will be discussed in upcoming chapters.

Figure (b) is very jagged due to the low number of samples defining the curve.
This situation can be improved by padding the impulse response with zeros
before taking the DFT. For example, adding zeros to make the impulse
response 512 samples long, as shown in (c), results in the higher resolution
frequency response shown in (d).

How much resolution can you obtain in the frequency response? The answer
is: infinitely high, if you are willing to pad the impulse response with an
infinite number of zeros. In other words, there is nothing limiting the
frequency resolution except the length of the DFT. This leads to a very
important concept. Even though the impulse response is a discrete signal, the
corresponding frequency response is continuous. An N point DFT of the
impulse response provides samples of this continuous curve. If youN/2% 1
make the DFT longer, the resolution improves, and you obtain a better idea of

Chapter 9- Applications of the DFT 179

Sample number
0 8 16 24 32 40 48 56 64

-0.4

-0.2

0

0.2

0.4

a. Impulse response

63

a. Impulse response

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

a. Impulse responseb. Frequency response

Sample number
0 64 128 192 256 320 384 448 512

-0.4

-0.2

0

0.2

0.4

511

a. Impulse responsec. Impulse response padded with zeros

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

d. Frequency response (high resolution)

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

Frequency DomainTime Domain

FIGURE 9-7
Finding the frequency response from the impulse response. By using the DFT, a system's impulse response,
(a), can be transformed into the system's frequency response, (b). By padding the impulse response with zeros
(c), higher resolution can be obtained in the frequency response, (d). Only the magnitude of the frequency
response is shown in this example; discussion of the phase is postponed until the next chapter.

what the continuous curve looks like. Remember what the frequency response
represents: amplitude and phase changes experienced by cosine waves as they
pass through the system. Since the input signal can contain any frequency
between 0 and 0.5, the system's frequency response must be a continuous curve
over this range.

This can be better understood by bringing in another member of the Fourier
transform family, the Discrete Time Fourier Transform (DTFT) .
Consider an N sample signal being run through an N point DFT, producing
an sample frequency domain. Remember from the last chapter thatN/2% 1
the DFT considers the time domain signal to be infinitely long and periodic.
That is, the N points are repeated over and over from negative to positive
infinity. Now consider what happens when we start to pad the time domain
signal with an ever increasing number of zeros, to obtain a finer and finer
sampling in the frequency domain. Adding zeros makes the period of the
time domain longer, while simultaneously making the frequency domain
samples closer together.

The Scientist and Engineer's Guide to Digital Signal Processing180

Now we will take this to the extreme, by adding an infinite number of zeros to
the time domain signal. This produces a different situation in two respects.
First, the time domain signal now has an infinitely long period. In other words,
it has turned into an aperiodic signal. Second, the frequency domain has
achieved an infinitesimally small spacing between samples. That is, it has
become a continuous signal. This is the DTFT, the procedure that changes a
discrete aperiodic signal in the time domain into a frequency domain that is a
continuous curve. In mathematical terms, a system's frequency response is
found by taking the DTFT of its impulse response. Since this cannot be done
in a computer, the DFT is used to calculate a sampling of the true frequency
response. This is the difference between what you do in a computer (the DFT)
and what you do with mathematical equations (the DTFT).

Convolution via the Frequency Domain
Suppose that you despise convolution. What are you going to do if given an
input signal and impulse response, and need to find the resulting output signal?
Figure 9-8 provides an answer: transform the two signals into the frequency
domain, multiply them, and then transform the result back into the time domain.
This replaces one convolution with two DFTs, a multiplication, and an Inverse
DFT. Even though the intermediate steps are very different, the output is
identical to the standard convolution algorithm.

Does anyone hate convolution enough to go to this trouble? The answer is yes.
Convolution is avoided for two reasons. First, convolution is mathematically
difficult to deal with. For instance, suppose you are given a system's impulse
response, and its output signal. How do you calculate what the input signal is?
This is called deconvolution, and is virtually impossible to understand in the
time domain. However, deconvolution can be carried out in the frequency
domain as a simple division, the inverse operation of multiplication. The
frequency domain becomes attractive whenever the complexity of the Fourier
Transform is less than the complexity of the convolution. This isn't a matter
of which you like better; it is a matter of which you hate less.

The second reason for avoiding convolution is computation speed. For
example, suppose you design a digital filter with a kernel (impulse response)
containing 512 samples. Using a 200 MHz personal computer with floating
point numbers, each sample in the output signal requires about one millisecond
to calculate, using the standard convolution algorithm. In other words, the
throughput of the system is only about 1,000 samples per second. This is 40
times too slow for high-fidelity audio, and 10,000 times too slow for television
quality video!

The standard convolution algorithm is slow because of the large number of
multiplications and additions that must be calculated. Unfortunately, simply
bringing the problem into the frequency domain via the DFT doesn't help at all.
Just as many calculations are required to calculate the DFTs, as are required
to directly calculate the convolution. A breakthrough was made in the problem
in the early 1960s when the Fast Fourier Transform (FFT) was developed.

Chapter 9- Applications of the DFT 181

Sample number
0 128 256 384 512

-1

0

1

2

511

d. h[n]

Sample number
0 128 256 384 512

-2

-1

0

1

2

511

a. x[n]

Frequency
0 64 128 192 256

-60

-40

-20

0

20

40

60

b. Re X[f]

Frequency
0 64 128 192 256

-60

-40

-20

0

20

40

60

c. Im X[f]

Sample number
0 128 256 384 512

-30

-20

-10

0

10

20

30

511

g. y[n]

Frequency
0 64 128 192 256

-2000

-1000

0

1000

2000

h. Re Y[f]

Frequency
0 64 128 192 256

-2000

-1000

0

1000

2000

i. Im Y[f]

Frequency
0 64 128 192 256

-60

-40

-20

0

20

40

60

e. Re H[f]

Frequency
0 64 128 192 256

-60

-40

-20

0

20

40

60

f. Im H[f]

=

TIME

FREQUENCY

FIGURE 9-8
Frequency domain convolution. In the time domain, is convolved with resulting in , as is shown in Figs.x[n] h[n] y[n]
(a), (d), and (g). This same procedure to be accomplished in the frequency domain. The DFT is used to find the
frequency spectrum of the input signal, (b) & (c), and the system's frequency response, (e) & (f). Multiplying these two
frequency domain signals results in the frequency spectrum of the output signal, (h) & (i). The Inverse DFT is then used
to find the output signal, (g).

tt =

x
ID

FT

D
FT

D
FT

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

The FFT is a clever algorithm for rapidly calculating the DFT. Using the FFT,
convolution by multiplication in the frequency domain can be hundreds of times
faster than conventional convolution. Problems that take hours of calculation
time are reduced to only minutes. This is why people get excited about the FFT,
and processing signals in the frequency domain. The FFT will be presented in

The Scientist and Engineer's Guide to Digital Signal Processing182

EQUATION 9-1
Multiplication of frequency
domain signals in rectangular
form: .Y[f] ' X[f] × H [f]

ReY [f] ' ReX [f] ReH [f] & ImX [f] ImH [f]

ImY [f] ' ImX [f] ReH [f] % ReX [f] ImH [f]

EQUATION 9-2
Division of frequency domain
signals in rectangular form,
where: .H [f] ' Y[f] / X[f]

ReH [f] '
ReY [f] ReX [f] % ImY [f] ImX [f]

ReX [f]2 % ImX [f]2

ImH [f] '
ImY [f] ReX [f] & ReY [f] ImX [f]

ReX [f]2 % ImX [f]2

Chapter 12, and the method of FFT convolution in Chapter 18. For now, focus
on how signals are convolved by frequency domain multiplication.

To start, we need to define how to multiply one frequency domain signal by
another, i.e., what it means to write: . In polar form, theX [f] ×H[f] ' Y[f]
magnitudes are multiplied: , and the phasesMag Y[f] ' MagX [f] ×MagH [f]
are added: . To understand this, imaginePhaseY[f] ' PhaseX [f] % PhaseH[f]
a cosine wave entering a system with some amplitude and phase. Likewise, the
output signal is also a cosine wave with some amplitude and phase. The polar
form of the frequency response directly describes how the two amplitudes are
related and how the two phases are related.

When frequency domain multiplication is carried out in rectangular form there
are cross terms between the real and imaginary parts. For example, a sine
wave entering the system can produce both cosine and sine waves in the output.
To multiply frequency domain signals in rectangular notation:

Focus on understanding multiplication using polar notation, and the idea of
cosine waves passing through the system. Then simply accept that these more
elaborate equations result when the same operations are carried out in
rectangular form. For instance, let's look at the division of one frequency
domain signal by another. In polar form, the division of frequency domain
signals is achieved by the inverse operations we used for multiplication. To
calculate: , divide the magnitudes and subtract the phases,H [f] ' Y[f] / X [f]
i.e., , .Mag H[f] ' MagY[f] / MagX [f] PhaseH[f] ' PhaseY[f] & PhaseX[f]
In rectangular form this becomes:

Now back to frequency domain convolution. You may have noticed that we
cheated slightly in Fig. 9-8. Remember, the convolution of an N point signal
with an M point impulse response results in an point output signal.N%M&1
We cheated by making the last part of the input signal all zeros to allow this
expansion to occur. Specifically, (a) contains 453 nonzero samples, and (b)
contains 60 nonzero samples. This means the convolution of the two, shown
in (c), can fit comfortably in the 512 points provided.

Chapter 9- Applications of the DFT 183

Sample number
0 64 128 192 256

-2

-1

0

1

2

255

a. Input signal

Sample number
0 64 128 192 256

-2

-1

0

1

2

255

b. Impulse response

Sample number
0 64 128 192 256

-20

-15

-10

-5

0

5

10

15

20

c. Convolution of (a) and (b)

305255

Sample number
0 256 512 768

-20

-15

-10

-5

0

5

10

15

20

767

d. Overlap of adjecent periods

Sample number
0 64 128 192 256

-20

-15

-10

-5

0

5

10

15

20

overlap

255

e. Circular convolution

A
m

pl
itu

de

FIGURE 9-9
Circular convolution. A 256 sample signal, (a), convolved with a 51 sample impulse response, (b), results in
a 306 sample signal, (c). If this convolution is performed in the frequency domain using 256 point DFTs, the
306 points in the correct convolution cannot fit into the 256 samples provided. As shown in (d), samples 256
through 305 of the output signal are pushed into the next period to the right, where they add to the beginning
of the next period's signal. Figure (e) is a single period of the resulting signal.

tt =

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

Now consider the more general case in Fig. 9-9. The input signal, (a), is 256
points long, while the impulse response, (b), contains 51 nonzero points. This
makes the convolution of the two signals 306 samples long, as shown in (c).
The problem is, if we use frequency domain multiplication to perform the
convolution, there are only 256 samples allowed in the output signal. In other
words, 256 point DFTs are used to move (a) and (b) into the frequency

The Scientist and Engineer's Guide to Digital Signal Processing184

domain. After the multiplication, a 256 point Inverse DFT is used to find the
output signal. How do you squeeze 306 values of the correct signal into the
256 points provided by the frequency domain algorithm? The answer is, you
can't! The 256 points end up being a distorted version of the correct signal.
This process is called circular convolution. It is important because you want
to avoid it.

To understand circular convolution, remember that an N point DFT views the
time domain as being an infinitely long periodic signal, with N samples per
period. Figure (d) shows three periods of how the DFT views the output signal
in this example. Since , each period consists of 256 points: 0-255,N ' 256
256-511, and 512-767. Frequency domain convolution tries to place the 306
point correct output signal, shown in (c), into each of these 256 point periods.
This results in 49 of the samples being pushed into the neighboring period to
the right, where they overlap with the samples that are legitimately there.
These overlapping sections add, resulting in each of the periods appearing as
shown in (e), the circular convolution.

Once the nature of circular convolution is understood, it is quite easy to avoid.
Simply pad each of the signals being convolved with enough zerosto allow the
output signal room to handle the points in the correct convolution.N%M&1
For example, the signals in (a) and (b) could be padded with zeros to make
them 512 points long, allowing the use of 512 point DFTs. After the frequency
domain convolution, the output signal would consist of 306 nonzero samples,
plus 206 samples with a value of zero. Chapter 18 explains this procedure in
detail.

Why is it called circular convolution? Look back at Fig. 9-9d and examine the
center period, samples 256 to 511. Since all of the periods are the same, the
portion of the signal that flows out of this period to the right, is the same that
flows into this period from the left. If you only consider a single period, such
as in (e), it appears that the right side of the signal is somehow connected to
the left side. Imagine a snake biting its own tail; sample 255 is located next
to sample 0, just as sample 100 is located next to sample 101. When a portion
of the signal exits to the right, it magically reappears on the left. In other
words, the N point time domain behaves as if it were circular.

In the last chapter we posed the question: does it really matter if the DFT's
time domain is viewed as being N points, rather than an infinitely long
periodic signal of period N? Circular convolution is an example where it
does matter. If the time domain signal is understood to be periodic, the
distortion encountered in circular convolution can be simply explained as
the signal expanding from one period to the next. In comparison, a rather
bizarre conclusion is reached if only N points of the time domain are
considered. That is, frequency domain convolution acts as if the time
domain is somehow wrapping into a circular ring with sample 0 being
positioned next to sample N-1.

185

CHAPTER

10 Fourier Transform Properties

The time and frequency domains are alternative ways of representing signals. The Fourier
transform is the mathematical relationship between these two representations. If a signal is
modified in one domain, it will also be changed in the other domain, although usually not in the
same way. For example, it was shown in the last chapter that convolving time domain signals
results in their frequency spectra being multiplied. Other mathematical operations, such as
addition, scaling and shifting, also have a matching operation in the opposite domain. These
relationships are called properties of the Fourier Transform, how a mathematical change in one
domain results in a mathematical change in the other domain.

Linearity of the Fourier Transform
The Fourier Transform is linear, that is, it possesses the properties of
homogeneity and additivity. This is true for all four members of the Fourier
transform family (Fourier transform, Fourier Series, DFT, and DTFT).

Figure 10-1 provides an example of how homogeneity is a property of the
Fourier transform. Figure (a) shows an arbitrary time domain signal, with the
corresponding frequency spectrum shown in (b). We will call these two
signals: and , respectively. Homogeneity means that a change inx[] X[]
amplitude in one domain produces an identical change in amplitude in the other
domain. This should make intuitive sense: when the amplitude of a time
domain waveform is changed, the amplitude of the sine and cosine waves
making up that waveform must also change by an equal amount.

In mathematical form, if and are a Fourier Transform pair, then x[] X [] kx[]
and are also a Fourier Transform pair, for any constant k. If thekX[]
frequency domain is represented in rectangular notation, means that bothkX[]
the real part and the imaginary part are multiplied by k. If the frequency
domain is represented in polar notation, means that the magnitude iskX[]
multiplied by k, while the phase remains unchanged.

The Scientist and Engineer's Guide to Digital Signal Processing186

Sample number
0 64 128 192 256

-3

-2

-1

0

1

2

3

255

c. k x[]

Sample number
0 64 128 192 256

-3

-2

-1

0

1

2

3

255

a. x[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

50

b. X[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

50

d. k X[]

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

Frequency DomainTime Domain

FIGURE 10-1
Homogeneity of the Fourier transform. If the amplitude is changed in one domain, it is changed by
the same amount in the other domain. In other words, scaling in one domain corresponds to scaling
in the other domain.

F.T.

F.T.

Additivity of the Fourier transform means that addition in one domain
corresponds to addition in the other domain. An example of this is shown
in Fig. 10-2. In this illustration, (a) and (b) are signals in the time domain
called and , respectively. Adding these signals produces a thirdx1[] x2[]
time domain signal called , shown in (c). Each of these three signalsx3[]
has a frequency spectrum consisting of a real and an imaginary part, shown
in (d) through (i). Since the two time domain signals add to produce the
third time domain signal, the two corresponding spectra add to produce the
third spectrum. Frequency spectra are added in rectangular notation by
adding the real parts to the real parts and the imaginary parts to the
imaginary parts. If: , then: x1[n] % x2[n] ' x3[n] ReX1[f] % ReX2[f] ' ReX3[f]
and . Think of this in terms of cosine and sineImX1[f] % ImX2[f] ' ImX3[f]
waves. All the cosine waves add (the real parts) and all the sine waves add
(the imaginary parts) with no interaction between the two.

Frequency spectra in polar form cannot be directly added; they must be
converted into rectangular notation, added, and then reconverted back to

Chapter 10- Fourier Transform Properties 187

Sample number
0 64 128 192 256

-3

-2

-1

0

1

2

3

255

b. x2[]

Sample number
0 64 128 192 256

-4

-2

0

2

4

255

a. x1[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

-200

-100

0

100

200

e. Re X2[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

-200

-100

0

100

200

h. Im X2[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

-200

-100

0

100

200

f. Re X3[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

-200

-100

0

100

200

i. Im X3[]

Sample number
0 64 128 192 256

-4

-2

0

2

4

255

c. x3[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

-200

-100

0

100

200

d. Re X1[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

-200

-100

0

100

200

g. Im X1[]

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 10-2
Additivity of the Fourier transform. Adding two or more signals in one domain results in the
corresponding signals being added in the other domain. In this illustration, the time domain signals
in (a) and (b) are added to produce the signal in (c). This results in the corresponding real and
imaginary parts of the frequency spectra being added.

Frequency DomainTime Domain

F.T.

F.T.

F.T.

+ ++

= ==

polar form. This can also be understood in terms of how sinusoids behave.
Imagine adding two sinusoids having the same frequency, but with different
amplitudes (and) and phases (and). If the two phases happen toA1 A2 N1 N2
be same (), the amplitudes will add () when the sinusoids areN1 ' N2 A1%A2
added. However, if the two phases happen to be exactly opposite (),N1 ' &N2
the amplitudes will subtract () when the sinusoids are added. The pointA1&A2
is, when sinusoids (or spectra) are in polar form, they cannot be added by
simply adding the magnitudes and phases.

The Scientist and Engineer's Guide to Digital Signal Processing188

In spite of being linear, the Fourier transform is not shift invariant. In other
words, a shift in the time domain does not correspond to a shift in the
frequency domain. This is the topic of the next section.

Characteristics of the Phase
In mathematical form: if & , then a shift in thex[n] : Mag X [f] Phase X [f]
time domain results in: & , (where x[n%s] : Mag X [f] Phase X [f] % 2B sf f
is expressed as a fraction of the sampling rate, running between 0 and 0.5). In
words, a shift of s samples in the time domain leaves the magnitude unchanged,
but adds a linear term to the phase, . Let's look at an example of how2B sf
this works.

Figure 10-3 shows how the phase is affected when the time domain waveform
is shifted to the left or right. The magnitude has not been included in this
illustration because it isn't interesting; it is not changed by the time domain
shift. In Figs. (a) through (d), the waveform is gradually shifted from having
the peak centered on sample 128, to having it centered on sample 0. This
sequence of graphs takes into account that the DFT views the time domain as
circular; when portions of the waveform exit to the right, they reappear on the
left.

The time domain waveform in Fig. 10-3 is symmetrical around a vertical
axis, that is, the left and right sides are mirror images of each other. As
mentioned in Chapter 7, signals with this type of symmetry are called linear
phase, because the phase of their frequency spectrum is a straight line.
Likewise, signals that don't have this left-right symmetry are called
nonlinear phase, and have phases that are something other than a straight
line. Figures (e) through (h) show the phase of the signals in (a) through
(d). As described in Chapter 7, these phase signals are unwrapped,
allowing them to appear without the discontinuities associated with keeping
the value between B and -B.

When the time domain waveform is shifted to the right, the phase remains a
straight line, but experiences a decrease in slope. When the time domain is
shifted to the left, there is an increase in the slope. This is the main property
you need to remember from this section; a shift in the time domain corresponds
to changing the slope of the phase.

Figures (b) and (f) display a unique case where the phase is entirely zero. This
occurs when the time domain signal is symmetrical around sample zero. At first
glance, this symmetry may not be obvious in (b); it may appear that the signal
is symmetrical around sample 256 (i.e., N/2) instead. Remember that the DFT
views the time domain as circular, with sample zero inherently connected to
sample N-1. Any signal that is symmetrical around sample zero will also be
symmetrical around sample N/2, and vice versa. When using members of the
Fourier Transform family that do not view the time domain as periodic (such
as the DTFT), the symmetry must be around sample zero to produces a zero
phase.

Chapter 10- Fourier Transform Properties 189

Sample number
0 64 128 192 256 320 384 448 512

-1

0

1

2

511

a.

Sample number
0 64 128 192 256 320 384 448 512

-1

0

1

2

511

b.

Sample number
0 64 128 192 256 320 384 448 512

-1

0

1

2

511

c.

Frequency
0 0.1 0.2 0.3 0.4 0.5

-900

-600

-300

0

300

600

900

g.

Frequency
0 0.1 0.2 0.3 0.4 0.5

-900

-600

-300

0

300

600

900

h.

2

3

1

Sample number
0 64 128 192 256 320 384 448 512

-1

0

1

2

511

d.

Frequency
0 0.1 0.2 0.3 0.4 0.5

-900

-600

-300

0

300

600

900

e.

Frequency
0 0.1 0.2 0.3 0.4 0.5

-900

-600

-300

0

300

600

900

f.

Ph
as

e
(r

ad
ia

ns
)

Ph
as

e
(r

ad
ia

ns
)

Ph
as

e
(r

ad
ia

ns
)

FIGURE 10-3
Phase changes resulting from a time domain shift.

Time Domain Frequency Domain
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Ph
as

e
(r

ad
ia

ns
)

The Scientist and Engineer's Guide to Digital Signal Processing190

Sample number
0 8 16 24 32

-2

-1

0

1

2

a. A low frequency

1 sample shift
= 1/32 cycle

Sample number
0 8 16 24 32

-2

-1

0

1

2

b. 1/2 of sampling frequency

1 sample shift
= 1/2 cycle

FIGURE 10-4
The relationship between samples and phase. Figures (a) and (b) show low and high frequency sinusoids,
respectively. In (a), a one sample shift is equal to 1/32 of a cycle. In (b), a one sample shift is equal to 1/2 of a
cycle. This is why a shift in the waveform changes the phase more at high frequencies than at low frequencies.

A
m

pl
itu

de

A
m

pl
itu

de

Figures (d) and (h) shows something of a riddle. First imagine that (d) was
formed by shifting the waveform in (c) slightly more to the right. This means
that the phase in (h) would have a slightly more negative slope than in (g).
This phase is shown as line 1. Next, imagine that (d) was formed by starting
with (a) and shifting it to the left. In this case, the phase should have a
slightly more positive slope than (e), as is illustrated by line 2. Lastly, notice
that (d) is symmetrical around sample N/2, and should therefore have a zero
phase, as illustrated by line 3. Which of these three phases is correct? They
all are, depending on how the B and 2B phase ambiguities (discussed in Chapter
8) are arranged. For instance, every sample in line 2 differs from the
corresponding sample in line 1 by an integer multiple of 2B, making them
equal. To relate line 3 to lines 1 and 2, the B ambiguities must also be taken
into account.

To understand why the phase behaves as it does, imagine shifting a waveform
by one sample to the right. This means that all of the sinusoids that compose
the waveform must also be shifted by one sample to the right. Figure 10-4
shows two sinusoids that might be a part of the waveform. In (a), the sine
wave has a very low frequency, and a one sample shift is only a small fraction
of a full cycle. In (b), the sinusoid has a frequency of one-half of the sampling
rate, the highest frequency that can exist in sampled data. A one sample shift
at this frequency is equal to an entire 1/2 cycle, or B radians. That is, when a
shift is expressed in terms of a phase change, it becomes proportional to the
frequency of the sinusoid being shifted.

For example, consider a waveform that is symmetrical around sample zero,
and therefore has a zero phase. Figure 10-5a shows how the phase of this
signal changes when it is shifted left or right. At the highest frequency,
one-half of the sampling rate, the phase increases by B for each one sample
shift to the left, and decreases by B for each one sample shift to the right.
At zero frequency there is no phase shift, and all of the frequencies between
follow in a straight line.

Chapter 10- Fourier Transform Properties 191

Frequency
0 0.1 0.2 0.3 0.4 0.5

-50

0

50

100

150

-14

-7

0

15B

10B

5B

0

-5B

b.

number of samples
shifted in time domain

FIGURE 10-5
Phases resulting from time domain shifting. For each sample that a time domain signal is shifted in the positive
direction (i.e., to the right), the phase at frequency 0.5 will decrease by B radians. For each sample shifted in the
negative direction (i.e., to the left), the phase at frequency 0.5 will increase by B radians. Figure (a) shows this for
a linear phase (a straight line), while (b) is an example using a nonlinear phase.

Frequency
0 0.1 0.2 0.3 0.4 0.5

-30

-20

-10

0

10

20

30

-3
-2
-1

1
2

3

number of samples
shifted in time domain

3B

2B

B

0

-B

-2B

-3B

a.

0

Ph
as

e
(r

ad
ia

ns
)

Ph
as

e
(r

ad
ia

ns
)

All of the examples we have used so far are linear phase. Figure 10-5b shows
that nonlinear phase signals react to shifting in the same way. In this example
the nonlinear phase is a straight line with two rectangular pulses. When the
time domain is shifted, these nonlinear features are simply superimposed on the
changing slope.

What happens in the real and imaginary parts when the time domain
waveform is shifted? Recall that frequency domain signals in rectangular
notation are nearly impossible for humans to understand. The real and
imaginary parts typically look like random oscillations with no apparent
pattern. When the time domain signal is shifted, the wiggly patterns of the
real and imaginary parts become even more oscillatory and difficult to
interpret. Don't waste your time trying to understand these signals, or how
they are changed by time domain shifting.

Figure 10-6 is an interesting demonstration of what information is contained in
the phase, and what information is contained in the magnitude. The waveform
in (a) has two very distinct features: a rising edge at sample number 55, and
a falling edge at sample number 110. Edges are very important when
information is encoded in the shape of a waveform. An edge indicates when
something happens, dividing whatever is on the left from whatever is on the
right. It is time domain encoded information in its purest form. To begin the
demonstration, the DFT is taken of the signal in (a), and the frequency
spectrum converted into polar notation. To find the signal in (b), the phase is
replaced with random numbers between -B and B, and the inverse DFT used to
reconstruct the time domain waveform. In other words, (b) is based only on the
information contained in the magnitude. In a similar manner, (c) is found by
replacing the magnitude with small random numbers before using the inverse
DFT. This makes the reconstruction of (c) based solely on the information
contained in the phase.

The Scientist and Engineer's Guide to Digital Signal Processing192

Sample number
0 64 128 192 256

-2

-1

0

1

2

3

255

a. Original signal

Sample number
0 64 128 192 256

-2

-1

0

1

2

3

255

b. Reconstructed from the magnitude

Sample number
0 64 128 192 256

-2

-1

0

1

2

3

255

c. Reconstructed from the phase

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

FIGURE 10-6
Information contained in the phase. Figure (a)
shows a pulse-like waveform. The signal in (b)
is created by taking the DFT of (a), replacing the
phase with random numbers, and taking the
Inverse DFT. The signal in (c) is found by
taking the DFT of (a), replacing the magnitude
with random numbers, and taking the Inverse
DFT. The location of the edges is retained in
(c), but not in (b). This shows that the phase
contains information on the location of events in
the time domain signal.

The result? The locations of the edges are clearly present in (c), but totally
absent in (b). This is because an edge is formed when many sinusoids rise at
the same location, possible only when their phases are coordinated. In short,
much of the information about the shape of the time domain waveform is
contained in the phase, rather than the magnitude. This can be contrasted with
signals that have their information encoded in the frequency domain, such as
audio signals. The magnitude is most important for these signals, with the
phase playing only a minor role. In later chapters we will see that this type
of understanding provides strategies for designing filters and other methods of
processing signals. Understanding how information is represented in signals
is always the first step in successful DSP.

Why does left-right symmetry correspond to a zero (or linear) phase? Figure
10-7 provides the answer. Such a signal can be decomposed into a left half
and a right half, as shown in (a), (b) and (c). The sample at the center of
symmetry (zero in this case) is divided equally between the left and right
halves, allowing the two sides to be perfect mirror images of each other. The
magnitudes of these two halves will be identical, as shown in (e) and (f), while
the phases will be opposite in sign, as in (h) and (i). Two important concepts
fall out of this. First, every signal that is symmetrical between the left and
right will have a linear phase because the nonlinear phase of the left half
exactly cancels the nonlinear phase of the right half.

Chapter 10- Fourier Transform Properties 193

Sample number
-64 -32 0 32 64

-1

0

1

2

b. x1[]

63

Sample number
-64 -32 0 32 64

-1

0

1

2

a. x[]

63

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

20

e. Mag X1[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

-4

-3

-2

-1

0

1

2

3

4

h. Phase X1[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

20

f. Mag X2[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

-4

-3

-2

-1

0

1

2

3

4

i. Phase X2[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

20

d. Mag X[]

Frequency
0 0.1 0.2 0.3 0.4 0.5

-4

-3

-2

-1

0

1

2

3

4

g. Phase X[]

Sample number
-64 -32 0 32 64

-1

0

1

2

c. x2[]

63

Frequency DomainTime Domain

Decompose

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 10-7
Phase characteristics of left-right symmetry. A signal with left-right symmetry, shown in (a), can be
decomposed into a right half, (b), and a left half, (c). The magnitudes of the two halves are identical, (e) and
(f), while the phases are the negative of each other, (h) and (i).

Second, imagine flipping (b) such that it becomes (c). This left-right flip in the
time domain does nothing to the magnitude, but changes the sign of every point
in the phase. Likewise, changing the sign of the phase flips the time domain
signal left-for-right. If the signals are continuous, the flip is around zero. If
the signals are discrete, the flip is around sample zero and sample N/2,
simultaneously.

Changing the sign of the phase is a common enough operation that it is given
its own name and symbol. The name is complex conjugation, and it is

The Scientist and Engineer's Guide to Digital Signal Processing194

represented by placing a star to the upper-right of the variable. For example,
if consists of and , then is called theX [f] Mag X [f] Phase X [f] X t[f]
complex conjugate and is composed of and . InMag X [f] &Phase X [f]
rectangular notation, the complex conjugate is found by leaving the real part
alone, and changing the sign of the imaginary part. In mathematical terms, if X [f]
is composed of and , then is made up of andReX[f] ImX[f] X t[f] ReX[f]

.& ImX[f]

Here are several examples of how the complex conjugate is used in DSP. If
 has a Fourier transform of , then has a Fourier transform ofx[n] X [f] x [&n]

. In words, flipping the time domain left-for-right corresponds toX t[f]
changing the sign of the phase. As another example, recall from Chapter 7 that
correlation can be performed as a convolution. This is done by flipping one
of the signals left-for-right. In mathematical form, is convolution,a[n] t b[n]
while is correlation. In the frequency domain these operationsa[n] t b[&n]
correspond to and , respectively. As the lastA [f] × B[f] A [f] × B t[f]
example, consider an arbitrary signal, , and its frequency spectrum, .x[n] X [f]
The frequency spectrum can be changed to zero phase by multiplying it by its
complex conjugate, that is, . In words, whatever phase X[f] × X t[f] X [f]
happens to have will be canceled by adding its opposite (remember, when
frequency spectra are multiplied, their phases are added). In the time domain,
this means that (a signal convolved with a left-right flippedx [n] t x [&n]
version of itself) will have left-right symmetry around sample zero, regardless
of what is. x [n]

To many engineers and mathematicians, this kind of manipulation is DSP. If
you want to be able to communicate with this group, get used to using their
language.

Periodic Nature of the DFT
Unlike the other three Fourier Transforms, the DFT views both the time domain
and the frequency domain as periodic. This can be confusing and inconvenient
since most of the signals used in DSP are not periodic. Nevertheless, if you
want to use the DFT, you must conform with the DFT's view of the world.

Figure 10-8 shows two different interpretations of the time domain signal. First,
look at the upper signal, the time domain viewed as N points. This represents
how digital signals are typically acquired in scientific experiments and
engineering applications. For instance, these 128 samples might have been
acquired by sampling some parameter at regular intervals of time. Sample 0
is distinct and separate from sample 127 because they were acquired at
different times. From the way this signal was formed, there is no reason to
think that the samples on the left of the signal are even related to the samples
on the right.

Unfortunately, the DFT doesn't see things this way. As shown in the lower
figure, the DFT views these 128 points to be a single period of an infinitely
long periodic signal. This means that the left side of the acquired signal is

Chapter 10- Fourier Transform Properties 195

Sample number
-384 -256 -128 0 128 256 384

-2

-1

0

1

2

Sample number
0 32 64 96 128

-2

-1

0

1

2

127

FIGURE 10-8
Periodicity of the DFT's time domain signal. The time domain can be viewed as N samples in length, shown
in the upper figure, or as an infinitely long periodic signal, shown in the lower figure.

The time domain
viewed as N points

The time domain
viewed as periodic

A
m

pl
itu

de

A
m

pl
itu

de

connected to the right side of a duplicate signal. Likewise, the right side of the
acquired signal is connected to the left side of an identical period. This can
also be thought of as the right side of the acquired signal wrapping around and
connecting to its left side. In this view, sample 127 occurs next to sample 0,
just as sample 43 occurs next to sample 44. This is referred to as being
circular, and is identical to viewing the signal as being periodic.

The most serious consequence of time domain periodicity is time domain
aliasing. To illustrate this, suppose we take a time domain signal and pass
it through the DFT to find its frequency spectrum. We could immediately
pass this frequency spectrum through an Inverse DFT to reconstruct the
original time domain signal, but the entire procedure wouldn't be very
interesting. Instead, we will modify the frequency spectrum in some manner
before using the Inverse DFT. For instance, selected frequencies might be
deleted, changed in amplitude or phase, shifted around, etc. These are the
kinds of things routinely done in DSP. Unfortunately, these changes in the
frequency domain can create a time domain signal that is too long to fit into

The Scientist and Engineer's Guide to Digital Signal Processing196

a single period. This forces the signal to spill over from one period into the
adjacent periods. When the time domain is viewed as circular, portions of
the signal that overflow on the right suddenly seem to reappear on the left
side of the signal, and vice versa. That is, the overflowing portions of the
signal alias themselves to a new location in the time domain. If this new
location happens to already contain an existing signal, the whole mess adds,
resulting in a loss of information. Circular convolution resulting from
frequency domain multiplication (discussed in Chapter 9), is an excellent
example of this type of aliasing.

Periodicity in the frequency domain behaves in much the same way, but is
more complicated. Figure 10-9 shows an example. The upper figures show
the magnitude and phase of the frequency spectrum, viewed as being composed
of samples spread between 0 and 0.5 of the sampling rate. This is theN /2 % 1
simplest way of viewing the frequency spectrum, but it doesn't explain many
of the DFT's properties.

The lower two figures show how the DFT views this frequency spectrum as
being periodic. The key feature is that the frequency spectrum between 0 and
0.5 appears to have a mirror image of frequencies that run between 0 and -0.5.
This mirror image of negative frequencies is slightly different for the
magnitude and the phase signals. In the magnitude, the signal is flipped left-
for-right. In the phase, the signal is flipped left-for-right, and changed in sign.
As you recall, these two types of symmetry are given names: the magnitude is
said to be an even signal (it has even symmetry), while the phase is said to
be an odd signal (it has odd symmetry). If the frequency spectrum is
converted into the real and imaginary parts, the real part will always be even,
while the imaginary part will always be odd.

Taking these negative frequencies into account, the DFT views the frequency
domain as periodic, with a period of 1.0 times the sampling rate, such as -0.5
to 0.5, or 0 to 1.0. In terms of sample numbers, this makes the length of the
frequency domain period equal to N, the same as in the time domain.

The periodicity of the frequency domain makes it susceptible to frequency
domain aliasing, completely analogous to the previously described time
domain aliasing. Imagine a time domain signal that corresponds to some
frequency spectrum. If the time domain signal is modified, it is obvious that
the frequency spectrum will also be changed. If the modified frequency
spectrum cannot fit in the space provided, it will push into the adjacent periods.
Just as before, this aliasing causes two problems: frequencies aren't where they
should be, and overlapping frequencies from different periods add, destroying
information.

Frequency domain aliasing is more difficult to understand than time domain
aliasing, since the periodic pattern is more complicated in the frequency
domain. Consider a single frequency that is being forced to move from 0.01
to 0.49 in the frequency domain. The corresponding negative frequency is
therefore moving from -0.01 to -0.49. When the positive frequency moves

Chapter 10- Fourier Transform Properties 197

Frequency
-1.5 -1 -0.5 0 0.5 1 1.5

-1

0

1

2

3

W W W

Frequency

0 0.1 0.2 0.3 0.4 0.5

-1

0

1

2

3

Magnitude

FIGURE 10-9
Periodicity of the DFT's frequency domain. The frequency domain can be viewed as running from 0 to 0.5 of
the sampling rate (upper two figures), or an infinity long periodic signal with every other 0 to 0.5 segment
flipped left-for-right (lower two figures).

Frequency

0 0.1 0.2 0.3 0.4 0.5

-4

-3

-2

-1

0

1

2

3

4

Phase

Frequency

-1.5 -1 -0.5 0 0.5 1 1.5

-4

-3

-2

-1

0

1

2

3

4

The frequency domain
viewed as periodic

The frequency domain
viewed as 0 to 0.5 of
the sampling rate

A
m

pl
itu

de
Ph

as
e

(r
ad

ia
ns

)

A
m

pl
itu

de
Ph

as
e

The Scientist and Engineer's Guide to Digital Signal Processing198

Time0 N-1

signal exiting
to the right

reappears
on the left

Frequency0 0.5

signal exiting
to the right

reappears
on the right

FIGURE 10-10
Examples of aliasing in the time and frequency domains, when only a single period is considered. In the time
domain, shown in (a), portions of the signal that exits to the right, reappear on the left. In the frequency
domain, (b), portions of the signal that exit to the right, reappear on the right as if they had been folded over.

a. Time domain aliasing b. Frequency domain aliasing

across the 0.5 barrier, the negative frequency is pushed across the -0.5
barrier. Since the frequency domain is periodic, these same events are
occurring in the other periods, such as between 0.5 and 1.5. A clone of the
positive frequency is crossing frequency 1.5 from left to right, while a clone
of the negative frequency is crossing 0.5 from right to left. Now imagine
what this looks like if you can only see the frequency band of 0 to 0.5. It
appears that a frequency leaving to the right, reappears on the right, but
moving in the opposite direction.

Figure 10-10 illustrates how aliasing appears in the time and frequency
domains when only a single period is viewed. As shown in (a), if one end of
a time domain signal is too long to fit inside a single period, the protruding end
will be cut off and pasted onto the other side. In comparison, (b) shows that
when a frequency domain signal overflows the period, the protruding end is
folded over. Regardless of where the aliased segment ends up, it adds to
whatever signal is already there, destroying information.

Let's take a closer look at these strange things called negative frequencies.
Are they just some bizarre artifact of the mathematics, or do they have a
real world meaning? Figure 10-11 shows what they are about. Figure (a)
is a discrete signal composed of 32 samples. Imagine that you are given
the task of finding the frequency spectrum that corresponds to these 32
points. To make your job easier, you are told that these points represent a
discrete cosine wave. In other words, you must find the frequency and
phase shift (and 2) such that matches the givenf x[n] ' cos(2Bnf /N % 2)
samples. It isn't long before you come up with the solution shown in (b),
that is, and .f ' 3 2 ' &B/4

If you stopped your analysis at this point, you only get 1/3 credit for the
problem. This is because there are two other solutions that you have
missed. As shown in (c), the second solution is and . Evenf ' &3 2 ' B/4
if the idea of a negative frequency offends your sensibilities, it doesn't

Chapter 10- Fourier Transform Properties 199

Sample number
0 8 16 24 32

-2

-1

0

1

2

a. Samples

Sample number
0 8 16 24 32

-2

-1

0

1

2
b. Solution #1
f = 3, 2 = -B/4

FIGURE 10-11
The meaning of negative frequencies. The problem is to find the frequency spectrum of the discrete signal shown
in (a). That is, we want to find the frequency and phase of the sinusoid that passed through all of the samples.
Figure (b) is a solution using a positive frequency, while (c) is a solution using a negative frequency. Figure (d)
represents a family of solutions to the problem.

Sample number
0 8 16 24 32

-2

-1

0

1

2
c. Solution #2
f = -3, 2 = B/4

Sample number
0 8 16 24 32

-2

-1

0

1

2
d. Solution #3
f = 35, 2 = -B/4

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

change the fact that it is a mathematically valid solution to the defined
problem. Every positive frequency sinusoid can alternately be expressed
as a negative frequency sinusoid. This applies to continuous as well as
discrete signals

The third solution is not a single answer, but an infinite family of solutions.
As shown in (d), the sinusoid with and passes through all off ' 35 2' &B/4
the discrete points, and is therefore a correct solution. The fact that it shows
oscillation between the samples may be confusing, but it doesn't disqualify it
from being an authentic answer. Likewise, , , , andf ' ±29 f ' ±35 f ' ±61

 are all solutions with multiple oscillations between the points. f ' ±67

Each of these three solutions corresponds to a different section of the
frequency spectrum. For discrete signals, the first solution corresponds to
frequencies between 0 and 0.5 of the sampling rate. The second solution

The Scientist and Engineer's Guide to Digital Signal Processing200

results in frequencies between 0 and -0.5. Lastly, the third solution makes up
the infinite number of duplicated frequencies below -0.5 and above 0.5. If the
signal we are analyzing is continuous, the first solution results in frequencies
from zero to positive infinity, while the second solution results in frequencies
from zero to negative infinity. The third group of solutions does not exist for
continuous signals.

Many DSP techniques do not require the use of negative frequencies, or an
understanding of the DFT's periodicity. For example, two common ones were
described in the last chapter, spectral analysis, and the frequency response of
systems. For these applications, it is completely sufficient to view the time
domain as extending from sample 0 to N-1, and the frequency domain from
zero to one-half of the sampling frequency. These techniques can use a
simpler view of the world because they never result in portions of one period
moving into another period. In these cases, looking at a single period is just
as good as looking at the entire periodic signal.

However, certain procedures can only be analyzed by considering how signals
overflow between periods. Two examples of this have already been presented,
circular convolution and analog-to-digital conversion. In circular
convolution, multiplication of the frequency spectra results in the time domain
signals being convolved. If the resulting time domain signal is too long to fit
inside a single period, it overflows into the adjacent periods, resulting in time
domain aliasing. In contrast, analog-to-digital conversion is an example of
frequency domain aliasing. A nonlinear action is taken in the time domain,
that is, changing a continuous signal into a discrete signal by sampling. The
problem is, the spectrum of the original analog signal may be too long to fit
inside the discrete signal's spectrum. When we force the situation, the ends of
the spectrum protrude into adjacent periods. Let's look at two more examples
where the periodic nature of the DFT is important, compression & expansion
of signals, and amplitude modulation.

Compression and Expansion, Multirate methods
As shown in Fig. 10-12, a compression of the signal in one domain results in
an expansion in the other, and vice versa. For continuous signals, if is theX (f)
Fourier Transform of , then is the Fourier Transform of ,x(t) 1/k ×X(f /k) x(k t)
where k is the parameter controlling the expansion or contraction. If an event
happens faster (it is compressed in time), it must be composed of higher
frequencies. If an event happens slower (it is expanded in time), it must be
composed of lower frequencies. This pattern holds if taken to either of the two
extremes. That is, if the time domain signal is compressed so far that it
becomes an impulse, the corresponding frequency spectrum is expanded so far
that it becomes a constant value. Likewise, if the time domain is expanded
until it becomes a constant value, the frequency domain becomes an impulse.

Discrete signals behave in a similar fashion, but there are a few more details.
The first issue with discrete signals is aliasing . Imagine that the

Chapter 10- Fourier Transform Properties 201

Sample number

0 16 32 48 64 80 96 112 128

-1

0

1

2

3

a. Signal compressed

127
Frequency

0 0.1 0.2 0.3 0.4 0.5

0

4

8

12

16

20

b. Expanded frequency spectrum

Frequency

0 0.1 0.2 0.3 0.4 0.5

0

6

12

18

24

30

d. Frequency spectrum

Frequency DomainTime Domain

Sample number

0 16 32 48 64 80 96 112 128

-1

0

1

2

3

c. Signal

127

samples

underlying

waveform

continious

Sample number

0 16 32 48 64 80 96 112 128

-1

0

1

2

3

e. Signal expanded

127
Frequency

0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

50

f. Compressed frequency spectrum

FIGURE 10-12
Compression and expansion. Compressing a signal in one domain results in the signal being expanded in the
other domain, and vice versa. Figures (c) and (d) show a discrete signal and its spectrum, respectively. In (a) and
(b), the time domain signal has been compressed, resulting in the frequency spectrum being expanded. Figures
(e) and (f) show the opposite process. As shown in these figures, discrete signals are expanded or contracted by
expanding or contracting the underlying continuous waveform. This underlying waveform is then resampled
to find the new discrete signal.

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

pulse in (a) is compressed several times more than is shown. The frequency
spectrum is expanded by an equal factor, and several of the humps in (b) are
pushed to frequencies beyond 0.5. The resulting aliasing breaks the simple
expansion/contraction relationship. This type of aliasing can also happen in the

The Scientist and Engineer's Guide to Digital Signal Processing202

time domain. Imagine that the frequency spectrum in (f) is compressed much
harder, resulting in the time domain signal in (e) expanding into neighboring
periods.

A second issue is to define exactly what it means to compress or expand a
discrete signal. As shown in Fig. 10-12a, a discrete signal is compressed by
compressing the underlying continuous curve that the samples lie on, and then
resampling the new continuous curve to find the new discrete signal. Likewise,
this same process for the expansion of discrete signals is shown in (e). When
a discrete signal is compressed, events in the signal (such as the width of the
pulse) happen over a fewer number of samples. Likewise, events in an
expanded signal happen over a greater number of samples.

An equivalent way of looking at this procedure is to keep the underlying
continuous waveform the same, but resample it at a different sampling rate.
For instance, look at Fig. 10-13a, a discrete Gaussian waveform composed of
50 samples. In (b), the same underlying curve is represented by 400 samples.
The change between (a) and (b) can be viewed in two ways: (1) the sampling
rate has been kept constant, but the underlying waveform has been expanded
to be eight times wider, or (2) the underlying waveform has been kept constant,
but the sampling rate has increased by a factor of eight. Methods for changing
the sampling rate in this way are called multirate techniques. If more samples
are added, it is called interpolation. If fewer samples are used to represent
the signal, it is called decimation. Chapter 3 describes how multirate
techniques are used in ADC and DAC.

Here is the problem: if we are given an arbitrary discrete signal, how do
we know what the underlying continuous curve is? It depends on if the
signal's information is encoded in the time domain or in the frequency
domain . For time domain encoded signals, we want the underlying
continuous waveform to be a smooth curve that passes through all the
samples. In the simplest case, we might draw straight lines between the
points and then round the rough corners. The next level of sophistication
is to use a curve fitting algorithm, such as a spline function or polynomial
fit. There is not a single "correct" answer to this problem. This approach
is based on minimizing irregularities in the time domain waveform, and
completely ignores the frequency domain.

When a signal has information encoded in the frequency domain, we ignore
the time domain waveform and concentrate on the frequency spectrum. As
discussed in the last chapter, a finer sampling of a frequency spectrum (more
samples between frequency 0 and 0.5) can be obtained by padding the time
domain signal with zeros before taking the DFT. Duality allows this to work
in the opposite direction. If we want a finer sampling in the time domain
(interpolation), pad the frequency spectrum with zeros before taking the
Inverse DFT. Say we want to interpolate a 50 sample signal into a 400
sample signal. It's done like this: (1) Take the 50 samples and add zeros to
make the signal 64 samples long. (2) Use a 64 point DFT to find the
frequency spectrum, which will consist of a 33 point real part and a 33 point
imaginary part. (3) Pad the right side of the frequency spectrum

Chapter 10- Fourier Transform Properties 203

Sample number

0 10 20 30 40 50

-1

0

1

2

a. Smooth waveform

Sample number

0 80 160 240 320 400

-1

0

1

2

b. Fig. (a) interpolated

Sample number
0 10 20 30 40 50

-1

0

1

2

c. Sharp edges

Sample number

0 80 160 240 320 400

-1

0

1

2

d. Fig. (c) interpolated

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

FIGURE 10-13
Interpolation by padding the frequency domain. Figures (a) and (c) each consist of 50 samples. These are inter-
polated to 400 samples by padding the frequency domain with zeros, resulting in (b) and (d), respectively. (Figures
(b) and (d) are discrete signals, but are drawn as continuous lines because of the large number of samples).

(both the real and imaginary parts) with 224 zeros to make the frequency
spectrum 257 points long. (4) Use a 512 point Inverse DFT to transform the
data back into the time domain. This will result in a 512 sample signal that is
a high resolution version of the 64 sample signal. The first 400 samples of this
signal are an interpolated version of the original 50 samples.

The key feature of this technique is that the interpolated signal is composed of
exactly the same frequencies as the original signal. This may or may not
provide a well-behaved fit in the time domain. For example, Figs. 10-13 (a)
and (b) show a 50 sample signal being interpolated into a 400 sample signal
by this method. The interpolation is a smooth fit between the original points,
much as if a curve fitting routine had been used. In comparison, (c) and (d)
show another example where the time domain is a mess! The oscillatory
behavior shown in (d) arises at edges or other discontinuities in the signal.
This also includes any discontinuity between sample zero and N-1, since the
time domain is viewed as being circular. This overshoot at discontinuities is
called the Gibbs effect, and is discussed in Chapter 11. Another frequency
domain interpolation technique is presented in Chapter 3, adding zeros between
the time domain samples and low-pass filtering.

The Scientist and Engineer's Guide to Digital Signal Processing204

Multiplying Signals (Amplitude Modulation)
An important Fourier transform property is that convolution in one domain
corresponds to multiplication in the other domain. One side of this was
discussed in the last chapter: time domain signals can be convolved by
multiplying their frequency spectra. Amplitude modulation is an example of the
reverse situation, multiplication in the time domain corresponds to convolution
in the frequency domain. In addition, amplitude modulation provides an
excellent example of how the elusive negative frequencies enter into everyday
science and engineering problems.

Audio signals are great for short distance communication; when you speak,
someone across the room hears you. On the other hand, radio frequencies are
very good at propagating long distances. For instance, if a 100 volt, 1 MHz
sine wave is fed into an antenna, the resulting radio wave can be detected in
the next room, the next country, and even on the next planet. Modulation is
the process of merging two signals to form a third signal with desirable
characteristics of both. This always involves nonlinear processes such as
multiplication; you can't just add the two signals together. In radio
communication, modulation results in radio signals that can propagate long
distances and carry along audio or other information.

Radio communication is an extremely well developed discipline, and many
modulation schemes have been developed. One of the simplest is called
amplitude modulation. Figure 10-14 shows an example of how amplitude
modulation appears in both the time and frequency domains. Continuous
signals will be used in this example, since modulation is usually carried out in
analog electronics. However, the whole procedure could be carried out in
discrete form if needed (the shape of the future!).

Figure (a) shows an audio signal with a DC bias such that the signal always
has a positive value. Figure (b) shows that its frequency spectrum is composed
of frequencies from 300 Hz to 3 kHz, the range needed for voice
communication, plus a spike for the DC component. All other frequencies
have been removed by analog filtering. Figures (c) and (d) show the carrier
wave, a pure sinusoid of much higher frequency than the audio signal. In the
time domain, amplitude modulation consists of multiplying the audio signal by
the carrier wave. As shown in (e), this results in an oscillatory waveform that
has an instantaneous amplitude proportional to the original audio signal. In the
jargon of the field, the envelope of the carrier wave is equal to the modulating
signal. This signal can be routed to an antenna, converted into a radio wave,
and then detected by a receiving antenna. This results in a signal identical to
(e) being generated in the radio receiver's electronics. A detector or
demodulator circuit is then used to convert the waveform in (e) back into the
waveform in (a).

Since the time domain signals are multiplied, the corresponding frequency
spectra are convolved. That is, (f) is found by convolving (b) & (d). Since the
spectrum of the carrier is a shifted delta function, the spectrum of the

Chapter 10- Fourier Transform Properties 205

Time (milliseconds)

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

2

a. Audio signal

Frequency (kHz)

0 5 10 15 20 25 30 35 40

0

1

2

3

4

b. Audio signal

Frequency (kHz)

0 5 10 15 20 25 30 35 40

0

1

2

3

4

d. Carrier signal

Frequency DomainTime Domain

Time (milliseconds)

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

2

c. Carrier signal

Frequency (kHz)

0 5 10 15 20 25 30 35 40

0

1

2

3

4

f. Modulated signal

lower
sideband

upper
sidebandcarrier

Time (milliseconds)

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

2

e. Modulated signal

FIGURE 10-14
Amplitude modulation. In the time domain, amplitude modulation is achieved by multiplying the audio signal, (a),
by the carrier signal, (c), to produce the modulated signal, (e). Since multiplication in the time domain corresponds
to convolution in the frequency domain, the spectrum of the modulated signal is the spectrum of the audio signal
shifted to the frequency of the carrier.

A
m

pl
itu

de

V
ol

ta
ge

A
m

pl
itu

de
A

m
pl

itu
de

V
ol

ta
ge

V
ol

ta
ge

modulated signal is equal to the audio spectrum shifted to the frequency of the
carrier. This results in a modulated spectrum composed of three components:
a carrier wave, an upper sideband, and a lower sideband.

These correspond to the three parts of the original audio signal: the DC
component, the positive frequencies between 0.3 and 3 kHz, and the negative

The Scientist and Engineer's Guide to Digital Signal Processing206

EQUATION 10-1
The DTFT analysis equation. In this
relation, is the time domain signalx[n]
with n running from 0 to . TheN&1
frequency spectrum is held in: (T)Re X
and (T), with T between 0 and pi.Im X

ReX (T) ' j
%4

n ' &4
x [n] cos(Tn)

ImX (T) ' & j
%4

n ' &4
x [n] sin(Tn)

x[n] '
1
B m

B

0

ReX (T) cos (Tn) & ImX (T) sin(Tn) dT
EQUATION 10-2
The DTFT synthesis
equation.

frequencies between -0.3 and -3 kHz, respectively. Even though the negative
frequencies in the original audio signal are somewhat elusive and abstract, the
resulting frequencies in the lower sideband are as real as you could want them
to be. The ghosts have taken human form!

Communication engineers live and die by this type of frequency domain
analysis. For example, consider the frequency spectrum for television
transmission. A standard TV signal has a frequency spectrum from DC to 6
MHz. By using these frequency shifting techniques, 82 of these 6 MHz wide
channels are stacked end-to-end. For instance, channel 3 is from 60 to 66
MHz, channel 4 is from 66 to 72 MHz, channel 83 is from 884 to 890 MHz,
etc. The television receiver moves the desired channel back to the DC to 6
MHz band for display on the screen. This scheme is called frequency
domain multiplexing.

The Discrete Time Fourier Transform
The Discrete Time Fourier Transform (DTFT) is the member of the Fourier
transform family that operates on aperiodic, discrete signals. The best way
to understand the DTFT is how it relates to the DFT. To start, imagine
that you acquire an N sample signal, and want to find its frequency
spectrum. By using the DFT, the signal can be decomposed into N/2% 1
sine and cosine waves, with frequencies equally spaced between zero and
one-half of the sampling rate. As discussed in the last chapter, padding
the time domain signal with zeros makes the period of the time domain
longer, as well as making the spacing between samples in the frequency
domain narrower. As N approaches infinity, the time domain becomes
aperiodic, and the frequency domain becomes a continuous signal. This is
the DTFT, the Fourier transform that relates an aperiodic, discrete signal,
with a periodic, continuous frequency spectrum.

The mathematics of the DTFT can be understood by starting with the
synthesis and analysis equations for the DFT (Eqs. 8-2, 8-3 and 8-4), and
taking N to infinity:

Chapter 10- Fourier Transform Properties 207

There are many subtle details in these relations. First, the time domain signal,
, is still discrete, and therefore is represented by brackets. In comparison,x[n]

the frequency domain signals, & , are continuous, and are thusReX(T) Im X (T)
written with parentheses. Since the frequency domain is continuous, the
synthesis equation must be written as an integral, rather than a summation.

As discussed in Chapter 8, frequency is represented in the DFT's frequency
domain by one of three variables: k, an index that runs from 0 to N/2; f, the
fraction of the sampling rate, running from 0 to 0.5; or T, the fraction of the
sampling rate expressed as a natural frequency, running from 0 to B. The
spectrum of the DTFT is continuous, so either or T can be used. Thef
common choice is T, because it makes the equations shorter by eliminating the
always present factor of . Remember, when T is used, the frequency2B
spectrum extends from 0 to B, which corresponds to DC to one-half of the
sampling rate. To make things even more complicated, many authors use S (an
upper case omega) to represent this frequency in the DTFT, rather than T (a
lower case omega).

When calculating the inverse DFT, samples 0 and N/2 must be divided by
two (Eq. 8-3) before the synthesis can be carried out (Eq. 8-2). This is not
necessary with the DTFT. As you recall, this action in the DFT is related
to the frequency spectrum being defined as a spectral density, i.e.,
amplitude per unit of bandwidth. When the spectrum becomes continuous,
the special treatment of the end points disappear. However, there is still a
normalization factor that must be included, the 2/N in the DFT (Eq. 8-3)
becomes 1/B in the DTFT (Eq. 10-2). Some authors place these terms in
front of the synthesis equation, while others place them in front of the
analysis equation. Suppose you start with some time domain signal. After
taking the Fourier transform, and then the Inverse Fourier transform, you
want to end up with what you started. That is, the 1/B term (or the 2/N
term) must be encountered somewhere along the way, either in the forward
or in the inverse transform. Some authors even split the term between the
two transforms by placing in front of both. 1/ B

Since the DTFT involves infinite summations and integrals, it cannot be
calculated with a digital computer. Its main use is in theoretical problems as
an alternative to the DFT. For instance, suppose you want to find the
frequency response of a system from its impulse response. If the impulse
response is known as an array of numbers, such as might be obtained from an
experimental measurement or computer simulation, a DFT program is run on
a computer. This provides the frequency spectrum as another array of
numbers, equally spaced between 0 and 0.5 of the sampling rate.

In other cases, the impulse response might be know as an equation, such as
a sinc function (described in the next chapter) or an exponentially decaying
sinusoid. The DTFT is used here to mathematically calculate the frequency
domain as another equation, specifying the entire continuous curve between
0 and 0.5. While the DFT could also be used for this calculation, it would
only provide an equation for samples of the frequency response, not the
entire curve.

The Scientist and Engineer's Guide to Digital Signal Processing208

EQUATION 10-3
Parseval's relation. In this equation, isx[i]
a time domain signal with i running from 0
to N-1, and is its modified frequencyX[k]
spectrum, with k running from 0 to N/2.
The modified frequency spectrum is found
by taking the DFT of the signal, and
dividing the first and last frequencies
(sample 0 and N/2) by the square-root of
two.

j
N&1

i' 0
x [i]2 '

2
N j

N /2

k' 0
Mag X [k]2

Parseval's Relation
Since the time and frequency domains are equivalent representations of the
same signal, they must have the same energy. This is called Parseval's
relation, and holds for all members of the Fourier transform family. For the
DFT, Parseval's relation is expressed:

The left side of this equation is the total energy contained in the time domain
signal, found by summing the energies of the N individual samples. Likewise,
the right side is the energy contained in the frequency domain, found by
summing the energies of the sinusoids. Remember from physics thatN /2% 1
energy is proportional to the amplitude squared. For example, the energy in
a spring is proportional to the displacement squared, and the energy stored in
a capacitor is proportional to the voltage squared. In Eq. 10-3, is theX [f]
frequency spectrum of , with one slight modification: the first and lastx[n]
frequency components, & , have been divided by . ThisX [0] X [N/2] 2
modification, along with the 2/N factor on the right side of the equation,
accounts for several subtle details of calculating and summing energies.

To understand these corrections, start by finding the frequency domain
representation of the signal by using the DFT. Next, convert the frequency
domain into the amplitudes of the sinusoids needed to reconstruct the signal, as
previously defined in Eq. 8-3. This is done by dividing the first and last points
(sample 0 and N/2) by 2, and then dividing all of the points by N/2. While this
provides the amplitudes of the sinusoids, they are expressed as a peak
amplitude, not the root-mean-square (rms) amplitude needed for energy
calculations. In a sinusoid, the peak amplitude is converted to rms by dividing
by . This correction must be made to all of the frequency domain values,2
except sample 0 and N/2. This is because these two sinusoids are unique; one
is a constant value, while the other alternates between two constant values. For
these two special cases, the peak amplitude is already equal to the rms value.
 All of the values in the frequency domain are squared and then summed. The
last step is to divide the summed value by N, to account for each sample in the
frequency domain being converted into a sinusoid that covers N values in the
time domain. Working through all of these details produces Eq. 10-3.

While Parseval's relation is interesting from the physics it describes
(conservation of energy), it has few practical uses in DSP.

209

CHAPTER

11 Fourier Transform Pairs

For every time domain waveform there is a corresponding frequency domain waveform, and vice
versa. For example, a rectangular pulse in the time domain coincides with a sinc function [i.e.,
sin(x)/x] in the frequency domain. Duality provides that the reverse is also true; a rectangular
pulse in the frequency domain matches a sinc function in the time domain. Waveforms that
correspond to each other in this manner are called Fourier transform pairs. Several common
pairs are presented in this chapter.

Delta Function Pairs
For discrete signals, the delta function is a simple waveform, and has an
equally simple Fourier transform pair. Figure 11-1a shows a delta function in
the time domain, with its frequency spectrum in (b) and (c). The magnitude
is a constant value, while the phase is entirely zero. As discussed in the last
chapter, this can be understood by using the expansion/compression property.
When the time domain is compressed until it becomes an impulse, the frequency
domain is expanded until it becomes a constant value.

In (d) and (g), the time domain waveform is shifted four and eight samples to
the right, respectively. As expected from the properties in the last chapter,
shifting the time domain waveform does not affect the magnitude, but adds a
linear component to the phase. The phase signals in this figure have not been
unwrapped, and thus extend only from -B to B. Also notice that the horizontal
axes in the frequency domain run from -0.5 to 0.5. That is, they show the
negative frequencies in the spectrum, as well as the positive ones. The
negative frequencies are redundant information, but they are often included in
DSP graphs and you should become accustomed to seeing them.

Figure 11-2 presents the same information as Fig. 11-1, but with the
frequency domain in rectangular form. There are two lessons to be learned
here. First, compare the polar and rectangular representations of the

The Scientist and Engineer's Guide to Digital Signal Processing210

Sample number
0 16 32 48 64

-1

0

1

2

63

d. Impulse at x[4]

Sample number
0 16 32 48 64

-1

0

1

2

63

a. Impulse at x[0]

Frequency
-0.5 0 0.5

-2

-1

0

1

2
e. Magnitude

Frequency
-0.5 0 0.5

-6

-4

-2

0

2

4

6
f. Phase

Frequency
-0.5 0 0.5

-2

-1

0

1

2
h. Magnitude

Frequency
-0.5 0 0.5

-6

-4

-2

0

2

4

6
i. Phase

Frequency
-0.5 0 0.5

-2

-1

0

1

2
b. Magnitude

Frequency
-0.5 0 0.5

-6

-4

-2

0

2

4

6
c. Phase

Sample number
0 16 32 48 64

-1

0

1

2

63

g. Impulse at x[8]

Frequency DomainTime Domain

A
m

pl
itu

de

Ph
as

e
(r

ad
ia

ns
)

A
m

pl
itu

de

A
m

pl
itu

de

Ph
as

e
(r

ad
ia

ns
)

A
m

pl
itu

de

A
m

pl
itu

de

Ph
as

e
(r

ad
ia

ns
)

A
m

pl
itu

de

FIGURE 11-1
Delta function pairs in polar form. An impulse in the time domain corresponds to a
constant magnitude and a linear phase in the frequency domain.

frequency domains. As is usually the case, the polar form is much easier to
understand; the magnitude is nothing more than a constant, while the phase is
a straight line. In comparison, the real and imaginary parts are sinusoidal
oscillations that are difficult to attach a meaning to.

The second interesting feature in Fig. 11-2 is the duality of the DFT. In the
conventional view, each sample in the DFT's frequency domain corresponds
to a sinusoid in the time domain. However, the reverse of this is also true,
each sample in the time domain corresponds to sinusoids in the frequency
domain. Including the negative frequencies in these graphs allows the
duality property to be more symmetrical. For instance, Figs. (d), (e), and

Chapter 11- Fourier Transform Pairs 211

Sample number
0 16 32 48 64

-1

0

1

2

63

d. Impulse at x[4]

Sample number
0 16 32 48 64

-1

0

1

2

63

a. Impulse at x[0]

Frequency
-0.5 0 0.5

-2

-1

0

1

2
e. Real Part

Frequency
-0.5 0 0.5

-2

-1

0

1

2
f. Imaginary part

Frequency
-0.5 0 0.5

-2

-1

0

1

2
h. Real Part

Frequency
-0.5 0 0.5

-2

-1

0

1

2
i. Imaginary part

Frequency
-0.5 0 0.5

-2

-1

0

1

2
b. Real Part

Frequency
-0.5 0 0.5

-2

-1

0

1

2
c. Imaginary part

Sample number
0 16 32 48 64

-1

0

1

2

63

g. Impulse at x[8]

Frequency DomainTime Domain

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 11-2
Delta function pairs in rectangular form. Each sample in the time domain results in a cosine wave in the real part,
and a negative sine wave in the imaginary part of the frequency domain.

(f) show that an impulse at sample number four in the time domain results in
four cycles of a cosine wave in the real part of the frequency spectrum, and
four cycles of a negative sine wave in the imaginary part. As you recall, an
impulse at sample number four in the real part of the frequency spectrum
results in four cycles of a cosine wave in the time domain. Likewise, an
impulse at sample number four in the imaginary part of the frequency spectrum
results in four cycles of a negative sine wave being added to the time domain
wave.

As mentioned in Chapter 8, this can be used as another way to calculate the
DFT (besides correlating the time domain with sinusoids). Each sample in the
time domain results in a cosine wave being added to the real part of the

The Scientist and Engineer's Guide to Digital Signal Processing212

EQUATION 11-1
DFT spectrum of a rectangular pulse. In this
equation, N is the number of points in the
time domain signal, all of which have a value
of zero, except M adjacent points that have a
value of one. The frequency spectrum is
contained in , where k runs from 0 toX[k]
N/2. To avoid the division by zero, use

. The sine function uses radians,X[0] ' M
not degrees. This equation takes into
account that the signal is aliased.

Mag X [k] ' /000
sin(BkM /N)

sin(Bk /N)
/000

frequency domain, and a negative sine wave being added to the imaginary part.
The amplitude of each sinusoid is given by the amplitude of the time domain
sample. The frequency of each sinusoid is provided by the sample number of
the time domain point. The algorithm involves: (1) stepping through each time
domain sample, (2) calculating the sine and cosine waves that correspond to
each sample, and (3) adding up all of the contributing sinusoids. The resulting
program is nearly identical to the correlation method (Table 8-2), except that
the outer and inner loops are exchanged.

The Sinc Function
Figure 11-4 illustrates a common transform pair: the rectangular pulse and the
sinc function (pronounced “sink”). The sinc function is defined as:

, however, it is common to see the vague statement: "thesinc(a) ' sin(Ba)/ (Ba)
sinc function is of the general form: ." In other words, the sinc is a sinesin(x)/x
wave that decays in amplitude as 1/x . In (a), the rectangular pulse is
symmetrically centered on sample zero, making one-half of the pulse on the
right of the graph and the other one-half on the left. This appears to the DFT
as a single pulse because of the time domain periodicity. The DFT of this
signal is shown in (b) and (c), with the unwrapped version in (d) and (e).

First look at the unwrapped spectrum, (d) and (e). The unwrapped
magnitude is an oscillation that decreases in amplitude with increasing
frequency. The phase is composed of all zeros, as you should expect for
a time domain signal that is symmetrical around sample number zero. We
are using the term unwrapped magnitude to indicate that it can have both
positive and negative values. By definition, the magnitude must always be
positive. This is shown in (b) and (c) where the magnitude is made all
positive by introducing a phase shift of B at all frequencies where the
unwrapped magnitude is negative in (d).

In (f), the signal is shifted so that it appears as one contiguous pulse, but is no
longer centered on sample number zero. While this doesn't change the
magnitude of the frequency domain, it does add a linear component to the
phase, making it a jumbled mess. What does the frequency spectrum look like
as real and imaginary parts ? Too confusing to even worry about.

An N point time domain signal that contains a unity amplitude rectangular pulse
M points wide, has a DFT frequency spectrum given by:

Chapter 11- Fourier Transform Pairs 213

Frequency
0 0.1 0.2 0.3 0.4 0.5

-6

-4

-2

0

2

4

6

e. Phase

Frequency
0 0.1 0.2 0.3 0.4 0.5

-5

0

5

10

15

20

g. Magnitude

Frequency
0 0.1 0.2 0.3 0.4 0.5

-6

-4

-2

0

2

4

6

h. Phase

Frequency
0 0.1 0.2 0.3 0.4 0.5

-5

0

5

10

15

20

b. Magnitude

Frequency
0 0.1 0.2 0.3 0.4 0.5

-6

-4

-2

0

2

4

6

c. Phase

Sample number
0 32 64 96 128

-1

0

1

2

127

f. Rectangular pulse

Frequency DomainTime Domain

or

A
m

pl
itu

de

Ph
as

e
(r

ad
ia

ns
)

A
m

pl
itu

de

Ph
as

e
(r

ad
ia

ns
)

A
m

pl
itu

de

Ph
as

e
(r

ad
ia

ns
)

A
m

pl
itu

de

FIGURE 11-3
DFT of a rectangular pulse. A rectangular pulse in one domain corresponds to a sinc
function in the other domain.

Sample number
0 32 64 96 128

-1

0

1

2

127

a. Rectangular pulse

Frequency
0 0.1 0.2 0.3 0.4 0.5

-5

0

5

10

15

20

d. Unwrapped Magnitude

A
m

pl
itu

de

EQUATION 11-2
Equation 11-1 rewritten in terms of the
sampling frequency. The parameter, , isf
the fraction of the sampling rate, running
continiously from 0 to 0.5. To avoid the
division by zero, use .Mag X(0)' M

Mag X (f) ' /000
sin(B f M)
sin(B f)

/000

Alternatively, the DTFT can be used to express the frequency spectrum as a
fraction of the sampling rate, f:

In other words, Eq. 11-1 provides samples in the frequency spectrum,N/2% 1
while Eq. 11-2 provides the continuous curve that the samples lie on. These

The Scientist and Engineer's Guide to Digital Signal Processing214

x
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y(x) = x

y(x) = sin(x)

FIGURE 11-4
Comparing x and sin(x). The functions: ,y(x) ' x
and are similar for small values of x,y(x) ' sin(x)
and only differ by about 36% at 1.57 (B/2). This
describes how aliasing distorts the frequency
spectrum of the rectangular pulse from a pure
sinc function.

y(
x)

equations only provide the magnitude. The phase is determined solely by the
left-right positioning of the time domain waveform, as discussed in the last
chapter.

Notice in Fig. 11-3b that the amplitude of the oscillation does not decay to
zero before a frequency of 0.5 is reached. As you should suspect, the
waveform continues into the next period where it is aliased. This changes
the shape of the frequency domain, an effect that is included in Eqs. 11-1
and 11-2.

It is often important to understand what the frequency spectrum looks like when
aliasing isn't present. This is because discrete signals are often used to
represent or model continuous signals, and continuous signals don't alias. To
remove the aliasing in Eqs. 11-1 and 11-2, change the denominators from

 respectively. Figure 11-4 showssin (B k / N) to B k / N and from sin (B f) to B f,
the significance of this. The quantity can only run from 0 to 1.5708, since B f f
can only run from 0 to 0.5. Over this range there isn't much difference
between and . At zero frequency they have the same value, andsin (B f) B f
at a frequency of 0.5 there is only about a 36% difference. Without
aliasing, the curve in Fig. 11-3b would show a slightly lower amplitude
near the right side of the graph, and no change near the left side.

When the frequency spectrum of the rectangular pulse is not aliased
(because the time domain signal is continuous, or because you are ignoring
the aliasing), it is of the general form: , i.e., a sinc function. Forsin (x)/x
continuous signals, the rectangular pulse and the sinc function are Fourier
transform pairs. For discrete signals this is only an approximation, with the
error being due to aliasing.

The sinc function has an annoying problem at , where becomesx ' 0 sin (x)/x
zero divided by zero. This is not a difficult mathematical problem; as x
becomes very small, approaches the value of x (see Fig. 11-4).sin (x)

Chapter 11- Fourier Transform Pairs 215

EQUATION 11-3
Inverse DFT of the rectangular pulse. In the
frequency domain, the pulse has an
amplitude of one, and runs from sample
number 0 through sample number M-1. The
parameter N is the length of the DFT, and

 is the time domain signal with i runningx[i]
from 0 to N-1. To avoid the division by
zero, use .x[0] ' (2M&1)/N

x [i] '
1
N

sin(2B i (M & 1/2) /N)
sin(B i /N)

This turns the sinc function into , which has a value of one. In other words,x/x
as x becomes smaller and smaller, the value of approaches one, whichsinc (x)
includes . Now try to tell your computer this! All it sees is asinc (0) ' 1
division by zero, causing it to complain and stop your program. The important
point to remember is that your program must include special handling at x ' 0
when calculating the sinc function.

A key trait of the sinc function is the location of the zero crossings. These
occur at frequencies where an integer number of the sinusoid's cycles fit
evenly into the rectangular pulse. For example, if the rectangular pulse is
20 points wide, the first zero in the frequency domain is at the frequency
that makes one complete cycle in 20 points. The second zero is at the
frequency that makes two complete cycles in 20 points, etc. This can be
understood by remembering how the DFT is calculated by correlation. The
amplitude of a frequency component is found by multiplying the time
domain signal by a sinusoid and adding up the resulting samples. If the
time domain waveform is a rectangular pulse of unity amplitude, this is the
same as adding the sinusoid's samples that are within the rectangular pulse.
If this summation occurs over an integral number of the sinusoid's cycles,
the result will be zero.

The sinc function is widely used in DSP because it is the Fourier transform pair
of a very simple waveform, the rectangular pulse. For example, the sinc
function is used in spectral analysis, as discussed in Chapter 9. Consider the
analysis of an infinitely long discrete signal. Since the DFT can only work
with finite length signals, N samples are selected to represent the longer signal.
The key here is that "selecting N samples from a longer signal" is the same as
multiplying the longer signal by a rectangular pulse. The ones in the
rectangular pulse retain the corresponding samples, while the zeros eliminate
them. How does this affect the frequency spectrum of the signal? Multiplying
the time domain by a rectangular pulse results in the frequency domain being
convolved with a sinc function. This reduces the frequency spectrum's
resolution, as previously shown in Fig. 9-5a.

Other Transform Pairs
Figure 11-5 (a) and (b) show the duality of the above: a rectangular pulse in
the frequency domain corresponds to a sinc function (plus aliasing) in the time
domain. Including the effects of aliasing, the time domain signal is given by:

The Scientist and Engineer's Guide to Digital Signal Processing216

EQUATION 11-4
Inverse DTFT of the rectangular pulse. In
the frequency domain, the pulse has an
amplitude of one, and runs from zero
frequency to the cutoff frequency, , a valuefc
between 0 and 0.5. The time domain signal is
held in with i running from 0 to N-1. Tox [i]
avoid the division by zero, use .x[0] ' 2 fc

x [i] '
sin(2B fc i)

i B

To eliminate the effects of aliasing from this equation, imagine that the
frequency domain is so finely sampled that it turns into a continuous curve.
This makes the time domain infinitely long with no periodicity. The DTFT is
the Fourier transform to use here, resulting in the time domain signal being
given by the relation:

This equation is very important in DSP, because the rectangular pulse in the
frequency domain is the perfect low-pass filter. Therefore, the sinc function
described by this equation is the filter kernel for the perfect low-pass filter.
This is the basis for a very useful class of digital filters called the windowed-
sinc filters, described in Chapter 15.

Figures (c) & (d) show that a triangular pulse in the time domain coincides
with a sinc function squared (plus aliasing) in the frequency domain. This
transform pair isn't as important as the reason it is true. A point2M& 1
triangle in the time domain can be formed by convolving an M point
rectangular pulse with itself. Since convolution in the time domain results in
multiplication in the frequency domain, convolving a waveform with itself will
square the frequency spectrum.

Is there a waveform that is its own Fourier Transform? The answer is yes, and
there is only one: the Gaussian. Figure (e) shows a Gaussian curve, and (f)
shows the corresponding frequency spectrum, also a Gaussian curve. This
relationship is only true if you ignore aliasing. The relationship between the
standard deviation of the time domain and frequency domain is given by:

. While only one side of a Gaussian is shown in (f), the negative2BFf ' 1/Ft
frequencies in the spectrum complete the full curve, with the center of
symmetry at zero frequency.

Figure (g) shows what can be called a Gaussian burst. It is formed by
multiplying a sine wave by a Gaussian. For example, (g) is a sine wave
multiplied by the same Gaussian shown in (e). The corresponding frequency
domain is a Gaussian centered somewhere other than zero frequency. As
before, this transform pair is not as important as the reason it is true. Since
the time domain signal is the multiplication of two signals, the frequency
domain will be the convolution of the two frequency spectra. The frequency
spectrum of the sine wave is a delta function centered at the frequency of the
sine wave. The frequency spectrum of a Gaussian is a Gaussian centered at
zero frequency. Convolving the two produces a Gaussian centered at the
frequency of the sine wave. This should look familiar; it is identical to the
procedure of amplitude modulation described in the last chapter.

Chapter 11- Fourier Transform Pairs 217

Sample number
0 16 32 48 64 80 96 112 128

-1

0

1

2

a. Sinc

127

3

Frequency
0 0.1 0.2 0.3 0.4 0.5

-5

0

5

10

15

b. Rectangular pulse

Frequency
0 0.1 0.2 0.3 0.4 0.5

-5

0

5

10

15

d. Sinc squared

Frequency DomainTime Domain

Sample number
0 16 32 48 64 80 96 112 128

-1

0

1

2

c. Triangle

127

Sample number
0 16 32 48 64 80 96 112 128

-1

0

1

2

e. Gaussian

127
Frequency

0 0.1 0.2 0.3 0.4 0.5
-5

0

5

10

15

f. Gaussian

FIGURE 11-5
Common transform pairs.

Sample number
0 16 32 48 64 80 96 112 128

-2

-1

0

1

2

3

g. Gaussian burst

127
Frequency

0 0.1 0.2 0.3 0.4 0.5
-5

0

5

10

15

h. Gaussian

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

The Scientist and Engineer's Guide to Digital Signal Processing218

Gibbs Effect
Figure 11-6 shows a time domain signal being synthesized from sinusoids. The
signal being reconstructed is shown in the last graph, (h). Since this signal is
1024 points long, there will be 513 individual frequencies needed for a
complete reconstruction. Figures (a) through (g) show what the reconstructed
signal looks like if only some of these frequencies are used. For example, (f)
shows a reconstructed signal using frequencies 0 through 100. This signal was
created by taking the DFT of the signal in (h), setting frequencies 101 through
512 to a value of zero, and then using the Inverse DFT to find the resulting
time domain signal.

As more frequencies are added to the reconstruction, the signal becomes closer
to the final solution. The interesting thing is how the final solution is
approached at the edges in the signal. There are three sharp edges in (h). Two
are the edges of the rectangular pulse. The third is between sample numbers
1023 and 0, since the DFT views the time domain as periodic. When only
some of the frequencies are used in the reconstruction, each edge shows
overshoot and ringing (decaying oscillations). This overshoot and ringing is
known as the Gibbs effect, after the mathematical physicist Josiah Gibbs,
who explained the phenomenon in 1899.

Look closely at the overshoot in (e), (f), and (g). As more sinusoids are
added, the width of the overshoot decreases; however, the amplitude of the
overshoot remains about the same, roughly 9 percent. With discrete signals
this is not a problem; the overshoot is eliminated when the last frequency is
added. However, the reconstruction of continuous signals cannot be explained
so easily. An infinite number of sinusoids must be added to synthesize a
continuous signal. The problem is, the amplitude of the overshoot does not
decrease as the number of sinusoids approaches infinity, it stays about the same
9%. Given this situation (and other arguments), it is reasonable to question if
a summation of continuous sinusoids can reconstruct an edge. Remember the
squabble between Lagrange and Fourier?

The critical factor in resolving this puzzle is that the width of the overshoot
becomes smaller as more sinusoids are included. The overshoot is still present
with an infinite number of sinusoids, but it has zero width. Exactly at the
discontinuity the value of the reconstructed signal converges to the midpoint of
the step. As shown by Gibbs, the summation converges to the signal in the
sense that the error between the two has zero energy.

Problems related to the Gibbs effect are frequently encountered in DSP. For
example, a low-pass filter is a truncation of the higher frequencies, resulting
in overshoot and ringing at the edges in the time domain. Another common
procedure is to truncate the ends of a time domain signal to prevent them from
extending into neighboring periods. By duality, this distorts the edges in the
frequency domain. These issues will resurface in future chapters on filter
design.

Chapter 11- Fourier Transform Pairs 219

Sample number
0 256 512 768 1024

-1

0

1

2

a. Frequencies: 0

1023
Sample number

0 256 512 768 1024
-1

0

1

2

b. Frequencies: 0 & 1

1023

Sample number
0 256 512 768 1024

-1

0

1

2

d. Frequencies: 0 to 10

1023
Sample number

0 256 512 768 1024
-1

0

1

2

c. Frequencies: 0 to 3

1023

Sample number
0 256 512 768 1024

-1

0

1

2

e. Frequencies: 0 to 30

1023
Sample number

0 256 512 768 1024
-1

0

1

2

f. Frequencies: 0 to 100

1023

FIGURE 11-6.
The Gibbs effect.

Sample number
0 256 512 768 1024

-1

0

1

2

g. Frequencies: 0 to 300

1023
Sample number

0 256 512 768 1024
-1

0

1

2

h. Frequencies: 0 to 512

1023

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

The Scientist and Engineer's Guide to Digital Signal Processing220

Sample number
0 128 256 384 512 640 768 896 1024

-2

-1

0

1

2

a. Sine wave

1023
Frequency

0 0.02 0.04 0.06 0.08 0.1
0

100

200

300

400

500

600

700

b. Fundamental

Frequency
0 0.02 0.04 0.06 0.08 0.1

0

100

200

300

400

500

600

700

d. Fundamental plus
even and odd harmonics

Frequency DomainTime Domain

Sample number
0 128 256 384 512 640 768 896 1024

-2

-1

0

1

2

c. Asymmetrical distortion

1023

Sample number
0 128 256 384 512 640 768 896 1024

-2

-1

0

1

2

e. Symmetrical distortion

1023
Frequency

0 0.02 0.04 0.06 0.08 0.1
0

100

200

300

400

500

600

700

f. Fundamental plus
odd harmonics

FIGURE 11-7
Example of harmonics. Asymmetrical distortion, shown in (c), results in even and odd harmonics,
(d), while symmetrical distortion, shown in (e), produces only odd harmonics, (f).

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

Harmonics
If a signal is periodic with frequency f, the only frequencies composing the
signal are integer multiples of f, i.e., f, 2f, 3f, 4f, etc. These frequencies are
called harmonics. The first harmonic is f, the second harmonic is 2f, the
third harmonic is 3f, and so forth. The first harmonic (i.e., f) is also given
a special name, the fundamental frequency. Figure 11-7 shows an

Chapter 11- Fourier Transform Pairs 221

Sample number
0 20 40 60 80 100

-2

-1

0

1

2

a. Distorted sine wave

Frequency
0 0.1 0.2 0.3 0.4 0.5

-100

0

100

200

300

400

500

600

700

b. Frequency spectrum

Frequency
0 0.1 0.2 0.3 0.4 0.5

-100

-80

-60

-40

-20

0

20

40

60

80

100

c. Frequency spectrum (Log scale)

105

104

103

102

101

100

10-1

10-2

10-3

10-4

10-5

Frequency DomainTime Domain

FIGURE 11-8
Harmonic aliasing. Figures (a) and (b) show
a distorted sine wave and its frequency
spectrum, respectively. Harmonics with a
frequency greater than 0.5 will become
aliased to a frequency between 0 and 0.5.
Figure (c) displays the same frequency
spectrum on a logarithmic scale, revealing
many aliased peaks with very low amplitude.

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

example. Figure (a) is a pure sine wave, and (b) is its DFT, a single peak.
In (c), the sine wave has been distorted by poking in the tops of the peaks.
Figure (d) shows the result of this distortion in the frequency domain.
Because the distorted signal is periodic with the same frequency as the
original sine wave, the frequency domain is composed of the original peak
plus harmonics. Harmonics can be of any amplitude; however, they usually
become smaller as they increase in frequency. As with any signal, sharp
edges result in higher frequencies. For example, consider a common TTL
logic gate generating a 1 kHz square wave. The edges rise in a few
nanoseconds, resulting in harmonics being generated to nearly 100 MHz,
the ten-thousandth harmonic!

Figure (e) demonstrates a subtlety of harmonic analysis. If the signal is
symmetrical around a horizontal axis, i.e., the top lobes are mirror images of
the bottom lobes, all of the even harmonics will have a value of zero. As
shown in (f), the only frequencies contained in the signal are the fundamental,
the third harmonic, the fifth harmonic, etc.

All continuous periodic signals can be represented as a summation of
harmonics, just as described. Discrete periodic signals have a problem that
disrupts this simple relation. As you might have guessed, the problem is
aliasing. Figure 11-8a shows a sine wave distorted in the same manner as
before, by poking in the tops of the peaks. This waveform looks much less

The Scientist and Engineer's Guide to Digital Signal Processing222

EQUATION 11-7
Phase of the chirp system. Phase X [k] ' "k % $k 2

regular and smooth than in the previous example because the sine wave is
at a much higher frequency, resulting in fewer samples per cycle. Figure
(b) shows the frequency spectrum of this signal. As you would expect, you
can identify the fundamental and harmonics. This example shows that
harmonics can extend to frequencies greater than 0.5 of the sampling
frequency, and will be aliased to frequencies somewhere between 0 and 0.5.
You don't notice them in (b) because their amplitudes are too low. Figure
(c) shows the frequency spectrum plotted on a logarithmic scale to reveal
these low amplitude aliased peaks. At first glance, this spectrum looks like
random noise. It isn't; this is a result of the many harmonics overlapping
as they are aliased.

It is important to understand that this example involves distorting a signal
after it has been digitally represented. If this distortion occurred in an
analog signal, you would remove the offending harmonics with an antialias
filter before digitization. Harmonic aliasing is only a problem when
nonlinear operations are performed directly on a discrete signal. Even
then, the amplitude of these aliased harmonics is often low enough that they
can be ignored.

The concept of harmonics is also useful for another reason: it explains why the
DFT views the time and frequency domains as periodic. In the frequency
domain, an N point DFT consists of N/2+1 equally spaced frequencies. You
can view the frequencies between these samples as (1) having a value of zero,
or (2) not existing. Either way they don't contribute to the synthesis of the time
domain signal. In other words, a discrete frequency spectrum consists of
harmonics, rather than a continuous range of frequencies. This requires the
time domain to be periodic with a frequency equal to the lowest sinusoid in the
frequency domain, i.e., the fundamental frequency. Neglecting the DC value,
the lowest frequency represented in the frequency domain makes one complete
cycle every N samples, resulting in the time domain being periodic with a
period of N. In other words, if one domain is discrete, the other domain must
be periodic, and vice versa. This holds for all four members of the Fourier
transform family. Since the DFT views both domains as discrete, it must also
view both domains as periodic. The samples in each domain represent
harmonics of the periodicity of the opposite domain.

Chirp Signals
Chirp signals are an ingenious way of handling a practical problem in echo
location systems, such as radar and sonar. Figure 11-9 shows the frequency
response of the chirp system. The magnitude has a constant value of one, while
the phase is a parabola:

Chapter 11- Fourier Transform Pairs 223

Frequency
0 0.1 0.2 0.3 0.4 0.5

-1

0

1

2

a. Chirp magnitude

Frequency
0 0.1 0.2 0.3 0.4 0.5

-200

-150

-100

-50

0

50

b. Chirp phase

Ph
as

e
(r

ad
ia

ns
)

A
m

pl
itu

de

FIGURE 11-9
Frequency response of the chirp system. The magnitude is a constant, while the phase is a parabola.

Sample number
0 20 40 60 80 100 120

-0.5

0

0.5

1

1.5

b. Impulse Response
(chirp signal)

Sample number
0 20 40 60 80 100 120

-0.5

0

0.5

1

1.5

a. Impulse

FIGURE 11-10
The chirp system. The impulse response of a chirp system is a chirp signal.

System
Chirp

A
m

pl
itu

de

A
m

pl
itu

de

The parameter " introduces a linear slope in the phase, that is, it simply shifts
the impulse response left or right as desired. The parameter $ controls the
curvature of the phase. These two parameters must be chosen such that the
phase at frequency 0.5 (i.e. k = N/2) is a multiple of 2B. Remember, whenever
the phase is directly manipulated, frequency 0 and 0.5 must both have a phase
of zero (or a multiple of 2B, which is the same thing).

Figure 11-10 shows an impulse entering a chirp system, and the impulse
response exiting the system. The impulse response is an oscillatory burst that
starts at a low frequency and changes to a high frequency as time progresses.
 This is called a chirp signal for a very simple reason: it sounds like the chirp
of a bird when played through a speaker.

The key feature of the chirp system is that it is completely reversible. If you
run the chirp signal through an antichirp system, the signal is again made into
an impulse. This requires the antichirp system to have a magnitude of one,
and the opposite phase of the chirp system. As discussed in the last

The Scientist and Engineer's Guide to Digital Signal Processing224

chapter, this means that the impulse response of the antichirp system is found
by preforming a left-for-right flip of the chirp system's impulse response.
Interesting, but what is it good for?

Consider how a radar system operates. A short burst of radio frequency energy
is emitted from a directional antenna. Aircraft and other objects reflect some
of this energy back to a radio receiver located next to the transmitter. Since
radio waves travel at a constant rate, the elapsed time between the transmitted
and received signals provides the distance to the target. This brings up the
first requirement for the pulse: it needs to be as short as possible. For
example, a 1 microsecond pulse provides a radio burst about 300 meters long.
This means that the distance information we obtain with the system will have
a resolution of about this same length. If we want better distance resolution,
we need a shorter pulse.

The second requirement is obvious: if we want to detect objects farther away,
you need more energy in your pulse. Unfortunately, more energy and shorter
pulse are conflicting requirements. The electrical power needed to provide a
pulse is equal to the energy of the pulse divided by the pulse length. Requiring
both more energy and a shorter pulse makes electrical power handling a
limiting factor in the system. The output stage of a radio transmitter can only
handle so much power without destroying itself.

Chirp signals provide a way of breaking this limitation. Before the impulse
reaches the final stage of the radio transmitter, it is passed through a chirp
system. Instead of bouncing an impulse off the target aircraft, a chirp signal
is used. After the chirp echo is received, the signal is passed through an
antichirp system, restoring the signal to an impulse. This allows the portions
of the system that measure distance to see short pulses, while the power
handling circuits see long duration signals. This type of waveshaping is a
fundamental part of modern radar systems.

225

CHAPTER

12 The Fast Fourier Transform

There are several ways to calculate the Discrete Fourier Transform (DFT), such as solving
simultaneous linear equations or the correlation method described in Chapter 8. The Fast
Fourier Transform (FFT) is another method for calculating the DFT. While it produces the same
result as the other approaches, it is incredibly more efficient, often reducing the computation time
by hundreds. This is the same improvement as flying in a jet aircraft versus walking! If the
FFT were not available, many of the techniques described in this book would not be practical.
While the FFT only requires a few dozen lines of code, it is one of the most complicated
algorithms in DSP. But don't despair! You can easily use published FFT routines without fully
understanding the internal workings.

Real DFT Using the Complex DFT
J.W. Cooley and J.W. Tukey are given credit for bringing the FFT to the world
in their paper: "An algorithm for the machine calculation of complex Fourier
Series," Mathematics Computation, Vol. 19, 1965, pp 297-301. In retrospect,
others had discovered the technique many years before. For instance, the great
German mathematician Karl Friedrich Gauss (1777-1855) had used the method
more than a century earlier. This early work was largely forgotten because it
lacked the tool to make it practical: the digital computer. Cooley and Tukey
are honored because they discovered the FFT at the right time, the beginning
of the computer revolution.

The FFT is based on the complex DFT, a more sophisticated version of the real
DFT discussed in the last four chapters. These transforms are named for the
way each represents data, that is, using complex numbers or using real
numbers. The term complex does not mean that this representation is difficult
or complicated, but that a specific type of mathematics is used. Complex
mathematics often is difficult and complicated, but that isn't where the name
comes from. Chapter 29 discusses the complex DFT and provides the
background needed to understand the details of the FFT algorithm. The

The Scientist and Engineer's Guide to Digital Signal Processing226

FIGURE 12-1
Comparing the real and complex DFTs. The real DFT takes an N point time domain signal and
creates two point frequency domain signals. The complex DFT takes two N point timeN/2% 1
domain signals and creates two N point frequency domain signals. The crosshatched regions shows
the values common to the two transforms.

Real DFT

Complex DFT

Time Domain

Time Domain

Frequency Domain

Frequency Domain

0 N-1

0 N-1

0 N-1

0 N/2

0 N/2

0

0

N-1

N-1

N/2

N/2

Real Part

Imaginary Part

Real Part

Imaginary Part

Real Part

Imaginary Part

Time Domain Signal

topic of this chapter is simpler: how to use the FFT to calculate the real DFT,
without drowning in a mire of advanced mathematics.

Since the FFT is an algorithm for calculating the complex DFT, it is
important to understand how to transfer real DFT data into and out of the
complex DFT format. Figure 12-1 compares how the real DFT and the
complex DFT store data. The real DFT transforms an N point time domain
signal into two point frequency domain signals. The time domainN /2 % 1
signal is called just that: the time domain signal. The two signals in the
frequency domain are called the real part and the imaginary part, holding
the amplitudes of the cosine waves and sine waves, respectively. This
should be very familiar from past chapters.

In comparison, the complex DFT transforms two N point time domain signals
into two N point frequency domain signals. The two time domain signals are
called the real part and the imaginary part, just as are the frequency domain
signals. In spite of their names, all of the values in these arrays are just
ordinary numbers. (If you are familiar with complex numbers: the j's are not
included in the array values; they are a part of the mathematics. Recall that the
operator, Im(), returns a real number).

Chapter 12- The Fast Fourier Transform 227

6000 'NEGATIVE FREQUENCY GENERATION
6010 'This subroutine creates the complex frequency domain from the real frequency domain.
6020 'Upon entry to this subroutine, N% contains the number of points in the signals, and
6030 'REX[] and IMX[] contain the real frequency domain in samples 0 to N%/2.
6040 'On return, REX[] and IMX[] contain the complex frequency domain in samples 0 to N%-1.
6050 '
6060 FOR K% = (N%/2+1) TO (N%-1)
6070 REX[K%] = REX[N%-K%]
6080 IMX[K%] = -IMX[N%-K%]
6090 NEXT K%
6100 '
6110 RETURN

TABLE 12-1

Suppose you have an N point signal, and need to calculate the real DFT by
means of the Complex DFT (such as by using the FFT algorithm). First, move
the N point signal into the real part of the complex DFT's time domain, and
then set all of the samples in the imaginary part to zero. Calculation of the
complex DFT results in a real and an imaginary signal in the frequency
domain, each composed of N points. Samples 0 through N/2 of these signals
correspond to the real DFT's spectrum.

As discussed in Chapter 10, the DFT's frequency domain is periodic when the
negative frequencies are included (see Fig. 10-9). The choice of a single
period is arbitrary; it can be chosen between -1.0 and 0, -0.5 and 0.5, 0 and
1.0, or any other one unit interval referenced to the sampling rate. The
complex DFT's frequency spectrum includes the negative frequencies in the 0
to 1.0 arrangement. In other words, one full period stretches from sample 0 to
sample , corresponding with 0 to 1.0 times the sampling rate. The positiveN&1
frequencies sit between sample 0 and , corresponding with 0 to 0.5. TheN/2
other samples, between and , contain the negative frequencyN/2% 1 N&1
values (which are usually ignored).

Calculating a real Inverse DFT using a complex Inverse DFT is slightly
harder. This is because you need to insure that the negative frequencies are
loaded in the proper format. Remember, points 0 through in theN/2
complex DFT are the same as in the real DFT, for both the real and the
imaginary parts. For the real part, point is the same as pointN/2% 1

, point is the same as point , etc. This continues toN/2& 1 N/2% 2 N/2& 2
point being the same as point 1. The same basic pattern is used forN&1
the imaginary part, except the sign is changed. That is, point is theN/2% 1
negative of point , point is the negative of point , etc.N/2& 1 N/2% 2 N/2& 2
Notice that samples 0 and do not have a matching point in thisN/2
duplication scheme. Use Fig. 10-9 as a guide to understanding this
symmetry. In practice, you load the real DFT's frequency spectrum into
samples 0 to of the complex DFT's arrays, and then use a subroutine toN/2
generate the negative frequencies between samples and . TableN/2% 1 N&1
12-1 shows such a program. To check that the proper symmetry is present,
after taking the inverse FFT, look at the imaginary part of the time domain.
It will contain all zeros if everything is correct (except for a few parts-per-
million of noise, using single precision calculations).

The Scientist and Engineer's Guide to Digital Signal Processing228

FIGURE 12-2
The FFT decomposition. An N point signal is decomposed into N signals each containing a single point.
Each stage uses an interlace decomposition, separating the even and odd numbered samples.

1 signal of
16 points

2 signals of
8 points

4 signals of
4 points

8 signals of
2 points

16 signals of
1 point

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15

0 4 8 12 2 6 10 14 1 5 9 13 3 7 11 15

8 4 12 2 10 6 14 1 9 5 13 3 11 7 150

8 4 12 2 10 6 14 1 9 5 13 3 11 7 150

How the FFT works
The FFT is a complicated algorithm, and its details are usually left to those that
specialize in such things. This section describes the general operation of the
FFT, but skirts a key issue: the use of complex numbers. If you have a
background in complex mathematics, you can read between the lines to
understand the true nature of the algorithm. Don't worry if the details elude
you; few scientists and engineers that use the FFT could write the program
from scratch.

In complex notation, the time and frequency domains each contain one signal
made up of N complex points. Each of these complex points is composed of
two numbers, the real part and the imaginary part. For example, when we talk
about complex sample , it refers to the combination of andX[42] ReX[42]

. In other words, each complex variable holds two numbers. WhenImX[42]
two complex variables are multiplied, the four individual components must be
combined to form the two components of the product (such as in Eq. 9-1). The
following discussion on "How the FFT works" uses this jargon of complex
notation. That is, the singular terms: signal, point, sample, and value, refer
to the combination of the real part and the imaginary part.

The FFT operates by decomposing an N point time domain signal into N
time domain signals each composed of a single point. The second step is to
calculate the N frequency spectra corresponding to these N time domain
signals. Lastly, the N spectra are synthesized into a single frequency
spectrum.

Figure 12-2 shows an example of the time domain decomposition used in the
FFT. In this example, a 16 point signal is decomposed through four

Chapter 12- The Fast Fourier Transform 229

 Sample numbers Sample numbers
 in normal order after bit reversal

 Decimal Binary Decimal Binary
0 0000 0 0000
1 0001 8 1000
2 0010 4 0100
3 0011 12 1100
4 0100 2 0010
5 0101 10 1010
6 0110 6 0100
7 0111 14 1110
8 1000 1 0001
9 1001 9 1001
10 1010 5 0101
11 1011 13 1101
12 1100 3 0011
13 1101 11 1011
14 1110 7 0111
15 1111 15 1111

FIGURE 12-3
The FFT bit reversal sorting. The FFT time domain decomposition can be implemented by
sorting the samples according to bit reversed order.

separate stages. The first stage breaks the 16 point signal into two signals each
consisting of 8 points. The second stage decomposes the data into four signals
of 4 points. This pattern continues until there are N signals composed of a
single point. An interlaced decomposition is used each time a signal is
broken in two, that is, the signal is separated into its even and odd numbered
samples. The best way to understand this is by inspecting Fig. 12-2 until you
grasp the pattern. There are stages required in this decomposition, i.e.,Log2 N
a 16 point signal (24) requires 4 stages, a 512 point signal (27) requires 7
stages, a 4096 point signal (212) requires 12 stages, etc. Remember this value,

; it will be referenced many times in this chapter.Log2 N

Now that you understand the structure of the decomposition, it can be greatly
simplified. The decomposition is nothing more than a reordering of the
samples in the signal. Figure 12-3 shows the rearrangement pattern required.
 On the left, the sample numbers of the original signal are listed along with
their binary equivalents. On the right, the rearranged sample numbers are
listed, also along with their binary equivalents. The important idea is that the
binary numbers are the reversals of each other. For example, sample 3 (0011)
is exchanged with sample number 12 (1100). Likewise, sample number 14
(1110) is swapped with sample number 7 (0111), and so forth. The FFT time
domain decomposition is usually carried out by a bit reversal sorting
algorithm. This involves rearranging the order of the N time domain samples
by counting in binary with the bits flipped left-for-right (such as in the far right
column in Fig. 12-3).

The Scientist and Engineer's Guide to Digital Signal Processing230

a b c d

a b c d0 0 0 0

A B C D

A B C D A B C D

e f g h

e f g h0 0 0 0

E F G H

F G H E F G H

× sinusoid

Time Domain Frequency Domain

E

FIGURE 12-4
The FFT synthesis. When a time domain signal is diluted with zeros, the frequency domain is
duplicated. If the time domain signal is also shifted by one sample during the dilution, the spectrum
will additionally be multiplied by a sinusoid.

The next step in the FFT algorithm is to find the frequency spectra of the
1 point time domain signals. Nothing could be easier; the frequency
spectrum of a 1 point signal is equal to itself. This means that nothing is
required to do this step. Although there is no work involved, don't forget
that each of the 1 point signals is now a frequency spectrum, and not a time
domain signal.

The last step in the FFT is to combine the N frequency spectra in the exact
reverse order that the time domain decomposition took place. This is where the
algorithm gets messy. Unfortunately, the bit reversal shortcut is not
applicable, and we must go back one stage at a time. In the first stage, 16
frequency spectra (1 point each) are synthesized into 8 frequency spectra (2
points each). In the second stage, the 8 frequency spectra (2 points each) are
synthesized into 4 frequency spectra (4 points each), and so on. The last stage
results in the output of the FFT, a 16 point frequency spectrum.

Figure 12-4 shows how two frequency spectra, each composed of 4 points,
are combined into a single frequency spectrum of 8 points. This synthesis
must undo the interlaced decomposition done in the time domain. In other
words, the frequency domain operation must correspond to the time domain
procedure of combining two 4 point signals by interlacing. Consider two
time domain signals, abcd and efgh. An 8 point time domain signal can be
formed by two steps: dilute each 4 point signal with zeros to make it an

Chapter 12- The Fast Fourier Transform 231

++ + + + + + +

Eight Point Frequency Spectrum

Odd- Four Point

Frequency Spectrum

Even- Four Point

Frequency Spectrum

Sx Sx Sx Sx
FIGURE 12-5
FFT synthesis flow diagram. This shows
the method of combining two 4 point
frequency spectra into a single 8 point
frequency spectrum. The ×S operation
means that the signal is multiplied by a
sinusoid with an appropriately selected
frequency.

2 point input

2 point output

Sx
FIGURE 12-6
The FFT butterfly. This is the basic
calculation element in the FFT, taking
two complex points and converting
them into two other complex points.

8 point signal, and then add the signals together. That is, abcd becomes
a0b0c0d0, and efgh becomes 0e0f0g0h. Adding these two 8 point signals
produces aebfcgdh. As shown in Fig. 12-4, diluting the time domain with zeros
corresponds to a duplication of the frequency spectrum. Therefore, the
frequency spectra are combined in the FFT by duplicating them, and then
adding the duplicated spectra together.

In order to match up when added, the two time domain signals are diluted with
zeros in a slightly different way. In one signal, the odd points are zero, while
in the other signal, the even points are zero. In other words, one of the time
domain signals (0e0f0g0h in Fig. 12-4) is shifted to the right by one sample.
This time domain shift corresponds to multiplying the spectrum by a sinusoid.
To see this, recall that a shift in the time domain is equivalent to convolving
the signal with a shifted delta function. This multiplies the signal's spectrum
with the spectrum of the shifted delta function. The spectrum of a shifted delta
function is a sinusoid (see Fig 11-2).

Figure 12-5 shows a flow diagram for combining two 4 point spectra into a
single 8 point spectrum. To reduce the situation even more, notice that Fig. 12-
5 is formed from the basic pattern in Fig 12-6 repeated over and over.

The Scientist and Engineer's Guide to Digital Signal Processing232

Time Domain Data

Frequency Domain Data

Bit Reversal
Data Sorting

Overhead

Overhead

Calculation

Decomposition

Synthesis

Time
Domain

Frequency
Domain

Butterfly

FIGURE 12-7
Flow diagram of the FFT. This is based
on three steps: (1) decompose an N point
time domain signal into N signals each
containing a single point, (2) find the
spectrum of each of the N point signals
(nothing required), and (3) synthesize the
N f requency spect ra in to a s ingle
frequency spectrum.

Lo
op

 fo
r e

ac
h

B
ut

te
rf

ly

Lo
op

 fo
r L

ea
ch

 su
b-

D
FT

Lo
op

 fo
r L

og
2N

 st
ag

es

This simple flow diagram is called a butterfly due to its winged appearance.
The butterfly is the basic computational element of the FFT, transforming two
complex points into two other complex points.

Figure 12-7 shows the structure of the entire FFT. The time domain
decomposition is accomplished with a bit reversal sorting algorithm.
Transforming the decomposed data into the frequency domain involves nothing
and therefore does not appear in the figure.

The frequency domain synthesis requires three loops. The outer loop runs
through the stages (i.e., each level in Fig. 12-2, starting from the bottomLog2 N
and moving to the top). The middle loop moves through each of the individual
frequency spectra in the stage being worked on (i.e., each of the boxes on any
one level in Fig. 12-2). The innermost loop uses the butterfly to calculate the
points in each frequency spectra (i.e., looping through the samples inside any
one box in Fig. 12-2). The overhead boxes in Fig. 12-7 determine the
beginning and ending indexes for the loops, as well as calculating the sinusoids
needed in the butterflies. Now we come to the heart of this chapter, the actual
FFT programs.

Chapter 12- The Fast Fourier Transform 233

5000 'COMPLEX DFT BY CORRELATION
5010 'Upon entry, N% contains the number of points in the DFT, and
5020 'XR[] and XI[] contain the real and imaginary parts of the time domain.
5030 'Upon return, REX[] and IMX[] contain the frequency domain data.
5040 'All signals run from 0 to N%-1.
5050 '
5060 PI = 3.14159265 'Set constants
5070 '
5080 FOR K% = 0 TO N%-1 'Zero REX[] and IMX[], so they can be used
5090 REX[K%] = 0 'as accumulators during the correlation
5100 IMX[K%] = 0
5110 NEXT K%
5120 '
5130 FOR K% = 0 TO N%-1 'Loop for each value in frequency domain
5140 FOR I% = 0 TO N%-1 'Correlate with the complex sinusoid, SR & SI
5150 '
5160 SR = COS(2*PI*K%*I%/N%) 'Calculate complex sinusoid
5170 SI = -SIN(2*PI*K%*I%/N%)
5180 REX[K%] = REX[K%] + XR[I%]*SR - XI[I%]*SI
5190 IMX[K%] = IMX[K%] + XR[I%]*SI + XI[I%]*SR
5200 '
5210 NEXT I%
5220 NEXT K%
5230 '
5240 RETURN

TABLE 12-2

FFT Programs
As discussed in Chapter 8, the real DFT can be calculated by correlating
the time domain signal with sine and cosine waves (see Table 8-2). Table
12-2 shows a program to calculate the complex DFT by the same method.
 In an apples-to-apples comparison, this is the program that the FFT
improves upon.

Tables 12-3 and 12-4 show two different FFT programs, one in FORTRAN and
one in BASIC. First we will look at the BASIC routine in Table 12-4. This
subroutine produces exactly the same output as the correlation technique in
Table 12-2, except it does it much faster. The block diagram in Fig. 12-7 can
be used to identify the different sections of this program. Data are passed to
this FFT subroutine in the arrays: REX[] and IMX[], each running from
sample 0 to . Upon return from the subroutine, REX[] and IMX[] areN&1
overwritten with the frequency domain data. This is another way that the FFT
is highly optimized; the same arrays are used for the input, intermediate
storage, and output. This efficient use of memory is important for designing
fast hardware to calculate the FFT. The term in-place computation is used
to describe this memory usage.

While all FFT programs produce the same numerical result, there are subtle
variations in programming that you need to look out for. Several of these

The Scientist and Engineer's Guide to Digital Signal Processing234

TABLE 12-3
The Fast Fourier Transform in FORTRAN.
Data are passed to this subroutine in the
variables X() and M. The integer, M, is the
base two logarithm of the length of the DFT,
i.e., M = 8 for a 256 point DFT, M = 12 for a
4096 point DFT, etc. The complex array, X(),
holds the time domain data upon entering the
DFT. Upon return from this subroutine, X() is
overwritten with the frequency domain data.
Take note: this subroutine requires that the
input and output signals run from X(1) through
X(N), rather than the customary X(0) through
X(N-1).

SUBROUTINE FFT(X,M)
COMPLEX X(4096),U,S,T
PI=3.14159265
N=2**M
DO 20 L=1,M
LE=2**(M+1-L)
LE2=LE/2
U=(1.0,0.0)
S=CMPLX(COS(PI/FLOAT(LE2)),-SIN(PI/FLOAT(LE2)))
DO 20 J=1,LE2
DO 10 I=J,N,LE
IP=I+LE2
T=X(I)+X(IP)
X(IP)=(X(I)-X(IP))*U

10 X(I)=T
20 U=U*S

ND2=N/2
NM1=N-1
J=1
DO 50 I=1,NM1
IF(I.GE.J) GO TO 30
T=X(J)
X(J)=X(I)
X(I)=T

30 K=ND2
40 IF(K.GE.J) GO TO 50

J=J-K
K=K/2
GO TO 40

50 J=J+K
RETURN
END

important differences are illustrated by the FORTRAN program listed in Table
12-3. This program uses an algorithm called decimation in frequency, while
the previously described algorithm is called decimation in time. In a
decimation in frequency algorithm, the bit reversal sorting is done after the
three nested loops. There are also FFT routines that completely eliminate the
bit reversal sorting. None of these variations significantly improve the
performance of the FFT, and you shouldn't worry about which one you are
using.

The important differences between FFT algorithms concern how data are
passed to and from the subroutines. In the BASIC program, data enter and
leave the subroutine in the arrays REX[] and IMX[], with the samples
running from index 0 to . In the FORTRAN program, data are passedN&1
in the complex array , with the samples running from 1 to N. Since thisX()
is an array of complex variables, each sample in X() consists of two
numbers, a real part and an imaginary part. The length of the DFT must
also be passed to these subroutines. In the BASIC program, the variable
N% is used for this purpose. In comparison, the FORTRAN program uses
the variable M, which is defined to equal . For instance, M will beLog2 N

Chapter 12- The Fast Fourier Transform 235

TABLE 12-4
The Fast Fourier Transform in BASIC.

1000 'THE FAST FOURIER TRANSFORM
1010 'Upon entry, N% contains the number of points in the DFT, REX[] and
1020 'IMX[] contain the real and imaginary parts of the input. Upon return,
1030 'REX[] and IMX[] contain the DFT output. All signals run from 0 to N%-1.
1040 '
1050 PI = 3.14159265 'Set constants
1060 NM1% = N%-1
1070 ND2% = N%/2
1080 M% = CINT(LOG(N%)/LOG(2))
1090 J% = ND2%
1100 '
1110 FOR I% = 1 TO N%-2 'Bit reversal sorting
1120 IF I% >= J% THEN GOTO 1190
1130 TR = REX[J%]
1140 TI = IMX[J%]
1150 REX[J%] = REX[I%]
1160 IMX[J%] = IMX[I%]
1170 REX[I%] = TR
1180 IMX[I%] = TI
1190 K% = ND2%
1200 IF K% > J% THEN GOTO 1240
1210 J% = J%-K%
1220 K% = K%/2
1230 GOTO 1200
1240 J% = J%+K%
1250 NEXT I%
1260 '
1270 FOR L% = 1 TO M% 'Loop for each stage
1280 LE% = CINT(2^L%)
1290 LE2% = LE%/2
1300 UR = 1
1310 UI = 0
1320 SR = COS(PI/LE2%) 'Calculate sine & cosine values
1330 SI = -SIN(PI/LE2%)
1340 FOR J% = 1 TO LE2% 'Loop for each sub DFT
1350 JM1% = J%-1
1360 FOR I% = JM1% TO NM1% STEP LE% 'Loop for each butterfly
1370 IP% = I%+LE2%
1380 TR = REX[IP%]*UR - IMX[IP%]*UI 'Butterfly calculation
1390 TI = REX[IP%]*UI + IMX[IP%]*UR
1400 REX[IP%] = REX[I%]-TR
1410 IMX[IP%] = IMX[I%]-TI
1420 REX[I%] = REX[I%]+TR
1430 IMX[I%] = IMX[I%]+TI
1440 NEXT I%
1450 TR = UR
1460 UR = TR*SR - UI*SI
1470 UI = TR*SI + UI*SR
1480 NEXT J%
1490 NEXT L%
1500 '
1510 RETURN

The Scientist and Engineer's Guide to Digital Signal Processing236

2000 'INVERSE FAST FOURIER TRANSFORM SUBROUTINE
2010 'Upon entry, N% contains the number of points in the IDFT, REX[] and
2020 'IMX[] contain the real and imaginary parts of the complex frequency domain.
2030 'Upon return, REX[] and IMX[] contain the complex time domain.
2040 'All signals run from 0 to N%-1.
2050 '
2060 FOR K% = 0 TO N%-1 'Change the sign of IMX[]
2070 IMX[K%] = -IMX[K%]
2080 NEXT K%
2090 '
2100 GOSUB 1000 'Calculate forward FFT (Table 12-3)
2110 '
2120 FOR I% = 0 TO N%-1 'Divide the time domain by N% and
2130 REX[I%] = REX[I%]/N% 'change the sign of IMX[]
2140 IMX[I%] = -IMX[I%]/N%
2150 NEXT I%
2160 '
2170 RETURN

TABLE 12-5

8 for a 256 point DFT, 12 for a 4096 point DFT, etc. The point is, the
programmer who writes an FFT subroutine has many options for interfacing
with the host program. Arrays that run from 1 to N, such as in the
FORTRAN program, are especially aggravating. Most of the DSP literature
(including this book) explains algorithms assuming the arrays run from
sample 0 to . For instance, if the arrays run from 1 to N, the symmetryN&1
in the frequency domain is around points 1 and , rather than pointsN/2% 1
0 and ,N/2

Using the complex DFT to calculate the real DFT has another interesting
advantage. The complex DFT is more symmetrical between the time and
frequency domains than the real DFT. That is, the duality is stronger. Among
other things, this means that the Inverse DFT is nearly identical to the Forward
DFT. In fact, the easiest way to calculate an Inverse FFT is to calculate a
Forward FFT, and then adjust the data. Table 12-5 shows a subroutine for
calculating the Inverse FFT in this manner.

Suppose you copy one of these FFT algorithms into your computer program and
start it running. How do you know if it is operating properly? Two tricks are
commonly used for debugging. First, start with some arbitrary time domain
signal, such as from a random number generator, and run it through the FFT.
Next, run the resultant frequency spectrum through the Inverse FFT and
compare the result with the original signal. They should be identical, except
round-off noise (a few parts-per-million for single precision).

The second test of proper operation is that the signals have the correct
symmetry. When the imaginary part of the time domain signal is composed
of all zeros (the normal case), the frequency domain of the complex DFT
will be symmetrical around samples 0 and , as previously described.N/2

Chapter 12- The Fast Fourier Transform 237

EQUATION 12-1
DFT execution time. The time required
to calculate a DFT by correlation is
proportional to the length of the DFT
squared.

ExecutionTime ' kDFT N 2

EQUATION 12-2
FFT execution time. The time required
to calculate a DFT using the FFT is
proportional to N multiplied by the
logarithm of N.

ExecutionTime ' kFFT N log2N

Likewise, when this correct symmetry is present in the frequency domain, the
Inverse DFT will produce a time domain that has an imaginary part composes
of all zeros (plus round-off noise). These debugging techniques are essential
for using the FFT; become familiar with them.

Speed and Precision Comparisons
When the DFT is calculated by correlation (as in Table 12-2), the program uses
two nested loops, each running through N points. This means that the total
number of operations is proportional to N times N. The time to complete the
program is thus given by:

where N is the number of points in the DFT and kDFT is a constant of
proportionality. If the sine and cosine values are calculated within the nested
loops, kDFT is equal to about 25 microseconds on a Pentium at 100 MHz. If
you precalculate the sine and cosine values and store them in a look-up-table,
kDFT drops to about 7 microseconds. For example, a 1024 point DFT will
require about 25 seconds, or nearly 25 milliseconds per point. That's slow!

Using this same strategy we can derive the execution time for the FFT. The
time required for the bit reversal is negligible. In each of the stagesLog2 N
there are butterfly computations. This means the execution time for theN/2
program is approximated by:

The value of kFFT is about 10 microseconds on a 100 MHz Pentium system. A
1024 point FFT requires about 70 milliseconds to execute, or 70 microseconds
per point. This is more than 300 times faster than the DFT calculated by
correlation!

Not only is less than , it increases much more slowly as NNLog2N N 2

becomes larger. For example, a 32 point FFT is about ten times faster than
the correlation method. However, a 4096 point FFT is one-thousand times
faster. For small values of N (say, 32 to 128), the FFT is important. For
large values of N (1024 and above), the FFT is absolutely critical. Figure
12-8 compares the execution times of the two algorithms in a graphical
form.

The Scientist and Engineer's Guide to Digital Signal Processing238

Number points in DFT

8 16 32 64 128 256 512 1024 2048 4096

0.001

0.01

0.1

1

10

100

1000

FFT

correlation

correlation

w/LUT

FIGURE 12-8
Execution times for calculating the DFT. The
correlation method refers to the algorithm
described in Table 12-2. This method can be
made faster by precalculating the sine and
cosine values and storing them in a look-up
table (LUT). The FFT (Table 12-3) is the
fastest algorithm when the DFT is greater than
16 points long. The times shown are for a
Pentium processor at 100 MHz. Ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

Number of points in DFT

16 32 64 128 256 512 1024

0

10

20

30

40

50

60

70

FFT

correlation

FIGURE 12-9
DFT precision. Since the FFT calculates the
DFT faster than the correlation method, it also
calculates it with less round-off error.

Er
ro

r (
pa

rts
 p

er
 m

ill
io

n)

The FFT has another advantage besides raw speed. The FFT is calculated more
precisely because the fewer number of calculations results in less round-off
error. This can be demonstrated by taking the FFT of an arbitrary signal, and
then running the frequency spectrum through an Inverse FFT. This
reconstructs the original time domain signal, except for the addition of round-
off noise from the calculations. A single number characterizing this noise can
be obtained by calculating the standard deviation of the difference between the
two signals. For comparison, this same procedure can be repeated using a DFT
calculated by correlation, and a corresponding Inverse DFT. How does the
round-off noise of the FFT compare to the DFT by correlation? See for
yourself in Fig. 12-9.

Further Speed Increases
There are several techniques for making the FFT even faster; however, the
improvements are only about 20-40%. In one of these methods, the time

Chapter 12- The Fast Fourier Transform 239

4000 'INVERSE FFT FOR REAL SIGNALS
4010 'Upon entry, N% contains the number of points in the IDFT, REX[] and
4020 'IMX[] contain the real and imaginary parts of the frequency domain running from
4030 'index 0 to N%/2. The remaining samples in REX[] and IMX[] are ignored.
4040 'Upon return, REX[] contains the real time domain, IMX[] contains zeros.
4050 '
4060 '
4070 FOR K% = (N%/2+1) TO (N%-1) 'Make frequency domain symmetrical
4080 REX[K%] = REX[N%-K%] '(as in Table 12-1)
4090 IMX[K%] = -IMX[N%-K%]
4100 NEXT K%
4110 '
4120 FOR K% = 0 TO N%-1 'Add real and imaginary parts together
4130 REX[K%] = REX[K%]+IMX[K%]
4140 NEXT K%
4150 '
4160 GOSUB 3000 'Calculate forward real DFT (TABLE 12-6)
4170 '
4180 FOR I% = 0 TO N%-1 'Add real and imaginary parts together
4190 REX[I%] = (REX[I%]+IMX[I%])/N% 'and divide the time domain by N%
4200 IMX[I%] = 0
4210 NEXT I%
4220 '
4230 RETURN

TABLE 12-6

domain decomposition is stopped two stages early, when each signal is
composed of only four points. Instead of calculating the last two stages, highly
optimized code is used to jump directly into the frequency domain, using the
simplicity of four point sine and cosine waves.

Another popular algorithm eliminates the wasted calculations associated with
the imaginary part of the time domain being zero, and the frequency spectrum
being symmetrical. In other words, the FFT is modified to calculate the real
DFT, instead of the complex DFT. These algorithms are called the real FFT
and the real Inverse FFT (or similar names). Expect them to be about 30%
faster than the conventional FFT routines. Tables 12-6 and 12-7 show programs
for these algorithms.

There are two small disadvantages in using the real FFT. First, the code is
about twice as long. While your computer doesn't care, you must take the time
to convert someone else's program to run on your computer. Second, debugging
these programs is slightly harder because you cannot use symmetry as a check
for proper operation. These algorithms force the imaginary part of the time
domain to be zero, and the frequency domain to have left-right symmetry. For
debugging, check that these programs produce the same output as the
conventional FFT algorithms.

Figures 12-10 and 12-11 illustrate how the real FFT works. In Fig. 12-10,
(a) and (b) show a time domain signal that consists of a pulse in the real part,
and all zeros in the imaginary part. Figures (c) and (d) show the corresponding
frequency spectrum. As previously described, the frequency domain's real part
has an even symmetry around sample 0 and sample , while the imaginaryN/2
part has an odd symmetry around these same points.

The Scientist and Engineer's Guide to Digital Signal Processing240

Sample number

0 16 32 48 64

-1

0

1

2

63

a. Real part

Freqeuncy

0 16 32 48

-8

-4

0

4

8

c. Real part (even symmetry)

63

Frequency

0 16 32 48

-8

-4

0

4

8

d. Imaginary part (odd symmetry)

63

Frequency DomainTime Domain

Sample number

0 16 32 48 64

-1

0

1

2

63

b. Imaginary part

FIGURE 12-10
Real part symmetry of the DFT.

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Now consider Fig. 12-11, where the pulse is in the imaginary part of the time
domain, and the real part is all zeros. The symmetry in the frequency domain
is reversed; the real part is odd, while the imaginary part is even. This
situation will be discussed in Chapter 29. For now, take it for granted that this
is how the complex DFT behaves.

What if there is a signal in both parts of the time domain? By additivity, the
frequency domain will be the sum of the two frequency spectra. Now the key
element: a frequency spectrum composed of these two types of symmetry can
be perfectly separated into the two component signals. This is achieved by the
even/odd decomposition discussed in Chapter 5. In other words, two real
DFT's can be calculated for the price of single FFT. One of the signals is
placed in the real part of the time domain, and the other signal is placed in the
imaginary part. After calculating the complex DFT (via the FFT, of course),
the spectra are separated using the even/odd decomposition. When two or more
signals need to be passed through the FFT, this technique reduces the execution
time by about 40%. The improvement isn't a full factor of two because of the
calculation time required for the even/odd decomposition. This is a relatively
simple technique with few pitfalls, nothing like writing an FFT routine from
scratch.

Chapter 12- The Fast Fourier Transform 241

Sample number

0 16 32 48 64

-1

0

1

2

63

a. Real part

Frequency

0 16 32 48

-8

-4

0

4

8

c. Real part (odd symmetry)

63

Frequency

0 16 32 48

-8

-4

0

4

8

d. Imaginary part (even symmetry)

63

Frequency DomainTime Domain

Sample number

0 16 32 48 64

-1

0

1

2

63

b. Imaginary part

FIGURE 12-11
Imaginary part symmetry of the DFT.

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

The next step is to modify the algorithm to calculate a single DFT faster. It's
ugly, but here is how it is done. The input signal is broken in half by using an
interlaced decomposition. The even points are placed into the real part ofN/2
the time domain signal, while the odd points go into the imaginary part.N/2
An point FFT is then calculated, requiring about one-half the time as anN/2
N point FFT. The resulting frequency domain is then separated by the
even/odd decomposition, resulting in the frequency spectra of the two interlaced
time domain signals. These two frequency spectra are then combined into a
single spectrum, just as in the last synthesis stage of the FFT.

To close this chapter, consider that the FFT is to Digital Signal Processing
what the transistor is to electronics. It is a foundation of the technology;
everyone in the field knows its characteristics and how to use it. However,
only a small number of specialists really understand the details of the internal
workings.

The Scientist and Engineer's Guide to Digital Signal Processing242

3000 'FFT FOR REAL SIGNALS
3010 'Upon entry, N% contains the number of points in the DFT, REX[] contains
3020 'the real input signal, while values in IMX[] are ignored. Upon return,
3030 'REX[] and IMX[] contain the DFT output. All signals run from 0 to N%-1.
3040 '
3050 NH% = N%/2-1 'Separate even and odd points
3060 FOR I% = 0 TO NH%
3070 REX(I%) = REX(2*I%)
3080 IMX(I%) = REX(2*I%+1)
3090 NEXT I%
3100 '
3110 N% = N%/2 'Calculate N%/2 point FFT
3120 GOSUB 1000 '(GOSUB 1000 is the FFT in Table 12-3)
3130 N% = N%*2
3140 '
3150 NM1% = N%-1 'Even/odd frequency domain decomposition
3160 ND2% = N%/2
3170 N4% = N%/4-1
3180 FOR I% = 1 TO N4%
3190 IM% = ND2%-I%
3200 IP2% = I%+ND2%
3210 IPM% = IM%+ND2%
3220 REX(IP2%) = (IMX(I%) + IMX(IM%))/2
3230 REX(IPM%) = REX(IP2%)
3240 IMX(IP2%) = -(REX(I%) - REX(IM%))/2
3250 IMX(IPM%) = -IMX(IP2%)
3260 REX(I%) = (REX(I%) + REX(IM%))/2
3270 REX(IM%) = REX(I%)
3280 IMX(I%) = (IMX(I%) - IMX(IM%))/2
3290 IMX(IM%) = -IMX(I%)
3300 NEXT I%
3310 REX(N%*3/4) = IMX(N%/4)
3320 REX(ND2%) = IMX(0)
3330 IMX(N%*3/4) = 0
3340 IMX(ND2%) = 0
3350 IMX(N%/4) = 0
3360 IMX(0) = 0
3370 '
3380 PI = 3.14159265 'Complete the last FFT stage
3390 L% = CINT(LOG(N%)/LOG(2))
3400 LE% = CINT(2^L%)
3410 LE2% = LE%/2
3420 UR = 1
3430 UI = 0
3440 SR = COS(PI/LE2%)
3450 SI = -SIN(PI/LE2%)
3460 FOR J% = 1 TO LE2%
3470 JM1% = J%-1
3480 FOR I% = JM1% TO NM1% STEP LE%
3490 IP% = I%+LE2%
3500 TR = REX[IP%]*UR - IMX[IP%]*UI
3510 TI = REX[IP%]*UI + IMX[IP%]*UR
3520 REX[IP%] = REX[I%]-TR
3530 IMX[IP%] = IMX[I%]-TI
3540 REX[I%] = REX[I%]+TR
3550 IMX[I%] = IMX[I%]+TI
3560 NEXT I%
3570 TR = UR
3580 UR = TR*SR - UI*SI
3590 UI = TR*SI + UI*SR
3600 NEXT J%
3610 RETURN TABLE 12-7

243

CHAPTER

13 Continuous Signal Processing

Continuous signal processing is a parallel field to DSP, and most of the techniques are nearly
identical. For example, both DSP and continuous signal processing are based on linearity,
decomposition, convolution and Fourier analysis. Since continuous signals cannot be directly
represented in digital computers, don't expect to find computer programs in this chapter.
Continuous signal processing is based on mathematics; signals are represented as equations, and
systems change one equation into another. Just as the digital computer is the primary tool used
in DSP, calculus is the primary tool used in continuous signal processing. These techniques have
been used for centuries, long before computers were developed.

The Delta Function
Continuous signals can be decomposed into scaled and shifted delta functions,
just as done with discrete signals. The difference is that the continuous delta
function is much more complicated and mathematically abstract than its discrete
counterpart. Instead of defining the continuous delta function by what it is, we
will define it by the characteristics it has.

A thought experiment will show how this works. Imagine an electronic circuit
composed of linear components, such as resistors, capacitors and inductors.
Connected to the input is a signal generator that produces various shapes of
short pulses. The output of the circuit is connected to an oscilloscope,
displaying the waveform produced by the circuit in response to each input
pulse. The question we want to answer is: how is the shape of the output
pulse related to the characteristics of the input pulse? To simplify the
investigation, we will only use input pulses that are much shorter than the
output. For instance, if the system responds in milliseconds, we might use input
pulses only a few microseconds in length.

After taking many measurement, we come to three conclusions: First, the
shape of the input pulse does not affect the shape of the output signal. This

The Scientist and Engineer's Guide to Digital Signal Processing244

is illustrated in Fig. 13-1, where various shapes of short input pulses
produce exactly the same shape of output pulse. Second, the shape of the
output waveform is totally determined by the characteristics of the system,
i.e., the value and configuration of the resistors, capacitors and inductors.
Third, the amplitude of the output pulse is directly proportional to the area
of the input pulse. For example, the output will have the same amplitude
for inputs of: 1 volt for 1 microsecond, 10 volts for 0.1 microseconds,
1,000 volts for 1 nanosecond, etc. This relationship also allows for input
pulses with negative areas. For instance, imagine the combination of a 2
volt pulse lasting 2 microseconds being quickly followed by a -1 volt pulse
lasting 4 microseconds. The total area of the input signal is zero, resulting
in the output doing nothing.

Input signals that are brief enough to have these three properties are called
impulses. In other words, an impulse is any signal that is entirely zero
except for a short blip of arbitrary shape. For example, an impulse to a
microwave transmitter may have to be in the picosecond range because the
electronics responds in nanoseconds. In comparison, a volcano that erupts
for years may be a perfectly good impulse to geological changes that take
millennia.

Mathematicians don't like to be limited by any particular system, and
commonly use the term impulse to mean a signal that is short enough to be
an impulse to any possible system. That is, a signal that is infinitesimally
narrow. The continuous delta function is a normalized version of this type
of impulse. Specifically, the continuous delta function is mathematically
defined by three idealized characteristics: (1) the signal must be
infinitesimally brief, (2) the pulse must occur at time zero, and (3) the pulse
must have an area of one.

Since the delta function is defined to be infinitesimally narrow and have a fixed
area, the amplitude is implied to be infinite. Don't let this bother you; it is
completely unimportant. Since the amplitude is part of the shape of the
impulse, you will never encounter a problem where the amplitude makes any
difference, infinite or not. The delta function is a mathematical construct, not
a real world signal. Signals in the real world that act as delta functions will
always have a finite duration and amplitude.

Just as in the discrete case, the continuous delta function is given the
mathematical symbol: . Likewise, the output of a continuous system in* ()
response to a delta function is called the impulse response, and is often
denoted by: . Notice that parentheses, (), are used to denote continuoush ()
signals, as compared to brackets, [], for discrete signals. This notation is
used in this book and elsewhere in DSP, but isn't universal. Impulses are
displayed in graphs as vertical arrows (see Fig. 13-1d), with the length of the
arrow indicating the area of the impulse.

To better understand real world impulses, look into the night sky at a planet
and a star, for instance, Mars and Sirius. Both appear about the same
brightness and size to the unaided eye. The reason for this similarity is not

Chapter 13- Continuous Signal Processing 245

*

Linear
System

Linear
System

Linear
System

Linear
System

a.

b.

c

d.
(t)

FIGURE 13-1
The continuous delta function. If the input to a linear system is brief compared to the resulting
output, the shape of the output depends only on the characteristics of the system, and not the shape
of the input. Such short input signals are called impulses. Figures a,b & c illustrate example input
signals that are impulses for this particular system. The term delta function is used to describe a
normalized impulse, i.e., one that occurs at and has an area of one. The mathematical symbolst ' 0
for the delta function are shown in (d), a vertical arrow and .*(t)

obvious, since the viewing geometry is drastically different. Mars is about
6000 kilometers in diameter and 60 million kilometers from earth. In
comparison, Sirius is about 300 times larger and over one-million times
farther away. These dimensions should make Mars appear more than
three-thousand times larger than Sirius. How is it possible that they look
alike?

These objects look the same because they are small enough to be impulses to
the human visual system. The perceived shape is the impulse response of the
eye, not the actual image of the star or planet. This becomes obvious when the
two objects are viewed through a small telescope; Mars appears as a dim disk,
while Sirius still appears as a bright impulse. This is also the reason that stars
twinkle while planets do not. The image of a star is small enough that it can
be briefly blocked by particles or turbulence in the atmosphere, whereas the
larger image of the planet is much less affected.

The Scientist and Engineer's Guide to Digital Signal Processing246

y(t) ' m
%4

&4

x(J) h (t& J) dJ
EQUATION 13-1
The convolution integral. This equation
defines the meaning of: .y (t) ' x (t)th (t)

Convolution
Just as with discrete signals, the convolution of continuous signals can be
viewed from the input signal, or the output signal. The input side
viewpoint is the best conceptual description of how convolution operates.
In comparison, the output side viewpoint describes the mathematics that
must be used. These descriptions are virtually identical to those presented
in Chapter 6 for discrete signals.

Figure 13-2 shows how convolution is viewed from the input side. An input
signal, , is passed through a system characterized by an impulse response,x (t)

, to produce an output signal, . This can be written in the familiarh (t) y (t)
mathematical equation, . The input signal is divided intoy (t) ' x(t)th (t)
narrow columns, each short enough to act as an impulse to the system. In
other words, the input signal is decomposed into an infinite number of scaled
and shifted delta functions. Each of these impulses produces a scaled and
shifted version of the impulse response in the output signal. The final output
signal is then equal to the combined effect, i.e., the sum of all of the individual
responses.

For this scheme to work, the width of the columns must be much shorter
than the response of the system. Of course, mathematicians take this to the
extreme by making the input segments infinitesimally narrow, turning the
situation into a calculus problem. In this manner, the input viewpoint
describes how a single point (or narrow region) in the input signal affects
a larger portion of output signal.

In comparison, the output viewpoint examines how a single point in the output
signal is determined by the various values from the input signal. Just as with
discrete signals, each instantaneous value in the output signal is affected by a
section of the input signal, weighted by the impulse response flipped
left-for-right. In the discrete case, the signals are multiplied and summed. In
the continuous case, the signals are multiplied and integrated. In equation
form:

This equation is called the convolution integral, and is the twin of the
convolution sum (Eq. 6-1) used with discrete signals. Figure 13-3 shows how
this equation can be understood. The goal is to find an expression for
calculating the value of the output signal at an arbitrary time, t. The first
step is to change the independent variable used to move through the input
signal and the impulse response. That is, we replace t with J (a lower case

Chapter 13- Continuous Signal Processing 247

a

b
c

a

b c

time (t) time(t)

x(t) y(t)Linear
System

FIGURE 13-2
Convolution viewed from the input side. The input signal, , is divided into narrow segments,x(t)
each acting as an impulse to the system. The output signal, , is the sum of the resulting scaledy (t)
and shifted impulse responses. This illustration shows how three points in the input signal contribute
to the output signal.

time (J) time(t)

x(J) y(t)

t th(t-J)

?
x(J)

Linear
System

FIGURE 13-3
Convolution viewed from the output side. Each value in the output signal is influenced by many
points from the input signal. In this figure, the output signal at time t is being calculated. The input
signal, , is weighted (multiplied) by the flipped and shifted impulse response, given by .x (J) h (t&J)
Integrating the weighted input signal produces the value of the output point, y (t)

Greek tau). This makes and become and , respectively.x (t) h (t) x (J) h (J)
This change of variable names is needed because t is already being used to
represent the point in the output signal being calculated. The next step is to
flip the impulse response left-for-right, turning it into . Shifting theh (& J)
flipped impulse response to the location t, results in the expression becoming

. The input signal is then weighted by the flipped and shifted impulseh(t& J)
response by multiplying the two, i.e., . The value of the outputx (J) h (t& J)
signal is then found by integrating this weighted input signal from negative to
positive infinity, as described by Eq. 13-1.

If you have trouble understanding how this works, go back and review the same
concepts for discrete signals in Chapter 6. Figure 13-3 is just another way of
describing the convolution machine in Fig. 6-8. The only difference is that
integrals are being used instead of summations. Treat this as an extension of
what you already know, not something new.

An example will illustrate how continuous convolution is used in real world
problems and the mathematics required. Figure 13-4 shows a simple
continuous linear system: an electronic low-pass filter composed of a single
resistor and a single capacitor. As shown in the figure, an impulse entering this
system produces an output that quickly jumps to some value, and then
exponentially decays toward zero. In other words, the impulse response of
this simple electronic circuit is a one-sided exponential. Mathematically, the

The Scientist and Engineer's Guide to Digital Signal Processing248

Time
-1 0 1 2 3

0

1

2

Time
-1 0 1 2 3

0

1

2

*(t) h(t)

R

CA
m
pl
itu

de

A
m
pl
itu

de

FIGURE 13-4
Example of a continuous linear system. This electronic circuit is a low-pass filter composed of a single resistor
and capacitor. The impulse response of this system is a one-sided exponential.

h (t) ' 0

h (t) ' "e &" t
for t $ 0

for t < 0

x(t) ' 1 for 0 # t # 1

x(t) ' 0 otherwise

Time
-1 0 1 2 3

0

1

2

Time
-1 0 1 2 3

0

1

2

Time
-1 0 1 2 3

0

1

2

x(t) h(t) y(t)

FIGURE 13-5
Example of continuous convolution. This figure illustrates a square pulse entering an RC low-pass filter (Fig.
13-4). The square pulse is convolved with the system's impulse response to produce the output.

A
m
pl
itu

de

A
m
pl
itu

de

A
m
pl
itu

de

impulse response of this system is broken into two sections, each represented
by an equation:

where (R is in ohms, C is in farads, and t is in seconds). Just as in" ' 1/RC
the discrete case, the continuous impulse response contains complete
information about the system, that is, how it will react to all possible signals.
To pursue this example further, Fig. 13-5 shows a square pulse entering the
system, mathematically expressed by:

Since both the input signal and the impulse response are completely known as
mathematical expressions, the output signal, , can be calculated byy (t)
evaluating the convolution integral of Eq. 13-1. This is complicated by
the fact that both signals are defined by regions rather than a single

Chapter 13- Continuous Signal Processing 249

c. Full overlapa. No overlap b. Partial overlap

J
0 10 1 0 1
JJ

t t t
(t > 1)(0 # t # 1)(t < 0)

FIGURE 13-6
Calculating a convolution by segments. Since many continuous signals are defined by regions, the convolution
calculation must be performed region-by-region. In this example, calculation of the output signal is broken into
three sections: (a) no overlap, (b) partial overlap, and (c) total overlap, of the input signal and the shifted-
flipped impulse response.

y(t) ' 0 for t < 0

y(t) ' m
t

0

1@ "e &"(t& J) dJ

y(t) ' e &"t [e "J] /
t

0

y(t) ' e &"t [e "t & 1]

y(t) ' 1 & e & "t

y(t) ' m
4

&4

x(J) h (t& J) dJ (start with Eq. 13-1)

(plug in the signals)

for 0 # t # 1

(evaluate the integral)

(reduce)

mathematical expression. This is very common in continuous signal
processing. It is usually essential to draw a picture of how the two signals
shift over each other for various values of t. In this example, Fig. 13-6a
shows that the two signals do not overlap at all for . This means thatt < 0
the product of the two signals is zero at all locations along the J axis, and
the resulting output signal is:

A second case is illustrated in (b), where t is between 0 and 1. Here the two
signals partially overlap, resulting in their product having nonzero values
between and . Since this is the only nonzero region, it is the onlyJ' 0 J' t
section where the integral needs to be evaluated. This provides the output
signal for , given by:0 # t #1

The Scientist and Engineer's Guide to Digital Signal Processing250

y(t) ' m
1

0

1@ "e &"(t& J) dJ

y(t) ' e &" t [e "J] /
1

0

y(t) ' [e "& 1] e &" t

(plug into Eq. 13-1)

for t > 1

(evaluate the integral)

Figure (c) shows the calculation for the third section of the output signal, where
t > 1. Here the overlap occurs between and , making theJ' 0 J' 1
calculation the same as for the second segment, except a change to the limits
of integration:

The waveform in each of these three segments should agree with your
knowledge of electronics: (1) The output signal must be zero until the input
signal becomes nonzero. That is, the first segment is given by fory (t) ' 0

. (2) When the step occurs, the RC circuit exponentially increases to matcht < 0
the input, according to the equation: . (3) When the input isy (t) ' 1& e &" t

returned to zero, the output exponentially decays toward zero, given by the
equation: (where , the voltage on the capacitor justy (t) ' ke &" t k ' e "& 1
before the discharge was started).

More intricate waveforms can be handled in the same way, although the
mathematical complexity can rapidly become unmanageable. When faced
with a nasty continuous convolution problem, you need to spend significant
time evaluating strategies for solving the problem. If you start blindly
evaluating integrals you are likely to end up with a mathematical mess. A
common strategy is to break one of the signals into simpler additive
components that can be individually convolved. Using the principles of
linearity, the resulting waveforms can be added to find the answer to the
original problem.

Figure 13-7 shows another strategy: modify one of the signals in some linear
way, perform the convolution, and then undo the original modification. In this
example the modification is the derivative, and it is undone by taking the
integral. The derivative of a unit amplitude square pulse is two impulses, the
first with an area of one, and the second with an area of negative one. To
understand this, think about the opposite process of taking the integral of the
two impulses. As you integrate past the first impulse, the integral rapidly
increases from zero to one, i.e., a step function. After passing the negative
impulse, the integral of the signal rapidly returns from one back to zero,
completing the square pulse.

Taking the derivative simplifies this problem because convolution is easy
when one of the signals is composed of impulses. Each of the two impulses
in contributes a scaled and shifted version of the impulse response tox)(t)

Chapter 13- Continuous Signal Processing 251

Time
-1 0 1 2 3

-2

-1

0

1

2

Time
-1 0 1 2 3

-2

-1

0

1

2

h(t) yN(t)

Time
-1 0 1 2 3

0

1

2

Time
-1 0 1 2 3

0

1

2

Time
-1 0 1 2 3

0

1

2

x(t) h(t) y(t)

Id/dt

Time
-1 0 1 2 3

-2

-1

0

1

2

xN(t)

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 13-7
A strategy for convolving signals. Convolution problems can often be simplified by clever use of the rules
governing linear systems. In this example, the convolution of two signals is simplified by taking the derivative
of one of them. After performing the convolution, the derivative is undone by taking the integral.

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

the derivative of the output signal, . That is, by inspection it is knowny)(t)
that: . The output signal, , can then be found byy)(t) ' h (t) & h (t&1) y (t)
plugging in the exact equation for , and integrating the expression. h (t)

A slight nuisance in this procedure is that the DC value of the input signal is
lost when the derivative is taken. This can result in an error in the DC value
of the calculated output signal. The mathematics reflects this as the arbitrary
constant that can be added during the integration. There is no systematic way
of identifying this error, but it can usually be corrected by inspection of the
problem. For instance, there is no DC error in the example of Fig. 13-7. This
is known because the calculated output signal has the correct DC value when
t becomes very large. If an error is present in a particular problem, an
appropriate DC term is manually added to the output signal to complete the
calculation.

This method also works for signals that can be reduced to impulses by taking
the derivative multiple times. In the jargon of the field, these signals are called
piecewise polynomials. After the convolution, the initial operation of multiple
derivatives is undone by taking multiple integrals. The only catch is that the
lost DC value must be found at each stage by finding the correct constant of
integration.

The Scientist and Engineer's Guide to Digital Signal Processing252

x (t) '
1
B m
%4

0

Re X (T) cos(T t) & Im X (T) sin(T t) dT

EQUATION 13-2
The Fourier transform synthesis equation. In this equation, is the timex(t)
domain signal being synthesized, and & are the real andReX(T) Im X(T)
imaginary parts of the frequency spectrum, respectively.

Before starting a difficult continuous convolution problem, there is another
approach that you should consider. Ask yourself the question: Is a
mathematical expression really needed for the output signal, or is a graph of
the waveform sufficient? If a graph is adequate, you may be better off to
handle the problem with discrete techniques. That is, approximate the
continuous signals by samples that can be directly convolved by a computer
program. While not as mathematically pure, it can be much easier.

The Fourier Transform
The Fourier Transform for continuous signals is divided into two categories,
one for signals that are periodic, and one for signals that are aperiodic.
Periodic signals use a version of the Fourier Transform called the Fourier
Series, and are discussed in the next section. The Fourier Transform used with
aperiodic signals is simply called the Fourier Transform. This chapter
describes these Fourier techniques using only real mathematics, just as the last
several chapters have done for discrete signals. The more powerful use of
complex mathematics will be reserved for Chapter 31.

Figure 13-8 shows an example of a continuous aperiodic signal and its
frequency spectrum. The time domain signal extends from negative infinity to
positive infinity, while each of the frequency domain signals extends from zero
to positive infinity. This frequency spectrum is shown in rectangular form
(real and imaginary parts); however, the polar form (magnitude and phase) is
also used with continuous signals. Just as in the discrete case, the synthesis
equation describes a recipe for constructing the time domain signal using the
data in the frequency domain. In mathematical form:

In words, the time domain signal is formed by adding (with the use of an
integral) an infinite number of scaled sine and cosine waves. The real part
of the frequency domain consists of the scaling factors for the cosine waves,
while the imaginary part consists of the scaling factors for the sine waves. Just
as with discrete signals, the synthesis equation is usually written with
negative sine waves. Although the negative sign has no significance in this
discussion, it is necessary to make the notation compatible with the complex
mathematics described in Chapter 29. The key point to remember is that
some authors put this negative sign in the equation, while others do not.
Also notice that frequency is represented by the symbol, T, a lower case

Chapter 13- Continuous Signal Processing 253

FIGURE 13-8
Example of the Fourier Transform. The time domain signal, , extends from negative to positive infinity.x(t)
The frequency domain is composed of a real part, , and an imaginary part, , each extending fromReX(T) Im X(T)
zero to positive infinity. The frequency axis in this illustration is labeled in cycles per second (hertz). To
convert to natural frequency, multiply the numbers on the frequency axis by 2B.

Frequency (hertz)
0 20 40 60 80 100 120 140

0

20

40

60

80

100

b. Re X(T)

Frequency (hertz)
0 20 40 60 80 100 120 140

0

20

40

60

80

100

c. Im X(T)

Time (milliseconds)
-50 -40 -30 -20 -10 0 10 20 30 40 50

-8

-4

0

4

8

a. x(t)

Time Domain Frequency Domain

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

ReX (T) ' m
%4

&4

x(t) cos (T t) d tEQUATION 13-3
The Fourier transform analysis equations. In
this equation, & are the realReX(T) Im X(T)
and imaginary parts of the frequency
spectrum, respectively, and is the timex(t)
domain signal being analyzed. ImX (T) ' & m

%4

&4

x(t) sin(T t) d t

Greek omega. As you recall, this notation is called the natural frequency,
and has the units of radians per second. That is, , where f is theT' 2B f
frequency in cycles per second (hertz). The natural frequency notation is
favored by mathematicians and others doing signal processing by solving
equations, because there are usually fewer symbols to write.

The analysis equations for continuous signals follow the same strategy as the
discrete case: correlation with sine and cosine waves. The equations are:

The Scientist and Engineer's Guide to Digital Signal Processing254

h (t) ' 0

h (t) ' "e &" t for t $ 0

for t < 0

Re H (T) '
"2

"2 % T2

Re H (T) '
"e &" t

"2 % T2
[&" cos(T t) % Tsin(T t)] /

%4

0

Re H(T) ' m
%4

0

"e &" t cos(T t) dt

Re H(T) ' m
%4

&4

h (t) cos(T t) dt (start with Eq. 13-3)

(plug in the signal)

(evaluate)

Im H (T) '
&T"

"2 % T2

As an example of using the analysis equations, we will find the frequency
response of the RC low-pass filter. This is done by taking the Fourier
transform of its impulse response, previously shown in Fig. 13-4, and
described by:

The frequency response is found by plugging the impulse response into the
analysis equations. First, the real part:

Using this same approach, the imaginary part of the frequency response is
calculated to be:

Just as with discrete signals, the rectangular representation of the frequency
domain is great for mathematical manipulation, but difficult for human
understanding. The situation can be remedied by converting into polar
notation with the standard relations: Mag H (T) ' [Re H (T)2

% Im H(T)2]½
and . Working through the algebraPhase H(T) ' arctan [Re H(T) / Im H(T)]

Chapter 13- Continuous Signal Processing 255

Mag H (T) '
"

["2 % T2]1/2

Phase H (T) ' arctan &
T
"

Frequency (hertz)
0 1000 2000 3000 4000 5000 6000

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

b. Phase

FIGURE 13-9
Frequency response of an RC low-pass filter. These curves were derived by calculating the Fourier
transform of the impulse response, and then converting to polar form.

Frequency (hertz)
0 1000 2000 3000 4000 5000 6000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

a. Magnitude

Ph
as

e
(r

ad
ia

ns
)

A
m

pl
itu

de

provides the frequency response of the RC low-pass filter as magnitude and
phase (i.e., polar form):

Figure 13-9 shows graphs of these curves for a cutoff frequency of 1000 hertz
(i.e.,)."' 2B1000

The Fourier Series
This brings us to the last member of the Fourier transform family: the Fourier
series. The time domain signal used in the Fourier series is periodic and
continuous. Figure 13-10 shows several examples of continuous waveforms
that repeat themselves from negative to positive infinity. Chapter 11 showed
that periodic signals have a frequency spectrum consisting of harmonics. For
instance, if the time domain repeats at 1000 hertz (a period of 1 millisecond),
the frequency spectrum will contain a first harmonic at 1000 hertz, a second
harmonic at 2000 hertz, a third harmonic at 3000 hertz, and so forth. The first
harmonic, i.e., the frequency that the time domain repeats itself, is also called
the fundamental frequency. This means that the frequency spectrum can be
viewed in two ways: (1) the frequency spectrum is continuous, but zero at all
frequencies except the harmonics, or (2) the frequency spectrum is discrete,
and only defined at the harmonic frequencies. In other words, the frequencies
between the harmonics can be thought of as having a value of zero, or simply

The Scientist and Engineer's Guide to Digital Signal Processing256

x(t) ' a0 % j
4

n'1
an cos (2B f t n) & j

4

n'1
bn sin(2B f t n)

EQUATION 13-4
The Fourier series synthesis equation. Any periodic signal, , canx(t)
be reconstructed from sine and cosine waves with frequencies that are
multiples of the fundamental, f. The an and bn coefficients hold the
amplitudes of the cosine and sine waves, respectively.

a0 '
1
T m

T /2

&T /2

x (t) d t an '
2
T m

T /2

&T /2

x(t) cos 2B tn
T

dt

bn '
&2
T m

T /2

&T /2

x(t) sin 2B tn
T

dt

EQUATION 13-5
Fourier series analysis equations. In these equations, isx(t)
the time domain signal being decomposed, is the DCa0
component, & hold the amplitudes of the cosine andan bn
sine waves, respectively, and T is the period of the signal,
i.e., the reciprocal of the fundamental frequency.

not existing. The important point is that they do not contribute to forming the
time domain signal.

The Fourier series synthesis equation creates a continuous periodic signal
with a fundamental frequency, f, by adding scaled cosine and sine waves
with frequencies: f, 2f, 3f, 4f, etc. The amplitudes of the cosine waves are
held in the variables: etc., while the amplitudes of the sinea1, a2, a3, a4,
waves are held in: and so on. In other words, the "a" and "b"b1, b2, b3, b4,
coefficients are the real and imaginary parts of the frequency spectrum,
respectively. In addition, the coefficient is used to hold the DC value ofa0
the time domain waveform. This can be viewed as the amplitude of a cosine
wave with zero frequency (a constant value). Sometimes is grouped witha0
the other "a" coefficients, but it is often handled separately because it
requires special calculations. There is no coefficient since a sine waveb0
of zero frequency has a constant value of zero, and would be quite useless.
The synthesis equation is written:

The corresponding analysis equations for the Fourier series are usually
written in terms of the period of the waveform, denoted by T, rather than the
fundamental frequency, f (where). Since the time domain signal isf ' 1/T
periodic, the sine and cosine wave correlation only needs to be evaluated over
a single period, i.e., to , 0 to T, -T to 0, etc. Selecting different&T /2 T /2
limits makes the mathematics different, but the final answer is always the same.
The Fourier series analysis equations are:

Chapter 13- Continuous Signal Processing 257

0 f 2f 3f 4f 5f 6f

A

0

0 f 2f 3f 4f 5f 6f

A

0

0 f 2f 3f 4f 5f 6f

A

0

0 f 2f 3f 4f 5f 6f

A

0

0 f 2f 3f 4f 5f 6f

A

0

0 f 2f 3f 4f 5f 6f

A

0

A

a. Pulse

b. Square

c. Triangle

d. Sawtooth

e. Rectified

Time Domain Frequency Domain

A

A

A

A

A

k

T
d = k/T

t = 0

t = 0

t = 0

t = 0

t = 0

t = 0

f. Cosine wave

(all even harmonics are zero)

a0 ' 0

an '
2A
nB

sin nB
2

bn ' 0

(in this example)d ' 0.27

a0 ' A d

bn ' 0

an '
2A
nB

sin (nBd)

(all even harmonics are zero)

a0 ' 0

an '
4A

(nB)2

bn ' 0

a0 ' 0

an ' 0

bn '
A

nB

a0 ' 2A /B

bn ' 0

an '
&4A

B(4n 2&1)

(all other coefficients are zero)

a1 ' A

FIGURE 13-10
Examples of the Fourier series. Six common time domain waveforms are shown, along with the equations to
calculate their "a" and "b" coefficients.

The Scientist and Engineer's Guide to Digital Signal Processing258

-T 0 T 2T 3T-2T-3T

A

0

-T/2 T/2-k/2 k/2

Time

FIGURE 13-11
Example of calculating a Fourier series. This is a pulse train with a duty cycle of d = k/T. The
Fourier series coefficients are calculated by correlating the waveform with cosine and sine waves
over any full period. In this example, the period from -T/2 to T/2 is used.

A
m

pl
itu

de

x(t) ' 0

x(t) ' A for -k/2 # t # k/2

otherwise

a0 '
1
T m

T/2

&T/2

x (t) d t (start with Eq. 13-5)

a0 '
1
T m

k/2

&k/2

A dt

a0 '
A k
T

a0 ' A d

(plug in the signal)

(evaluate the integral)

(substitute: d = k/T)

Figure 13-11 shows an example of calculating a Fourier series using these
equations. The time domain signal being analyzed is a pulse train, a square
wave with unequal high and low durations. Over a single period from &T /2
to , the waveform is given by:T /2

The duty cycle of the waveform (the fraction of time that the pulse is "high")
is thus given by . The Fourier series coefficients can be found byd ' k /T
evaluating Eq. 13-5. First, we will find the DC component, :a0

This result should make intuitive sense; the DC component is simply the
average value of the signal. A similar analysis provides the "a" coefficients:

Chapter 13- Continuous Signal Processing 259

an '
2
T m

T /2

&T /2

x(t) cos 2Btn
T

d t

an '
2
T m

k /2

&k /2

A cos 2Bt n
T

dt

an '
2A
T

T
2Bn

sin 2Btn
T /

k /2

&k /2

an '
2A
nB

sin(Bnd)

(start with Eq. 13-4)

(plug in the signal)

(evaluate the integral)

(reduce)

The "b" coefficients are calculated in this same way; however, they all turn out
to be zero. In other words, this waveform can be constructed using only cosine
waves, with no sine waves being needed.

The "a" and "b" coefficients will change if the time domain waveform is
shifted left or right. For instance, the "b" coefficients in this example will be
zero only if one of the pulses is centered on . Think about it this way.t ' 0
If the waveform is even (i.e., symmetrical around), it will be composedt ' 0
solely of even sinusoids, that is, cosine waves. This makes all of the "b"
coefficients equal to zero. If the waveform if odd (i.e., symmetrical but
opposite in sign around), it will be composed of odd sinusoids, i.e., sinet ' 0
waves. This results in the "a" coefficients being zero. If the coefficients are
converted to polar notation (say, Mn and 2n coefficients), a shift in the time
domain leaves the magnitude unchanged, but adds a linear component to the
phase.

To complete this example, imagine a pulse train existing in an electronic
circuit, with a frequency of 1 kHz, an amplitude of one volt, and a duty cycle
of 0.2. The table in Fig. 13-12 provides the amplitude of each harmonic
contained in this waveform. Figure 13-12 also shows the synthesis of the
waveform using only the first fourteen of these harmonics. Even with this
number of harmonics, the reconstruction is not very good. In mathematical
jargon, the Fourier series converges very slowly. This is just another way of
saying that sharp edges in the time domain waveform results in very high
frequencies in the spectrum. Lastly, be sure and notice the overshoot at the
sharp edges, i.e., the Gibbs effect discussed in Chapter 11.

An important application of the Fourier series is electronic frequency
multiplication. Suppose you want to construct a very stable sine wave
oscillator at 150 MHz. This might be needed, for example, in a radio

The Scientist and Engineer's Guide to Digital Signal Processing260

Time (milliseconds)
0 1 2 3 4

-0.5

0.0

0.5

1.0

1.5 frequency amplitude
 (volts)

 DC 0.20000
 1 kHz 0.37420
 2 kHz 0.30273
 3 kHz 0.20182
 4 kHz 0.09355
 5 kHz 0.00000
 6 kHz -0.06237
 7 kHz -0.08649
 8 kHz -0.07568
 9 kHz -0.04158
 10 kHz 0.00000
 11 kHz 0.03402
 12 kHz 0.05046
 !
123 kHz 0.00492
124 kHz 0.00302
125 kHz 0.00000
126 kHz -0.00297
 !
803 kHz 0.00075
804 kHz 0.00046
805 kHz 0.00000
806 kHz -0.00046

FIGURE 13-12
Example of Fourier series synthesis. The waveform
being constructed is a pulse train at 1 kHz, an
amplitude of one volt, and a duty cycle of 0.2 (as
illustrated in Fig. 13-11). This table shows the
amplitude of the harmonics, while the graph shows
the reconstructed waveform using only the first
fourteen harmonics.

A
m

pl
itu

de
 (v

ol
ts

)
transmitter operating at this frequency. High stability calls for the circuit to
be crystal controlled. That is, the frequency of the oscillator is determined by
a resonating quartz crystal that is a part of the circuit. The problem is, quartz
crystals only work to about 10 MHz. The solution is to build a crystal
controlled oscillator operating somewhere between 1 and 10 MHz, and then
multiply the frequency to whatever you need. This is accomplished by
distorting the sine wave, such as by clipping the peaks with a diode, or running
the waveform through a squaring circuit. The harmonics in the distorted
waveform are then isolated with band-pass filters. This allows the frequency
to be doubled, tripled, or multiplied by even higher integers numbers. The
most common technique is to use sequential stages of doublers and triplers to
generate the required frequency multiplication, rather than just a single stage.
The Fourier series is important to this type of design because it describes the
amplitude of the multiplied signal, depending on the type of distortion and
harmonic selected.

261

CHAPTER

14 Introduction to Digital Filters

Digital filters are used for two general purposes: (1) separation of signals that have been
combined, and (2) restoration of signals that have been distorted in some way. Analog
(electronic) filters can be used for these same tasks; however, digital filters can achieve far
superior results. The most popular digital filters are described and compared in the next seven
chapters. This introductory chapter describes the parameters you want to look for when learning
about each of these filters.

Filter Basics
Digital filters are a very important part of DSP. In fact, their extraordinary
performance is one of the key reasons that DSP has become so popular. As
mentioned in the introduction, filters have two uses: signal separation and
signal restoration. Signal separation is needed when a signal has been
contaminated with interference, noise, or other signals. For example, imagine
a device for measuring the electrical activity of a baby's heart (EKG) while
still in the womb. The raw signal will likely be corrupted by the breathing and
heartbeat of the mother. A filter might be used to separate these signals so that
they can be individually analyzed.

Signal restoration is used when a signal has been distorted in some way. For
example, an audio recording made with poor equipment may be filtered to
better represent the sound as it actually occurred. Another example is the
deblurring of an image acquired with an improperly focused lens, or a shaky
camera.

These problems can be attacked with either analog or digital filters. Which
is better? Analog filters are cheap, fast, and have a large dynamic range in
both amplitude and frequency. Digital filters, in comparison, are vastly
superior in the level of performance that can be achieved. For example, a
low-pass digital filter presented in Chapter 16 has a gain of 1 +/- 0.0002 from
DC to 1000 hertz, and a gain of less than 0.0002 for frequencies above

The Scientist and Engineer's Guide to Digital Signal Processing262

1001 hertz. The entire transition occurs within only 1 hertz. Don't expect
this from an op amp circuit! Digital filters can achieve thousands of times
better performance than analog filters. This makes a dramatic difference in
how filtering problems are approached. With analog filters, the emphasis
is on handling limitations of the electronics, such as the accuracy and
stability of the resistors and capacitors. In comparison, digital filters are
so good that the performance of the filter is frequently ignored. The
emphasis shifts to the limitations of the signals, and the theoretical issues
regarding their processing.

It is common in DSP to say that a filter's input and output signals are in the
time domain. This is because signals are usually created by sampling at
regular intervals of time. But this is not the only way sampling can take place.
The second most common way of sampling is at equal intervals in space. For
example, imagine taking simultaneous readings from an array of strain sensors
mounted at one centimeter increments along the length of an aircraft wing.
Many other domains are possible; however, time and space are by far the most
common. When you see the term time domain in DSP, remember that it may
actually refer to samples taken over time, or it may be a general reference to
any domain that the samples are taken in.

As shown in Fig. 14-1, every linear filter has an impulse response, a step
response and a frequency response. Each of these responses contains
complete information about the filter, but in a different form. If one of the
three is specified, the other two are fixed and can be directly calculated. All
three of these representations are important, because they describe how the
filter will react under different circumstances.

The most straightforward way to implement a digital filter is by convolving the
input signal with the digital filter's impulse response. All possible linear filters
can be made in this manner. (This should be obvious. If it isn't, you probably
don't have the background to understand this section on filter design. Try
reviewing the previous section on DSP fundamentals). When the impulse
response is used in this way, filter designers give it a special name: the filter
kernel.

There is also another way to make digital filters, called recursion. When
a filter is implemented by convolution, each sample in the output is
calculated by weighting the samples in the input, and adding them together.
Recursive filters are an extension of this, using previously calculated values
from the output, besides points from the input. Instead of using a filter
kernel, recursive filters are defined by a set of recursion coefficients. This
method will be discussed in detail in Chapter 19. For now, the important
point is that all linear filters have an impulse response, even if you don't
use it to implement the filter. To find the impulse response of a recursive
filter, simply feed in an impulse, and see what comes out. The impulse
responses of recursive filters are composed of sinusoids that exponentially
decay in amplitude. In principle, this makes their impulse responses
infinitely long. However, the amplitude eventually drops below the round-off
noise of the system, and the remaining samples can be ignored. Because

Chapter 14- Introduction to Digital Filters 263

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.5

0.0

0.5

1.0

1.5

c. Frequency response

Sample number
0 32 64 96 128

-0.1

0.0

0.1

0.2

127

a. Impulse response
0.3

Sample number
0 32 64 96 128

-0.5

0.0

0.5

1.0

1.5

127

b. Step response

Frequency
0 0.1 0.2 0.3 0.4 0.5

-60

-40

-20

0

20

40

d. Frequency response (in dB)

FIGURE 14-1
Filter parameters. Every linear filter has an impulse response, a step response, and a frequency response. The
step response, (b), can be found by discrete integration of the impulse response, (a). The frequency response
can be found from the impulse response by using the Fast Fourier Transform (FFT), and can be displayed either
on a linear scale, (c), or in decibels, (d).

FFT

Integrate 20 Log()

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

 (d
B

)

A
m

pl
itu

de

of this characteristic, recursive filters are also called Infinite Impulse
Response or IIR filters. In comparison, filters carried out by convolution are
called Finite Impulse Response or FIR filters.

As you know, the impulse response is the output of a system when the input is
an impulse. In this same manner, the step response is the output when the
input is a step (also called an edge, and an edge response). Since the step is
the integral of the impulse, the step response is the integral of the impulse
response. This provides two ways to find the step response: (1) feed a step
waveform into the filter and see what comes out, or (2) integrate the impulse
response. (To be mathematically correct: integration is used with continuous
signals, while discrete integration, i.e., a running sum, is used with discrete
signals). The frequency response can be found by taking the DFT (using the
FFT algorithm) of the impulse response. This will be reviewed later in this

The Scientist and Engineer's Guide to Digital Signal Processing264

dB ' 10 log10

P2

P1

dB ' 20 log10

A2

A1

EQUATION 14-1
Definition of decibels. Decibels are a
way of expressing a ratio between two
signals. Ratios of power (P1 & P2) use a
different equation from rat ios of
amplitude (A1 & A2).

chapter. The frequency response can be plotted on a linear vertical axis, such
as in (c), or on a logarithmic scale (decibels), as shown in (d). The linear
scale is best at showing the passband ripple and roll-off, while the decibel scale
is needed to show the stopband attenuation.

Don't remember decibels? Here is a quick review. A bel (in honor of
Alexander Graham Bell) means that the power is changed by a factor of ten.
For example, an electronic circuit that has 3 bels of amplification produces an
output signal with times the power of the input. A decibel10×10×10 ' 1000
(dB) is one-tenth of a bel. Therefore, the decibel values of: -20dB, -10dB,
0dB, 10dB & 20dB, mean the power ratios: 0.01, 0.1, 1, 10, & 100,
respectively. In other words, every ten decibels mean that the power has
changed by a factor of ten.

Here's the catch: you usually want to work with a signal's amplitude, not
its power. For example, imagine an amplifier with 20dB of gain. By
definition, this means that the power in the signal has increased by a factor
of 100. Since amplitude is proportional to the square-root of power, the
amplitude of the output is 10 times the amplitude of the input. While 20dB
means a factor of 100 in power, it only means a factor of 10 in amplitude.
Every twenty decibels mean that the amplitude has changed by a factor of
ten. In equation form:

The above equations use the base 10 logarithm; however, many computer
languages only provide a function for the base e logarithm (the natural log,
written or). The natural log can be use by modifying the aboveloge x ln x
equations: and .dB ' 4.342945 loge (P2 /P1) dB ' 8.685890 loge (A2 /A1)

Since decibels are a way of expressing the ratio between two signals, they are
ideal for describing the gain of a system, i.e., the ratio between the output and
the input signal. However, engineers also use decibels to specify the amplitude
(or power) of a single signal, by referencing it to some standard. For example,
the term: dBV means that the signal is being referenced to a 1 volt rms signal.
Likewise, dBm indicates a reference signal producing 1 mW into a 600 ohms
load (about 0.78 volts rms).

If you understand nothing else about decibels, remember two things: First,
-3dB means that the amplitude is reduced to 0.707 (and the power is

Chapter 14- Introduction to Digital Filters 265

60dB = 1000
40dB = 100
20dB = 10

0dB = 1
-20dB = 0.1
-40dB = 0.01
-60dB = 0.001

therefore reduced to 0.5). Second, memorize the following conversions
between decibels and amplitude ratios:

How Information is Represented in Signals
The most important part of any DSP task is understanding how information is
contained in the signals you are working with. There are many ways that
information can be contained in a signal. This is especially true if the signal
is manmade. For instance, consider all of the modulation schemes that have
been devised: AM, FM, single-sideband, pulse-code modulation, pulse-width
modulation, etc. The list goes on and on. Fortunately, there are only two
ways that are common for information to be represented in naturally occurring
signals. We will call these: information represented in the time domain,
and information represented in the frequency domain.

Information represented in the time domain describes when something occurs
and what the amplitude of the occurrence is. For example, imagine an
experiment to study the light output from the sun. The light output is measured
and recorded once each second. Each sample in the signal indicates what is
happening at that instant, and the level of the event. If a solar flare occurs, the
signal directly provides information on the time it occurred, the duration, the
development over time, etc. Each sample contains information that is
interpretable without reference to any other sample. Even if you have only one
sample from this signal, you still know something about what you are
measuring. This is the simplest way for information to be contained in a
signal.

In contrast, information represented in the frequency domain is more
indirect. Many things in our universe show periodic motion. For example,
a wine glass struck with a fingernail will vibrate, producing a ringing
sound; the pendulum of a grandfather clock swings back and forth; stars
and planets rotate on their axis and revolve around each other, and so forth.
By measuring the frequency, phase, and amplitude of this periodic motion,
information can often be obtained about the system producing the motion.
Suppose we sample the sound produced by the ringing wine glass. The
fundamental frequency and harmonics of the periodic vibration relate to the
mass and elasticity of the material. A single sample, in itself, contains no
information about the periodic motion, and therefore no information about
the wine glass. The information is contained in the relationship between
many points in the signal.

The Scientist and Engineer's Guide to Digital Signal Processing266

This brings us to the importance of the step and frequency responses. The step
response describes how information represented in the time domain is being
modified by the system. In contrast, the frequency response shows how
information represented in the frequency domain is being changed. This
distinction is absolutely critical in filter design because it is not possible to
optimize a filter for both applications. Good performance in the time domain
results in poor performance in the frequency domain, and vice versa. If you are
designing a filter to remove noise from an EKG signal (information represented
in the time domain), the step response is the important parameter, and the
frequency response is of little concern. If your task is to design a digital filter
for a hearing aid (with the information in the frequency domain), the frequency
response is all important, while the step response doesn't matter. Now let's
look at what makes a filter optimal for time domain or frequency domain
applications.

Time Domain Parameters
It may not be obvious why the step response is of such concern in time domain
filters. You may be wondering why the impulse response isn't the important
parameter. The answer lies in the way that the human mind understands and
processes information. Remember that the step, impulse and frequency
responses all contain identical information, just in different arrangements. The
step response is useful in time domain analysis because it matches the way
humans view the information contained in the signals.

For example, suppose you are given a signal of some unknown origin and
asked to analyze it. The first thing you will do is divide the signal into
regions of similar characteristics. You can't stop from doing this; your
mind will do it automatically. Some of the regions may be smooth; others
may have large amplitude peaks; others may be noisy. This segmentation
is accomplished by identifying the points that separate the regions. This is
where the step function comes in. The step function is the purest way of
representing a division between two dissimilar regions. It can mark when
an event starts, or when an event ends. It tells you that whatever is on the
left is somehow different from whatever is on the right. This is how the
human mind views time domain information: a group of step functions
dividing the information into regions of similar characteristics. The step
response, in turn, is important because it describes how the dividing lines
are being modified by the filter.

The step response parameters that are important in filter design are shown
in Fig. 14-2. To distinguish events in a signal, the duration of the step
response must be shorter than the spacing of the events. This dictates that
the step response should be as fast (the DSP jargon) as possible. This is
shown in Figs. (a) & (b). The most common way to specify the risetime
(more jargon) is to quote the number of samples between the 10% and 90%
amplitude levels. Why isn't a very fast risetime always possible? There are
many reasons, noise reduction, inherent limitations of the data acquisition
system, avoiding aliasing, etc.

Chapter 14- Introduction to Digital Filters 267

Sample number
0 16 32 48 64

-0.5

0.0

0.5

1.0

1.5

a. Slow step response

Sample number
0 16 32 48 64

-0.5

0.0

0.5

1.0

1.5

b. Fast step response

Sample number
0 16 32 48 64

-0.5

0.0

0.5

1.0

1.5

e. Nonlinear phase

Sample number
0 16 32 48 64

-0.5

0.0

0.5

1.0

1.5

f. Linear phase

FIGURE 14-2
Parameters for evaluating time domain performance. The step response is used to measure how well a filter
performs in the time domain. Three parameters are important: (1) transition speed (risetime), shown in (a) and
(b), (2) overshoot, shown in (c) and (d), and (3) phase linearity (symmetry between the top and bottom halves
of the step), shown in (e) and (f).

Sample number
0 16 32 48 64

-0.5

0.0

0.5

1.0

1.5

d. No overshoot

Sample number
0 16 32 48 64

-0.5

0.0

0.5

1.0

1.5

c. Overshoot

POOR GOOD

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

Figures (c) and (d) shows the next parameter that is important: overshoot in
the step response. Overshoot must generally be eliminated because it changes
the amplitude of samples in the signal; this is a basic distortion of
the information contained in the time domain. This can be summed up in

The Scientist and Engineer's Guide to Digital Signal Processing268

Frequency

a. Low-pass

Frequency

c. Band-pass

Frequency

b. High-pass

Frequency

d. Band-reject

passband

stopband

transition
band

FIGURE 14-3
The four common frequency responses.
Frequency domain filters are generally
used to pass certain frequencies (the
passband), while blocking others (the
stopband). Four responses are the most
common: low-pass, high-pass, band-pass,
and band-reject.

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

one question: Is the overshoot you observe in a signal coming from the thing
you are trying to measure, or from the filter you have used?

Finally, it is often desired that the upper half of the step response be
symmetrical with the lower half, as illustrated in (e) and (f). This symmetry
is needed to make the rising edges look the same as the falling edges. This
symmetry is called linear phase, because the frequency response has a phase
that is a straight line (discussed in Chapter 19). Make sure you understand
these three parameters; they are the key to evaluating time domain filters.

Frequency Domain Parameters
Figure 14-3 shows the four basic frequency responses. The purpose of
these filters is to allow some frequencies to pass unaltered, while
completely blocking other frequencies. The passband refers to those
frequencies that are passed, while the stopband contains those frequencies
that are blocked. The transition band is between. A fast roll-off means
that the transition band is very narrow. The division between the passband
and transition band is called the cutoff frequency. In analog filter design,
the cutoff frequency is usually defined to be where the amplitude is reduced
to 0.707 (i.e., -3dB). Digital filters are less standardized, and it is
common to see 99%, 90%, 70.7%, and 50% amplitude levels defined to be
the cutoff frequency.

Figure 14-4 shows three parameters that measure how well a filter performs
in the frequency domain. To separate closely spaced frequencies, the filter
must have a fast roll-off, as illustrated in (a) and (b). For the passband
frequencies to move through the filter unaltered, there must be no passband
ripple, as shown in (c) and (d). Lastly, to adequately block the stopband
frequencies, it is necessary to have good stopband attenuation, displayed
in (e) and (f).

Chapter 14- Introduction to Digital Filters 269

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.5

0.0

0.5

1.0

1.5

a. Slow roll-off

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.5

0.0

0.5

1.0

1.5

b. Fast roll-off

Frequency
0 0.1 0.2 0.3 0.4 0.5

-120

-100

-80

-60

-40

-20

0

20

40

e. Poor stopband attenuation

Frequency
0 0.1 0.2 0.3 0.4 0.5

-120

-100

-80

-60

-40

-20

0

20

40

f. Good stopband attenuation

FIGURE 14-4
Parameters for evaluating frequency domain performance. The frequency responses shown are for low-pass
filters. Three parameters are important: (1) roll-off sharpness, shown in (a) and (b), (2) passband ripple, shown
in (c) and (d), and (3) stopband attenuation, shown in (e) and (f).

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.5

0.0

0.5

1.0

1.5

d. Flat passband

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.5

0.0

0.5

1.0

1.5

c. Ripple in passband

POOR GOOD

A
m

pl
itu

de
 (d

B
)

A
m

pl
itu

de
 (d

B
)

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

Why is there nothing about the phase in these parameters? First, the phase
isn't important in most frequency domain applications. For example, the phase
of an audio signal is almost completely random, and contains little useful
information. Second, if the phase is important, it is very easy to make digital

The Scientist and Engineer's Guide to Digital Signal Processing270

filters with a perfect phase response, i.e., all frequencies pass through the filter
with a zero phase shift (also discussed in Chapter 19). In comparison, analog
filters are ghastly in this respect.

Previous chapters have described how the DFT converts a system's impulse
response into its frequency response. Here is a brief review. The quickest
way to calculate the DFT is by means of the FFT algorithm presented in
Chapter 12. Starting with a filter kernel N samples long, the FFT calculates
the frequency spectrum consisting of an N point real part and an N point
imaginary part. Only samples 0 to of the FFT's real and imaginary partsN/2
contain useful information; the remaining points are duplicates (negative
frequencies) and can be ignored. Since the real and imaginary parts are
difficult for humans to understand, they are usually converted into polar
notation as described in Chapter 8. This provides the magnitude and phase
signals, each running from sample 0 to sample (i.e., samples inN/2 N/2%1
each signal). For example, an impulse response of 256 points will result in a
frequency response running from point 0 to 128. Sample 0 represents DC, i.e.,
zero frequency. Sample 128 represents one-half of the sampling rate.
Remember, no frequencies higher than one-half of the sampling rate can appear
in sampled data.

The number of samples used to represent the impulse response can be
arbitrarily large. For instance, suppose you want to find the frequency
response of a filter kernel that consists of 80 points. Since the FFT only works
with signals that are a power of two, you need to add 48 zeros to the signal to
bring it to a length of 128 samples. This padding with zeros does not change
the impulse response. To understand why this is so, think about what happens
to these added zeros when the input signal is convolved with the system's
impulse response. The added zeros simply vanish in the convolution, and do
not affect the outcome.

Taking this a step further, you could add many zeros to the impulse response
to make it, say, 256, 512, or 1024 points long. The important idea is that
longer impulse responses result in a closer spacing of the data points in the
frequency response. That is, there are more samples spread between DC and
one-half of the sampling rate. Taking this to the extreme, if the impulse
response is padded with an infinite number of zeros, the data points in the
frequency response are infinitesimally close together, i.e., a continuous line.
In other words, the frequency response of a filter is really a continuous signal
between DC and one-half of the sampling rate. The output of the DFT is a
sampling of this continuous line. What length of impulse response should you
use when calculating a filter's frequency response? As a first thought, try

, but don't be afraid to change it if needed (such as insufficientN'1024
resolution or excessive computation time).

Keep in mind that the "good" and "bad" parameters discussed in this chapter
are only generalizations. Many signals don't fall neatly into categories. For
example, consider an EKG signal contaminated with 60 hertz interference.
The information is encoded in the time domain, but the interference is best
dealt with in the frequency domain. The best design for this application is

Chapter 14- Introduction to Digital Filters 271

Sample number
0 10 20 30 40 50

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

a. Original filter kernel

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

b. Original frequency response

FIGURE 14-5
Example of spectral inversion. The low-pass filter kernel in (a) has the frequency response shown in (b). A
high-pass filter kernel, (c), is formed by changing the sign of each sample in (a), and adding one to the sample
at the center of symmetry. This action in the time domain inverts the frequency spectrum (i.e., flips it top-for-
bottom), as shown by the high-pass frequency response in (d).

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

d. Inverted frequency response

Flipped
top-for-bottom

Sample number
0 10 20 30 40 50

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

c. Filter kernel with spectral inversion

Time Domain Frequency Domain

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

bound to have trade-offs, and might go against the conventional wisdom of this
chapter. Remember the number one rule of education: A paragraph in a book
doesn't give you a license to stop thinking.

High-Pass, Band-Pass and Band-Reject Filters
High-pass, band-pass and band-reject filters are designed by starting with a
low-pass filter, and then converting it into the desired response. For this
reason, most discussions on filter design only give examples of low-pass
filters. There are two methods for the low-pass to high-pass conversion:
spectral inversion and spectral reversal. Both are equally useful.

An example of spectral inversion is shown in 14-5. Figure (a) shows a low-
pass filter kernel called a windowed-sinc (the topic of Chapter 16). This filter
kernel is 51 points in length, although many of samples have a value
so small that they appear to be zero in this graph. The corresponding

The Scientist and Engineer's Guide to Digital Signal Processing272

x[n] y[n]

*[n] - h[n]x[n] y[n]

h[n]

*[n]

Low-pass

All-pass

High-passb. High-pass
in a single stage

a. High-pass by
adding parallel stages

FIGURE 14-6
Block diagram of spectral inversion. In
(a), the input signal, , is applied to twox[n]
systems in parallel, having impulse
responses of and . As shown inh[n] *[n]
(b), the combined system has an impulse
response of . This means that*[n]& h[n]
the frequency response of the combined
system is the inversion of the frequency
response of .h[n]

frequency response is shown in (b), found by adding 13 zeros to the filter
kernel and taking a 64 point FFT. Two things must be done to change the
low-pass filter kernel into a high-pass filter kernel. First, change the sign of
each sample in the filter kernel. Second, add one to the sample at the center
of symmetry. This results in the high-pass filter kernel shown in (c), with the
frequency response shown in (d). Spectral inversion flips the frequency
response top-for-bottom, changing the passbands into stopbands, and the
stopbands into passbands. In other words, it changes a filter from low-pass to
high-pass, high-pass to low-pass, band-pass to band-reject, or band-reject to
band-pass.

Figure 14-6 shows why this two step modification to the time domain results
in an inverted frequency spectrum. In (a), the input signal, , is applied tox[n]
two systems in parallel. One of these systems is a low-pass filter, with an
impulse response given by . The other system does nothing to the signal,h[n]
and therefore has an impulse response that is a delta function, . The*[n]
overall output, , is equal to the output of the all-pass system minus they[n]
output of the low-pass system. Since the low frequency components are
subtracted from the original signal, only the high frequency components appear
in the output. Thus, a high-pass filter is formed.

This could be performed as a two step operation in a computer program:
run the signal through a low-pass filter, and then subtract the filtered signal
from the original. However, the entire operation can be performed in a
signal stage by combining the two filter kernels. As described in Chapter

Chapter 14- Introduction to Digital Filters 273

Sample number
0 10 20 30 40 50

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

a. Original filter kernel

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

b. Original frequency response

FIGURE 14-7
Example of spectral reversal. The low-pass filter kernel in (a) has the frequency response shown in (b). A
high-pass filter kernel, (c), is formed by changing the sign of every other sample in (a). This action in the time
domain results in the frequency domain being flipped left-for-right, resulting in the high-pass frequency
response shown in (d).

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

d. Reversed frequency response

Flipped
left-for-right

Sample number
0 10 20 30 40 50

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

c. Filter kernel with spectral reversal

Time Domain Frequency Domain

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

7, parallel systems with added outputs can be combined into a single stage by
adding their impulse responses. As shown in (b), the filter kernel for the high-
pass filter is given by: . That is, change the sign of all the samples,*[n] & h[n]
and then add one to the sample at the center of symmetry.

For this technique to work, the low-frequency components exiting the low-pass
filter must have the same phase as the low-frequency components exiting the
all-pass system. Otherwise a complete subtraction cannot take place. This
places two restrictions on the method: (1) the original filter kernel must have
left-right symmetry (i.e., a zero or linear phase), and (2) the impulse must be
added at the center of symmetry.

The second method for low-pass to high-pass conversion, spectral reversal, is
illustrated in Fig. 14-7. Just as before, the low-pass filter kernel in (a)
corresponds to the frequency response in (b). The high-pass filter kernel, (c),
is formed by changing the sign of every other sample in (a). As shown in
(d), this flips the frequency domain left-for-right: 0 becomes 0.5 and 0.5

The Scientist and Engineer's Guide to Digital Signal Processing274

h1[n]x[n] h2[n] y[n]

h1[n] h2[n]x[n] y[n]

Band-pass

Low-pass High-passa. Band-pass by
cascading stages

b. Band-pass
in a single stage

FIGURE 14-8
Designing a band-pass filter. As shown
in (a), a band-pass filter can be formed
by cascading a low-pass filter and a
high-pass filter. This can be reduced to
a single stage, shown in (b). The filter
kernel of the single stage is equal to the
convolution of the low-pass and high-
pass filter kernels.

becomes 0. The cutoff frequency of the example low-pass filter is 0.15,
resulting in the cutoff frequency of the high-pass filter being 0.35.

Changing the sign of every other sample is equivalent to multiplying the filter
kernel by a sinusoid with a frequency of 0.5. As discussed in Chapter 10, this
has the effect of shifting the frequency domain by 0.5. Look at (b) and imagine
the negative frequencies between -0.5 and 0 that are of mirror image of the
frequencies between 0 and 0.5. The frequencies that appear in (d) are the
negative frequencies from (b) shifted by 0.5.

Lastly, Figs. 14-8 and 14-9 show how low-pass and high-pass filter kernels can
be combined to form band-pass and band-reject filters. In short, adding the
filter kernels produces a band-reject filter, while convolving the filter kernels
produces a band-pass filter. These are based on the way cascaded and
parallel systems are be combined, as discussed in Chapter 7. Multiple
combination of these techniques can also be used. For instance, a band-pass
filter can be designed by adding the two filter kernels to form a stop-pass
filter, and then use spectral inversion or spectral reversal as previously
described. All these techniques work very well with few surprises.

Filter Classification
Table 14-1 summarizes how digital filters are classified by their use and by
their implementation. The use of a digital filter can be broken into three
categories: time domain, frequency domain and custom. As previously
described, time domain filters are used when the information is encoded in the
shape of the signal's waveform. Time domain filtering is used for such
actions as: smoothing, DC removal, waveform shaping, etc. In contrast,
frequency domain filters are used when the information is contained in the

Chapter 14- Introduction to Digital Filters 275

x[n] y[n]

h1[n] + h2[n]x[n] y[n]

h1[n]

h2[n]

Low-pass

High-pass

Band-rejectb. Band-reject
in a single stage

a. Band-reject by
adding parallel stages

FIGURE 14-9
Designing a band-reject filter. As shown
in (a), a band-reject filter is formed by
the parallel combination of a low-pass
filter and a high-pass filter with their
outputs added. Figure (b) shows this
reduced to a single stage, with the filter
kernel found by adding the low-pass
and high-pass filter kernels.

Recursion

Time Domain

Frequency Domain

Finite Impulse Response (FIR) Infinite Impulse Response (IIR)

Moving average (Ch. 15) Single pole (Ch. 19)

Windowed-sinc (Ch. 16) Chebyshev (Ch. 20)

Custom FIR custom (Ch. 17) Iterative design (Ch. 26)
(Deconvolution)

Convolution

FILTER IMPLEMENTED BY:

(smoothing, DC removal)

(separating frequencies)

FI
LT

ER
 U

SE
D

 F
O

R
:

TABLE 14-1
Filter classification. Filters can be divided by their use, and how they are implemented.

amplitude, frequency, and phase of the component sinusoids. The goal of these
filters is to separate one band of frequencies from another. Custom filters are
used when a special action is required by the filter, something more elaborate
than the four basic responses (high-pass, low-pass, band-pass and band-reject).
For instance, Chapter 17 describes how custom filters can be used for
deconvolution, a way of counteracting an unwanted convolution.

The Scientist and Engineer's Guide to Digital Signal Processing276

Digital filters can be implemented in two ways, by convolution (also called
finite impulse response or FIR) and by recursion (also called infinite impulse
response or IIR). Filters carried out by convolution can have far better
performance than filters using recursion, but execute much more slowly.

The next six chapters describe digital filters according to the classifications in
Table 14-1. First, we will look at filters carried out by convolution. The
moving average (Chapter 15) is used in the time domain, the windowed-sinc
(Chapter 16) is used in the frequency domain, and FIR custom (Chapter 17) is
used when something special is needed. To finish the discussion of FIR filters,
Chapter 18 presents a technique called FFT convolution. This is an algorithm
for increasing the speed of convolution, allowing FIR filters to execute faster.

Next, we look at recursive filters. The single pole recursive filter (Chapter 19)
is used in the time domain, while the Chebyshev (Chapter 20) is used in the
frequency domain. Recursive filters having a custom response are designed by
iterative techniques. For this reason, we will delay their discussion until
Chapter 26, where they will be presented with another type of iterative
procedure: the neural network.

As shown in Table 14-1, convolution and recursion are rival techniques; you
must use one or the other for a particular application. How do you choose?
Chapter 21 presents a head-to-head comparison of the two, in both the time and
frequency domains.

277

CHAPTER

15

EQUATION 15-1
Equation of the moving average filter. In
this equation, is the input signal, isx[] y[]
the output signal, and M is the number of
points used in the moving average. This
equation only uses points on one side of the
output sample being calculated.

y [i] '
1

M j
M &1

j' 0
x [i % j]

y [80] '
x [80] % x [81] % x [82] % x [83] % x [84]

5

Moving Average Filters

The moving average is the most common filter in DSP, mainly because it is the easiest digital
filter to understand and use. In spite of its simplicity, the moving average filter is optimal for
a common task: reducing random noise while retaining a sharp step response. This makes it the
premier filter for time domain encoded signals. However, the moving average is the worst filter
for frequency domain encoded signals, with little ability to separate one band of frequencies from
another. Relatives of the moving average filter include the Gaussian, Blackman, and multiple-
pass moving average. These have slightly better performance in the frequency domain, at the
expense of increased computation time.

Implementation by Convolution
As the name implies, the moving average filter operates by averaging a number
of points from the input signal to produce each point in the output signal. In
equation form, this is written:

Where is the input signal, is the output signal, and M is the numberx [] y []
of points in the average. For example, in a 5 point moving average filter, point
80 in the output signal is given by:

The Scientist and Engineer's Guide to Digital Signal Processing278

y [80] '
x [78] % x [79] % x [80] % x [81] % x [82]

5

100 'MOVING AVERAGE FILTER
110 'This program filters 5000 samples with a 101 point moving
120 'average filter, resulting in 4900 samples of filtered data.
130 '
140 DIM X[4999] 'X[] holds the input signal
150 DIM Y[4999] 'Y[] holds the output signal
160 '
170 GOSUB XXXX 'Mythical subroutine to load X[]
180 '
190 FOR I% = 50 TO 4949 'Loop for each point in the output signal
200 Y[I%] = 0 'Zero, so it can be used as an accumulator
210 FOR J% = -50 TO 50 'Calculate the summation
220 Y[I%] = Y[I%] + X(I%+J%]
230 NEXT J%
240 Y[I%] = Y[I%]/101 'Complete the average by dividing
250 NEXT I%
260 '
270 END

 TABLE 15-1

As an alternative, the group of points from the input signal can be chosen
symmetrically around the output point:

This corresponds to changing the summation in Eq. 15-1 from: ,j ' 0 to M&1
to: . For instance, in a 10 point moving averagej ' & (M&1) /2 to (M&1) /2
filter, the index, j, can run from 0 to 11 (one side averaging) or -5 to 5
(symmetrical averaging). Symmetrical averaging requires that M be an odd
number. Programming is slightly easier with the points on only one side;
however, this produces a relative shift between the input and output signals.

You should recognize that the moving average filter is a convolution using a
very simple filter kernel. For example, a 5 point filter has the filter kernel:

 . That is, the moving average filter is a˛ 0, 0, 1/5, 1/5, 1/5, 1/5, 1/5, 0, 0 ˛
convolution of the input signal with a rectangular pulse having an area of one.
Table 15-1 shows a program to implement the moving average filter.

Noise Reduction vs. Step Response
Many scientists and engineers feel guilty about using the moving average filter.
Because it is so very simple, the moving average filter is often the first thing
tried when faced with a problem. Even if the problem is completely solved,
there is still the feeling that something more should be done. This situation is
truly ironic. Not only is the moving average filter very good for many
applications, it is optimal for a common problem, reducing random white noise
while keeping the sharpest step response.

Chapter 15- Moving Average Filters 279

Sample number

0 100 200 300 400 500

-1

0

1

2

a. Original signal

Sample number

0 100 200 300 400 500

-1

0

1

2

b. 11 point moving average

FIGURE 15-1
Example of a moving average filter. In (a), a
rectangular pulse is buried in random noise. In
(b) and (c), this signal is filtered with 11 and 51
point moving average filters, respectively. As
the number of points in the filter increases, the
noise becomes lower; however, the edges
becoming less sharp. The moving average filter
is the optimal solution for this problem,
providing the lowest noise possible for a given
edge sharpness.

Sample number

0 100 200 300 400 500

-1

0

1

2

c. 51 point moving average

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Figure 15-1 shows an example of how this works. The signal in (a) is a pulse
buried in random noise. In (b) and (c), the smoothing action of the moving
average filter decreases the amplitude of the random noise (good), but also
reduces the sharpness of the edges (bad). Of all the possible linear filters that
could be used, the moving average produces the lowest noise for a given edge
sharpness. The amount of noise reduction is equal to the square-root of the
number of points in the average. For example, a 100 point moving average
filter reduces the noise by a factor of 10.

To understand why the moving average if the best solution, imagine we want
to design a filter with a fixed edge sharpness. For example, let's assume we fix
the edge sharpness by specifying that there are eleven points in the rise of the
step response. This requires that the filter kernel have eleven points. The
optimization question is: how do we choose the eleven values in the filter
kernel to minimize the noise on the output signal? Since the noise we are
trying to reduce is random, none of the input points is special; each is just as
noisy as its neighbor. Therefore, it is useless to give preferential treatment to
any one of the input points by assigning it a larger coefficient in the filter
kernel. The lowest noise is obtained when all the input samples are treated
equally, i.e., the moving average filter. (Later in this chapter we show that
other filters are essentially as good. The point is, no filter is better than the
simple moving average).

The Scientist and Engineer's Guide to Digital Signal Processing280

EQUATION 15-2
Frequency response of an M point moving
average filter. The frequency, f, runs between
0 and 0.5. For , use: f ' 0 H [f] ' 1

H [f] '
sin(B f M)
M sin(B f)

Frequency

0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3 point

11 point

31 point

FIGURE 15-2
Frequency response of the moving average
filter. The moving average is a very poor
low-pass filter, due to its slow roll-off and
poor stopband attenuation. These curves are
generated by Eq. 15-2. A

m
pl

itu
de

Frequency Response
Figure 15-2 shows the frequency response of the moving average filter. It is
mathematically described by the Fourier transform of the rectangular pulse, as
discussed in Chapter 11:

The roll-off is very slow and the stopband attenuation is ghastly. Clearly, the
moving average filter cannot separate one band of frequencies from another.
Remember, good performance in the time domain results in poor performance
in the frequency domain, and vice versa. In short, the moving average is an
exceptionally good smoothing filter (the action in the time domain), but an
exceptionally bad low-pass filter (the action in the frequency domain).

Relatives of the Moving Average Filter
In a perfect world, filter designers would only have to deal with time
domain or frequency domain encoded information, but never a mixture of
the two in the same signal. Unfortunately, there are some applications
where both domains are simultaneously important. For instance, television
signals fall into this nasty category. Video information is encoded in the
time domain, that is, the shape of the waveform corresponds to the patterns
of brightness in the image. However, during transmission the video signal
is treated according to its frequency composition, such as its total
bandwidth, how the carrier waves for sound & color are added, elimination
& restoration of the DC component, etc. As another example, electro-
magnetic interference is best understood in the frequency domain, even if

Chapter 15- Moving Average Filters 281

Sample number

0 6 12 18 24

0.0

0.1

0.2

2 pass

4 pass

1 pass

a. Filter kernel

Sample number

0 6 12 18 24

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 pass

4 pass

2 pass

b. Step response

Frequency

0 0.1 0.2 0.3 0.4 0.5

-120

-100

-80

-60

-40

-20

0

20

40

1 pass

2 pass

4 pass

d. Frequency response (dB)

FIGURE 15-3
Characteristics of multiple-pass moving average filters. Figure (a) shows the filter kernels resulting from
passing a seven point moving average filter over the data once, twice and four times. Figure (b) shows the
corresponding step responses, while (c) and (d) show the corresponding frequency responses.

FFT

Integrate 20 Log()

A
m

pl
itu

de
A

m
pl

itu
de

Frequency

0 0.1 0.2 0.3 0.4 0.5

0.00

0.25

0.50

0.75

1.00

1.25

1 pass

2 pass

4 pass

c. Frequency response

A
m

pl
itu

de
 (d

B
)

A
m

pl
itu

de

the signal's information is encoded in the time domain. For instance, the
temperature monitor in a scientific experiment might be contaminated with 60
hertz from the power lines, 30 kHz from a switching power supply, or 1320
kHz from a local AM radio station. Relatives of the moving average filter
have better frequency domain performance, and can be useful in these mixed
domain applications.

Multiple-pass moving average filters involve passing the input signal
through a moving average filter two or more times. Figure 15-3a shows the
overall filter kernel resulting from one, two and four passes. Two passes are
equivalent to using a triangular filter kernel (a rectangular filter kernel
convolved with itself). After four or more passes, the equivalent filter kernel
looks like a Gaussian (recall the Central Limit Theorem). As shown in (b),
multiple passes produce an "s" shaped step response, as compared to the
straight line of the single pass. The frequency responses in (c) and (d) are
given by Eq. 15-2 multiplied by itself for each pass. That is, each time domain
convolution results in a multiplication of the frequency spectra.

The Scientist and Engineer's Guide to Digital Signal Processing282

Figure 15-4 shows the frequency response of two other relatives of the moving
average filter. When a pure Gaussian is used as a filter kernel, the frequency
response is also a Gaussian, as discussed in Chapter 11. The Gaussian is
important because it is the impulse response of many natural and manmade
systems. For example, a brief pulse of light entering a long fiber optic
transmission line will exit as a Gaussian pulse, due to the different paths taken
by the photons within the fiber. The Gaussian filter kernel is also used
extensively in image processing because it has unique properties that allow
fast two-dimensional convolutions (see Chapter 24). The second frequency
response in Fig. 15-4 corresponds to using a Blackman window as a filter
kernel. (The term window has no meaning here; it is simply part of the
accepted name of this curve). The exact shape of the Blackman window is
given in Chapter 16 (Eq. 16-2, Fig. 16-2); however, it looks much like a
Gaussian.

How are these relatives of the moving average filter better than the moving
average filter itself? Three ways: First, and most important, these filters have
better stopband attenuation than the moving average filter. Second, the filter
kernels taper to a smaller amplitude near the ends. Recall that each point in
the output signal is a weighted sum of a group of samples from the input. If the
filter kernel tapers, samples in the input signal that are farther away are given
less weight than those close by. Third, the step responses are smooth curves,
rather than the abrupt straight line of the moving average. These last two are
usually of limited benefit, although you might find applications where they are
genuine advantages.

The moving average filter and its relatives are all about the same at reducing
random noise while maintaining a sharp step response. The ambiguity lies in
how the risetime of the step response is measured. If the risetime is measured
from 0% to 100% of the step, the moving average filter is the best you can do,
as previously shown. In comparison, measuring the risetime from 10% to 90%
makes the Blackman window better than the moving average filter. The point
is, this is just theoretical squabbling; consider these filters equal in this
parameter.

The biggest difference in these filters is execution speed. Using a recursive
algorithm (described next), the moving average filter will run like lightning in
your computer. In fact, it is the fastest digital filter available. Multiple passes
of the moving average will be correspondingly slower, but still very quick. In
comparison, the Gaussian and Blackman filters are excruciatingly slow,
because they must use convolution. Think a factor of ten times the number of
points in the filter kernel (based on multiplication being about 10 times slower
than addition). For example, expect a 100 point Gaussian to be 1000 times
slower than a moving average using recursion.

Recursive Implementation
A tremendous advantage of the moving average filter is that it can be
implemented with an algorithm that is very fast. To understand this

Chapter 15- Moving Average Filters 283

FIGURE 15-4
Frequency response of the Blackman window
and Gaussian filter kernels. Both these filters
provide better stopband attenuation than the
moving average filter. This has no advantage in
removing random noise from time domain
encoded signals, but it can be useful in mixed
domain problems. The disadvantage of these
filters is that they must use convolution, a
terribly slow algorithm.

Frequency

0 0.1 0.2 0.3 0.4 0.5

-140

-120

-100

-80

-60

-40

-20

0

20

Gaussian

Blackman

A
m

pl
itu

de
 (d

B
)

y [50] ' x [47] % x [48] % x [49] % x [50] % x [51] % x [52] % x [53]

y [51] ' x [48] % x [49] % x [50] % x [51] % x [52] % x [53] % x [54]

y [51] ' y [50] % x [54] & x [47]

EQUATION 15-3
Recursive implementation of the moving
average filter. In this equation, is thex[]
input signal, is the output signal, M is they[]
number of points in the moving average (an
odd number). Before this equation can be
used, the first point in the signal must be
calculated using a standard summation.

y [i] ' y [i &1] % x [i %p] & x [i &q]

q ' p % 1
where: p ' (M&1) /2

algorithm, imagine passing an input signal, , through a seven point movingx []
average filter to form an output signal, . Now look at how two adjacenty []
output points, and , are calculated:y [50] y [51]

These are nearly the same calculation; points through must bex [48] x [53]
added for , and again for . If has already been calculated, they [50] y [51] y [50]
most efficient way to calculate is:y [51]

Once has been found using , then can be calculated fromy [51] y [50] y [52]
sample , and so on. After the first point is calculated in , all of they [51] y []
other points can be found with only a single addition and subtraction per point.
This can be expressed in the equation:

Notice that this equation use two sources of data to calculate each point in the
output: points from the input and previously calculated points from the output.
This is called a recursive equation, meaning that the result of one calculation

The Scientist and Engineer's Guide to Digital Signal Processing284

100 'MOVING AVERAGE FILTER IMPLEMENTED BY RECURSION
110 'This program filters 5000 samples with a 101 point moving
120 'average filter, resulting in 4900 samples of filtered data.
130 'A double precision accumulator is used to prevent round-off drift.
140 '
150 DIM X[4999] 'X[] holds the input signal
160 DIM Y[4999] 'Y[] holds the output signal
170 DEFDBL ACC 'Define the variable ACC to be double precision
180 '
190 GOSUB XXXX 'Mythical subroutine to load X[]
200 '
210 ACC = 0 'Find Y[50] by averaging points X[0] to X[100]
220 FOR I% = 0 TO 100
230 ACC = ACC + X[I%]
240 NEXT I%
250 Y[50] = ACC/101
260 ' 'Recursive moving average filter (Eq. 15-3)
270 FOR I% = 51 TO 4949
280 ACC = ACC + X[I%+50] - X[I%-51]
290 Y[I%] = ACC/101
300 NEXT I%
310 '
320 END

 TABLE 15-2

is used in future calculations. (The term "recursive" also has other meanings,
especially in computer science). Chapter 19 discusses a variety of recursive
filters in more detail. Be aware that the moving average recursive filter is very
different from typical recursive filters. In particular, most recursive filters have
an infinitely long impulse response (IIR), composed of sinusoids and
exponentials. The impulse response of the moving average is a rectangular
pulse (finite impulse response, or FIR).

This algorithm is faster than other digital filters for several reasons. First,
there are only two computations per point, regardless of the length of the filter
kernel. Second, addition and subtraction are the only math operations needed,
while most digital filters require time-consuming multiplication. Third, the
indexing scheme is very simple. Each index in Eq. 15-3 is found by adding or
subtracting integer constants that can be calculated before the filtering starts
(i.e., p and q). Fourth, the entire algorithm can be carried out with integer
representation. Depending on the hardware used, integers can be more than an
order of magnitude faster than floating point.

Surprisingly, integer representation works better than floating point with this
algorithm, in addition to being faster. The round-off error from floating point
arithmetic can produce unexpected results if you are not careful. For example,
imagine a 10,000 sample signal being filtered with this method. The last
sample in the filtered signal contains the accumulated error of 10,000 additions
and 10,000 subtractions. This appears in the output signal as a drifting offset.
Integers don't have this problem because there is no round-off error in the
arithmetic. If you must use floating point with this algorithm, the program in
Table 15-2 shows how to use a double precision accumulator to eliminate this
drift.

285

CHAPTER

16

h [i] '
sin(2B fC i)

iB

Windowed-Sinc Filters

Windowed-sinc filters are used to separate one band of frequencies from another. They are very
stable, produce few surprises, and can be pushed to incredible performance levels. These
exceptional frequency domain characteristics are obtained at the expense of poor performance in
the time domain, including excessive ripple and overshoot in the step response. When carried out
by standard convolution, windowed-sinc filters are easy to program, but slow to execute. Chapter
18 shows how the FFT can be used to dramatically improve the computational speed of these
filters.

Strategy of the Windowed-Sinc
Figure 16-1 illustrates the idea behind the windowed-sinc filter. In (a), the
frequency response of the ideal low-pass filter is shown. All frequencies below
the cutoff frequency, , are passed with unity amplitude, while all higherfC
frequencies are blocked. The passband is perfectly flat, the attenuation in the
stopband is infinite, and the transition between the two is infinitesimally small.

Taking the Inverse Fourier Transform of this ideal frequency response produces
the ideal filter kernel (impulse response) shown in (b). As previously discussed
(see Chapter 11, Eq. 11-4), this curve is of the general form: , calledsin(x)/x
the sinc function, given by:

Convolving an input signal with this filter kernel provides a perfect low-pass
filter. The problem is, the sinc function continues to both negative and positive
infinity without dropping to zero amplitude. While this infinite length is not
a problem for mathematics, it is a show stopper for computers.

The Scientist and Engineer's Guide to Digital Signal Processing286

w[i] ' 0.54 & 0.46 cos(2B i /M)
EQUATION 16-1
The Hamming window. These
windows run from to M,i ' 0
for a total of points.M % 1

w[i] ' 0.42 & 0.5 cos(2B i /M) % 0.08 cos(4B i /M)EQUATION 16-2
The Blackman window.

FIGURE 16-1 (facing page)
Derivation of the windowed-sinc filter kernel. The frequency response of the ideal low-pass filter is shown
in (a), with the corresponding filter kernel in (b), a sinc function. Since the sinc is infinitely long, it must be
truncated to be used in a computer, as shown in (c). However, this truncation results in undesirable changes
in the frequency response, (d). The solution is to multiply the truncated-sinc with a smooth window, (e),
resulting in the windowed-sinc filter kernel, (f). The frequency response of the windowed-sinc, (g), is smooth
and well behaved. These figures are not to scale.

To get around this problem, we will make two modifications to the sinc
function in (b), resulting in the waveform shown in (c). First, it is truncated
to points, symmetrically chosen around the main lobe, where M is anM%1
even number. All samples outside these points are set to zero, or simplyM%1
ignored. Second, the entire sequence is shifted to the right so that it runs from
0 to M. This allows the filter kernel to be represented using only positive
indexes. While many programming languages allow negative indexes, they are
a nuisance to use. The sole effect of this shift in the filter kernel is toM /2
shift the output signal by the same amount.

Since the modified filter kernel is only an approximation to the ideal filter
kernel, it will not have an ideal frequency response. To find the frequency
response that is obtained, the Fourier transform can be taken of the signal in
(c), resulting in the curve in (d). It's a mess! There is excessive ripple in the
passband and poor attenuation in the stopband (recall the Gibbs effect
discussed in Chapter 11). These problems result from the abrupt discontinuity
at the ends of the truncated sinc function. Increasing the length of the filter
kernel does not reduce these problems; the discontinuity is significant no matter
how long M is made.

Fortunately, there is a simple method of improving this situation. Figure (e)
shows a smoothly tapered curve called a Blackman window. Multiplying the
truncated-sinc, (c), by the Blackman window, (e), results in the windowed-
sinc filter kernel shown in (f). The idea is to reduce the abruptness of the
truncated ends and thereby improve the frequency response. Figure (g) shows
this improvement. The passband is now flat, and the stopband attenuation is
so good it cannot be seen in this graph.

Several different windows are available, most of them named after their
original developers in the 1950s. Only two are worth using, the Hamming
window and the Blackman window These are given by:

Figure 16-2a shows the shape of these two windows for (i.e., 51 totalM ' 50
points in the curves). Which of these two windows should you use? It's a
trade-off between parameters. As shown in Fig. 16-2b, the Hamming
window has about a 20% faster roll-off than the Blackman. However,

Chapter 16- Windowed-Sinc Filters 287

Time Domain

Frequency

0 0.5

-0.5

0.0

0.5

1.0

1.5

fc

a. Ideal frequency response

Sample number

-50 -25 0 25 50

-0.5

0.0

0.5

1.0

1.5

b. Ideal filter kernel

Frequency

0 0.5

-0.5

0.0

0.5

1.0

1.5

fc

d. Truncated-sinc frequency response

Sample number

0 1

-0.5

0.0

0.5

1.0

1.5

M

abrupt end

c. Truncated-sinc filter kernel

Sample number

0 1

-0.5

0.0

0.5

1.0

1.5

M

e. Blackman or Hamming window

Frequency Domain

Frequency

0 0.5

-0.5

0.0

0.5

1.0

1.5

g. Windowed-sinc frequency response

fc

Sample number

0 1

-0.5

0.0

0.5

1.0

1.5

M

f. Windowed-sinc filter kernel

FIGURE 16-1

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

A
m

pl
itu

de

The Scientist and Engineer's Guide to Digital Signal Processing288

Sample number

0 10 20 30 40 50

0.0

0.5

1.0

1.5

a. Blackman and Hamming window

Blackman

Hamming

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

b. Frequency response

Hamming
Blackman

Frequency

0 0.1 0.2 0.3 0.4 0.5

-120

-100

-80

-60

-40

-20

0

20

40

c. Frequency response (dB)

Blackman

Hamming

FIGURE 16-2
Characteristics of the Blackman and Hamming
windows. The shapes of these two windows are
shown in (a), and given by Eqs. 16-1 and 16-2. As
shown in (b), the Hamming window results in about
20% faster roll-off than the Blackman window.
However, the Blackman window has better stop-
band attenuation (Blackman: 0.02%, Hamming:
0.2%), and a lower passband ripple (Blackman:
0.02% Hamming: 0.2%). A

m
pl

itu
de

 (d
B

)
A

m
pl

itu
de

A
m

pl
itu

de

(c) shows that the Blackman has a better stopband attenuation. To be exact,
the stopband attenuation for the Blackman is -74dB (-0.02%), while the
Hamming is only -53dB (-0.2%). Although it cannot be seen in these graphs,
the Blackman has a passband ripple of only about 0.02%, while the Hamming
is typically 0.2%. In general, the Blackman should be your first choice; a
slow roll-off is easier to handle than poor stopband attenuation.

There are other windows you might hear about, although they fall short of the
Blackman and Hamming. The Bartlett window is a triangle, using straight
lines for the taper. The Hanning window, also called the raised cosine
window, is given by: . These two windows havew[i] ' 0.5& 0.5 cos(2Bi /M)
about the same roll-off speed as the Hamming, but worse stopband attenuation
(Bartlett: -25dB or 5.6%, Hanning -44dB or 0.63%). You might also hear of
a rectangular window. This is the same as no window, just a truncation of
the tails (such as in Fig. 16-1c). While the roll-off is -2.5 times faster than the
Blackman, the stopband attenuation is only -21dB (8.9%).

Designing the Filter
To design a windowed-sinc, two parameters must be selected: the cutoff
frequency, , and the length of the filter kernel, M. The cutoff frequencyfC

Chapter 16- Windowed-Sinc Filters 289

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

fC=0.05 fC=0.25

fC=0.45

b. Roll-off vs. cutoff frequency

FIGURE 16-3
Filter length vs. roll-off of the windowed-sinc filter. As shown in (a), for M = 20, 40, and 200, the transition
bandwidths are BW = 0.2, 0.1, and 0.02 of the sampling rate, respectively. As shown in (b), the shape of the
frequency response does not change with different cutoff frequencies. In (b), M = 60.

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

M=40 M=200

M=20

a. Roll-off vs. kernel length

A
m

pl
itu

de

A
m

pl
itu

de

M . 4
BW

EQUATION 16-3
Filter length vs. roll-off. The length of the
filter kernel, M, determines the transition
bandwidth of the filter, BW. This is only an
approximation since roll-off depends on the
particular window being used.

is expressed as a fraction of the sampling rate, and therefore must be between
0 and 0.5. The value for M sets the roll-off according to the approximation:

where BW is the width of the transition band, measured from where the curve
just barely leaves one, to where it almost reaches zero (say, 99% to 1% of the
curve). The transition bandwidth is also expressed as a fraction of the
sampling frequency, and must between 0 and 0.5. Figure 16-3a shows an
example of how this approximation is used. The three curves shown are
generated from filter kernels with: . From Eq. 16-3, theM ' 20, 40, and 200
transition bandwidths are: , respectively. Figure (b)BW ' 0.2, 0.1, and 0.02
shows that the shape of the frequency response does not depend on the cutoff
frequency selected.

Since the time required for a convolution is proportional to the length of the
signals, Eq. 16-3 expresses a trade-off between computation time (depends on
the value of M) and filter sharpness (the value of BW). For instance, the 20%
slower roll-off of the Blackman window (as compared with the Hamming) can
be compensated for by using a filter kernel 20% longer. In other words, it
could be said that the Blackman window is 20% slower to execute that an
equivalent roll-off Hamming window. This is important because the execution
speed of windowed-sinc filters is already terribly slow.

As also shown in Fig. 16-3b, the cutoff frequency of the windowed-sinc filter
is measured at the one-half amplitude point. Why use 0.5 instead of the

The Scientist and Engineer's Guide to Digital Signal Processing290

h [i] ' K
sin(2BfC (i&M /2))

i&M /2
0.42 & 0.5cos 2Bi

M
% 0.08cos 4Bi

M

EQUATION 16-4
The windowed-sinc filter kernel. The cutoff frequency, , is expressed as afC
fraction of the sampling rate, a value between 0 and 0.5. The length of the filter
kernel is determined by M, which must be an even integer. The sample number
i, is an integer that runs from 0 to M, resulting in total points in the filterM%1
kernel. The constant, K, is chosen to provide unity gain at zero frequency. To
avoid a divide-by-zero error, for , use .i ' M/2 h[i] ' 2B fC K

standard 0.707 (-3dB) used in analog electronics and other digital filters? This
is because the windowed-sinc's frequency response is symmetrical between the
passband and the stopband. For instance, the Hamming window results in a
passband ripple of 0.2%, and an identical stopband attenuation (i.e., ripple in
the stopband) of 0.2%. Other filters do not show this symmetry, and therefore
have no advantage in using the one-half amplitude point to mark the cutoff
frequency. As shown later in this chapter, this symmetry makes the windowed-
sinc ideal for spectral inversion.

After and M have been selected, the filter kernel is calculated from thefC
relation:

Don't be intimidated by this equation! Based on the previous discussion, you
should be able to identify three components: the sinc function, the M/2 shift,
and the Blackman window. For the filter to have unity gain at DC, the constant
K must be chosen such that the sum of all the samples is equal to one. In
practice, ignore K during the calculation of the filter kernel, and then normalize
all of the samples as needed. The program listed in Table 16-1 shows how this
is done. Also notice how the calculation is handled at the center of the sinc,

, which involves a division by zero. i ' M/2

This equation may be long, but it is easy to use; simply type it into your
computer program and forget it. Let the computer handle the calculations. If
you find yourself trying to evaluate this equation by hand, you are doing
something very very wrong.

Let's be specific about where the filter kernel described by Eq. 16-4 is located
in your computer array. As an example, M will be chosen to be 100.
Remember, M must be an even number. The first point in the filter kernel is
in array location 0, while the last point is in array location 100. This means
that the entire signal is 101 points long. The center of symmetry is at point 50,
i.e., . The 50 points to the left of point 50 are symmetrical with the 50M/2
points to the right. Point 0 is the same value as point 100, and point 49 is the
same as point 51. If you must have a specific number of samples in the filter
kernel, such as to use the FFT, simply add zeros to one end or the other. For
example, with , you could make samples 101 through 127 equal toM ' 100
zero, resulting in a filter kernel 128 points long.

Chapter 16- Windowed-Sinc Filters 291

Filter kernel

Sample number

0 100 200 300 400 500

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

b. f
C
 = 0.015

M = 500

Sample number

0 100 200 300 400 500

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

a. f
C
 = 0.015

M = 500

Sample number

0 100 200 300 400 500

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

d. f
C
 = 0.04

M = 500

Sample number

0 100 200 300 400 500

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

c. f
C
 = 0.04

M = 500

Sample number

-175 0 175

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

150

e. f
C
 = 0.04

M = 150

Step response

Sample number

0 100 200 300 400 500

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f. f
C
 = 0.04

M = 150

FIGURE 16-4
Example filter kernels and the corresponding step responses. The frequency of the sinusoidal oscillation is
approximately equal to the cutoff frequency, , while M determines the kernel length.fC

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

Figure 16-4 shows examples of windowed-sinc filter kernels, and their
corresponding step responses. The samples at the beginning and end of
the filter kernels are so small that they can't even be seen in the graphs.
Don't make the mistake of thinking they are unimportant! These samples may
be small in value; however, they collectively have a large effect on the

The Scientist and Engineer's Guide to Digital Signal Processing292

FIGURE 16-5
Example of windowed-sinc filters. The alpha and beta rhythms in an EEG are separated by low-pass and high-
pass filters with . The program to implement the low-pass filter is shown in Table 16-1. The programM ' 100
for the high-pass filter is identical, except for a spectral inversion of the low-pass filter kernel.

Frequency

0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

a. Low-pass filter

Frequency

0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

b. High-pass filter

A
m

pl
itu

de

A
m

pl
itu

de

A
lp

ha
 w

av
e

B
et

a
w

av
e

A
lp

ha
 w

av
e

B
et

a
w

av
e

performance of the filter. This is also why floating point representation is
typically used to implement windowed-sinc filters. Integers usually don't have
enough dynamic range to capture the large variation of values contained in the
filter kernel. How does the windowed-sinc filter perform in the time domain?
Terrible! The step response has overshoot and ringing; this is not a filter for
signals with information encoded in the time domain.

Examples of Windowed-Sinc Filters
An electroencephalogram, or EEG, is a measurement of the electrical
activity of the brain. It can be detected as millivolt level signals appearing
on electrodes attached to the surface of the head. Each nerve cell in the
brain generates small electrical pulses. The EEG is the combined result of
an enormous number of these electrical pulses being generated in a
(hopefully) coordinated manner. Although the relationship between thought
and this electrical coordination is very poorly understood, different
frequencies in the EEG can be identified with specific mental states. If you
close your eyes and relax, the predominant EEG pattern will be a slow
oscillation between about 7 and 12 hertz. This waveform is called the
alpha rhythm, and is associated with contentment and a decreased level of
attention. Opening your eyes and looking around causes the EEG to change
to the beta rhythm, occurring between about 17 and 20 hertz. Other
frequencies and waveforms are seen in children, different depths of sleep,
and various brain disorders such as epilepsy.

In this example, we will assume that the EEG signal has been amplified by
analog electronics, and then digitized at a sampling rate of 100 samples per
second. Acquiring data for 50 seconds produces a signal of 5,000 points. Our
goal is to separate the alpha from the beta rhythms. To do this, we will design
a digital low-pass filter with a cutoff frequency of 14 hertz, or 0.14

Chapter 16- Windowed-Sinc Filters 293

Frequency (discrete)

0.15 0.2 0.25

0.00

0.50

1.00

1.50

a. Frequency response

Frequency (hertz)

1500 2000 2500

-120

-100

-80

-60

-40

-20

0

20

40

b. Frequency response (dB)

FIGURE 16-6
Example of a windowed-sinc band-pass filter. This filter was designed for a sampling rate of 10 kHz. When
referenced to the analog signal, the center frequency of the passband is at 2 kHz, the passband is 80 hertz, and the
transition bands are 50 hertz. The windowed-sinc uses 801 points in the filter kernel to achieve this roll-off, and a
Blackman window for good stopband attenuation. Figure (a) shows the resulting frequency response on a linear
scale, while (b) shows it in decibels. The frequency axis in (a) is expressed as a fraction of the sampling frequency,
while (b) is expressed in terms of the analog signal before digitization.

A
m

pl
itu

de
 (d

B
)

A
m

pl
itu

de

of the sampling rate. The transition bandwidth will be set at 4 hertz, or 0.04 of
the sampling rate. From Eq. 16-3, the filter kernel needs to be about 101 points
long, and we will arbitrarily choose to use a Hamming window. The program in
Table 16-1 shows how the filter is carried out. The frequency response of the
filter, obtained by taking the Fourier Transform of the filter kernel, is shown in
Fig. 16-5.

In a second example, we will design a band-pass filter to isolate a signaling
tone in an audio signal, such as when a button on a telephone is pressed. We
will assume that the signal has been digitized at 10 kHz, and the goal is to
isolate an 80 hertz band of frequencies centered on 2 kHz. In terms of the
sampling rate, we want to block all frequencies below 0.196 and above 0.204
(corresponding to 1960 hertz and 2040 hertz, respectively). To achieve a
transition bandwidth of 50 hertz (0.005 of the sampling rate), we will make the
filter kernel 801 points long, and use a Blackman window. Table 16-2 contains
a program for calculating the filter kernel, while Fig. 16-6 shows the frequency
response. The design involves several steps. First, two low-pass filters are
designed, one with a cutoff at 0.196, and the other with a cutoff at 0.204. This
second filter is then spectrally inverted, making it a high-pass filter (see
Chapter 14, Fig. 14-6). Next, the two filter kernels are added, resulting in a
band-reject filter (see Fig. 14-8). Finally, another spectral inversion makes
this into the desired band-pass filter.

Pushing it to the Limit
The windowed-sinc filter can be pushed to incredible performance levels
without nasty surprises. For instance, suppose you need to isolate a 1 millivolt
signal riding on a 120 volt power line. The low-pass filter will need

The Scientist and Engineer's Guide to Digital Signal Processing294

100 'LOW-PASS WINDOWED-SINC FILTER
110 'This program filters 5000 samples with a 101 point windowed-sinc filter,
120 'resulting in 4900 samples of filtered data.
130 '
140 DIM X[4999] 'X[] holds the input signal
150 DIM Y[4999] 'Y[] holds the output signal
160 DIM H[100] 'H[] holds the filter kernel
170 '
180 PI = 3.14159265
190 FC = .14 'Set the cutoff frequency (between 0 and 0.5)
200 M% = 100 'Set filter length (101 points)
210 '
220 GOSUB XXXX 'Mythical subroutine to load X[]
230 '
240 ' 'Calculate the low-pass filter kernel via Eq. 16-4
250 FOR I% = 0 TO 100
260 IF (I%-M%/2) = 0 THEN H[I%] = 2*PI*FC
270 IF (I%-M%/2) <> 0 THEN H[I%] = SIN(2*PI*FC * (I%-M%/2)) / (I%-M%/2)
280 H[I%] = H[I%] * (0.54 - 0.46*COS(2*PI*I%/M%))
290 NEXT I%
300 '
310 SUM = 0 'Normalize the low-pass filter kernel for
320 FOR I% = 0 TO 100 'unity gain at DC
330 SUM = SUM + H[I%]
340 NEXT I%
350 '
360 FOR I% = 0 TO 100
370 H[I%] = H[I%] / SUM
380 NEXT I%
390 '
400 FOR J% = 100 TO 4999 'Convolve the input signal & filter kernel
410 Y[J%] = 0
420 FOR I% = 0 TO 100
430 Y[J%] = Y[J%] + X[J%-I%] * H[I%]
440 NEXT I%
450 NEXT J%
460 '
470 END

 TABLE 16-1

a stopband attenuation of at least -120dB (one part in one-million for those
that refuse to learn decibels). As previously shown, the Blackman window
only provides -74dB (one part in five-thousand). Fortunately, greater
stopband attenuation is easy to obtain. The input signal can be filtered
using a conventional windowed-sinc filter kernel, providing an intermediate
signal. The intermediate signal can then be passed through the filter a
second time, further increasing the stopband attenuation to -148dB (1 part
in 30 million, wow!). It is also possible to combine the two stages into a
single filter. The kernel of the combined filter is equal to the convolution of
the filter kernels of the two stages. This also means that convolving any
filter kernel with itself results in a filter kernel with a much improved
stopband attenuation. The price you pay is a longer filter kernel and a
slower roll-off. Figure 16-7a shows the frequency response of a 201 point low-
pass filter, formed by convolving a 101 point Blackman windowed-sinc with
itself. Amazing performance! (If you really need more than -100dB of
stopband attenuation, you should use double precision. Single precision

Chapter 16- Windowed-Sinc Filters 295

100 'BAND-PASS WINDOWED-SINC FILTER
110 'This program calculates an 801 point band-pass filter kernel
120 '
130 DIM A[800] 'A[] workspace for the lower cutoff
140 DIM B[800] 'B[] workspace for the upper cutoff
150 DIM H[800] 'H[] holds the final filter kernel
160 '
170 PI = 3.1415926
180 M% = 800 'Set filter kernel length (801 points)
190 '
200 ' 'Calculate the first low-pass filter kernel via Eq. 16-4,
210 FC = 0.196 'with a cutoff frequency of 0.196, store in A[]
220 FOR I% = 0 TO 800
230 IF (I%-M%/2) = 0 THEN A[I%] = 2*PI*FC
240 IF (I%-M%/2) <> 0 THEN A[I%] = SIN(2*PI*FC * (I%-M%/2)) / (I%-M%/2)
250 A[I%] = A[I%] * (0.42 - 0.5*COS(2*PI*I%/M%) + 0.08*COS(4*PI*I%/M%))
260 NEXT I%
270 '
280 SUM = 0 'Normalize the first low-pass filter kernel for
290 FOR I% = 0 TO 800 'unity gain at DC
300 SUM = SUM + A[I%]
310 NEXT I%
320 '
330 FOR I% = 0 TO 800
340 A[I%] = A[I%] / SUM
350 NEXT I%
360 ' 'Calculate the second low-pass filter kernel via Eq. 16-4,
370 FC = 0.204 'with a cutoff frequency of 0.204, store in B[]
380 FOR I% = 0 TO 800
390 IF (I%-M%/2) = 0 THEN B[I%] = 2*PI*FC
400 IF (I%-M%/2) <> 0 THEN B[I%] = SIN(2*PI*FC * (I%-M%/2)) / (I%-M%/2)
410 B[I%] = B[I%] * (0.42 - 0.5*COS(2*PI*I%/M%) + 0.08*COS(4*PI*I%/M%))
420 NEXT I%
430 '
440 SUM = 0 'Normalize the second low-pass filter kernel for
450 FOR I% = 0 TO 800 'unity gain at DC
460 SUM = SUM + B[I%]
470 NEXT I%
480 '
490 FOR I% = 0 TO 800
500 B[I%] = B[I%] / SUM
510 NEXT I%
520 '
530 FOR I% = 0 TO 800 'Change the low-pass filter kernel in B[] into a high-pass
540 B[I%] = - B[I%] 'filter kernel using spectral inversion (as in Fig. 14-5)
550 NEXT I%
560 B[400] = B[400] + 1
570 '
580 '
590 FOR I% = 0 TO 800 'Add the low-pass filter kernel in A[], to the high-pass
600 H[I%] = A[I%] + B[I%] 'filter kernel in B[], to form a band-reject filter kernel
610 NEXT I% 'stored in H[] (as in Fig. 14-8)
620 '
630 FOR I% = 0 TO 800 'Change the band-reject filter kernel into a band-pass
640 H[I%] = -H[I%] 'filter kernel by using spectral inversion
650 NEXT I%
660 H[400] = H[400] + 1
670 ' 'The band-pass filter kernel now resides in H[]
680 END

 TABLE 16-2

The Scientist and Engineer's Guide to Digital Signal Processing296

Frequency
0 0.1 0.2 0.3 0.4 0.5

-200
-180
-160
-140
-120
-100

-80
-60
-40
-20

0
20
40
60

a. Incredible stopband attenuation

round-off noise
single precision

!

FIGURE 16-7
The incredible performance of the windowed-sinc filter. Figure (a) shows the frequency response of a
windowed-sinc filter with increased stopband attenuation. This is achieved by convolving a windowed-sinc
filter kernel with itself. Figure (b) shows the very rapid roll-off a 32,001 point windowed-sinc filter.

Frequency

0.1995 0.2 0.2005

0.0

0.5

1.0

1.5

b. Incredible roll-off !

A
m

pl
itu

de
 (d

B
)

A
m

pl
itu

de

round-off noise on signals in the passband can erratically appear in the
stopband with amplitudes in the -100dB to -120dB range).

Figure 16-7b shows another example of the windowed-sinc's incredible
performance: a low-pass filter with 32,001 points in the kernel. The frequency
response appears as expected, with a roll-off of 0.000125 of the sampling rate.
How good is this filter? Try building an analog electronic filter that passes
signals from DC to 1000 hertz with less than a 0.02% variation, and blocks all
frequencies above 1001 hertz with less than 0.02% residue. Now that's a
filter! If you really want to be impressed, remember that both the filters in Fig.
16-7 use single precision. Using double precision allows these performance
levels to be extended by a million times.

The strongest limitation of the windowed-sinc filter is the execution time; it can
be unacceptably long if there are many points in the filter kernel and standard
convolution is used. A high-speed algorithm for this filter (FFT convolution)
is presented in Chapter 18. Recursive filters (Chapter 19) also provide good
frequency separation and are a reasonable alternative to the windowed-sinc
filter.

Is the windowed-sinc the optimal filter kernel for separating frequencies? No,
filter kernels resulting from more sophisticated techniques can be better. But
beware! Before you jump into this very mathematical field, you should
consider exactly what you hope to gain. The windowed-sinc will provide any
level of performance that you could possibly need. What the advanced filter
design methods may provide is a slightly shorter filter kernel for a given level
of performance. This, in turn, may mean a slightly faster execution speed. Be
warned that you may get little return for the effort expended.

297

CHAPTER

17 Custom Filters

Most filters have one of the four standard frequency responses: low-pass, high-pass, band-pass
or band-reject. This chapter presents a general method of designing digital filters with an
arbitrary frequency response, tailored to the needs of your particular application. DSP excels
in this area, solving problems that are far above the capabilities of analog electronics. Two
important uses of custom filters are discussed in this chapter: deconvolution, a way of restoring
signals that have undergone an unwanted convolution, and optimal filtering, the problem of
separating signals with overlapping frequency spectra. This is DSP at its best.

Arbitrary Frequency Response
The approach used to derive the windowed-sinc filter in the last chapter can
also be used to design filters with virtually any frequency response. The only
difference is how the desired response is moved from the frequency domain into
the time domain. In the windowed-sinc filter, the frequency response and the
filter kernel are both represented by equations, and the conversion between
them is made by evaluating the mathematics of the Fourier transform. In the
method presented here, both signals are represented by arrays of numbers, with
a computer program (the FFT) being used to find one from the other.

Figure 17-1 shows an example of how this works. The frequency response
we want the filter to produce is shown in (a). To say the least, it is very
irregular and would be virtually impossible to obtain with analog
electronics. This ideal frequency response is defined by an array of
numbers that have been selected, not some mathematical equation. In this
example, there are 513 samples spread between 0 and 0.5 of the sampling
rate. More points could be used to better represent the desired frequency
response, while a smaller number may be needed to reduce the computation
time during the filter design. However, these concerns are usually small,
and 513 is a good length for most applications.

The Scientist and Engineer's Guide to Digital Signal Processing298

100 'CUSTOM FILTER DESIGN
110 'This program converts an aliased 1024 point impulse response into an M+1 point
120 'filter kernel (such as Fig. 17-1b being converted into Fig. 17-1c)
130 '
140 DIM REX[1023] 'REX[] holds the signal being converted
150 DIM T[1023] 'T[] is a temporary storage buffer
160 '
170 PI = 3.14159265
180 M% = 40 'Set filter kernel length (41 total points)
190 '
200 GOSUB XXXX 'Mythical subroutine to load REX[] with impulse response
210 '
220 FOR I% = 0 TO 1023 'Shift (rotate) the signal M/2 points to the right
230 INDEX% = I% + M%/2
240 IF INDEX% > 1023 THEN INDEX% = INDEX%-1024
250 T[INDEX%] = REX[I%]
260 NEXT I%
270 '
280 FOR I% = 0 TO 1023
290 REX[I%] = T[I%]
300 NEXT I%
310 ' 'Truncate and window the signal
320 FOR I% = 0 TO 1023
330 IF I% <= M% THEN REX[I%] = REX[I%] * (0.54 - 0.46 * COS(2*PI*I%/M%))
340 IF I% > M% THEN REX[I%] = 0
350 NEXT I%
360 ' 'The filter kernel now resides in REX[0] to REX[40]
370 END

 TABLE 17-1

Besides the desired magnitude array shown in (a), there must be a
corresponding phase array of the same length. In this example, the phase
of the desired frequency response is entirely zero (this array is not shown
in Fig. 17-1). Just as with the magnitude array, the phase array can be
loaded with any arbitrary curve you would like the filter to produce.
However, remember that the first and last samples (i.e., 0 and 512) of the
phase array must have a value of zero (or a multiple of 2B, which is the
same thing). The frequency response can also be specified in rectangular
form by defining the array entries for the real and imaginary parts, instead
of using the magnitude and phase.

The next step is to take the Inverse DFT to move the filter into the time
domain. The quickest way to do this is to convert the frequency domain to
rectangular form, and then use the Inverse FFT. This results in a 1024
sample signal running from 0 to 1023, as shown in (b). This is the impulse
response that corresponds to the frequency response we want; however, it
is not suitable for use as a filter kernel (more about this shortly). Just as
in the last chapter, it needs to be shifted, truncated, and windowed. In this
example, we will design the filter kernel with , i.e., 41 pointsM ' 40
running from sample 0 to sample 40. Table 17-1 shows a computer program
that converts the signal in (b) into the filter kernel shown in (c). As with
the windowed-sinc filter, the points near the ends of the filter kernel are so
small that they appear to be zero when plotted. Don't make the mistake of
thinking they can be deleted!

Chapter 17- Custom Filters 299

Time Domain

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

a. Desired frequency response

Sample number
0 256 512 768 1024

-0.5

0.0

0.5

1.0

1.5

b. Impulse response (aliased)

1023

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

d. Actual frequency response

Sample number
0 10 20 30 40 50

-0.5

0.0

0.5

1.0

1.5

c. Filter kernel

1023

added
zeros

Frequency Domain

FIGURE 17-1
Example of FIR filter design. Figure (a) shows the desired frequency response, with 513 samples running
between 0 to 0.5 of the sampling rate. Taking the Inverse DFT results in (b), an aliased impulse response
composed of 1024 samples. To form the filter kernel, (c), the aliased impulse response is truncated to M%1
samples, shifted to the right by samples, and multiplied by a Hamming or Blackman window. In thisM/2
example, M is 40. The program in Table 17-1 shows how this is done. The filter kernel is tested by padding
it with zeros and taking the DFT, providing the actual frequency response of the filter, (d).

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

The last step is to test the filter kernel. This is done by taking the DFT (using
the FFT) to find the actual frequency response, as shown in (d). To obtain
better resolution in the frequency domain, pad the filter kernel with zeros
before the FFT. For instance, using 1024 total samples (41 in the filter kernel,
plus 983 zeros), results in 513 samples between 0 and 0.5.

As shown in Fig. 17-2, the length of the filter kernel determines how well the
actual frequency response matches the desired frequency response. The
exceptional performance of FIR digital filters is apparent; virtually any
frequency response can be obtained if a long enough filter kernel is used.

This is the entire design method; however, there is a subtle theoretical issue
that needs to be clarified. Why isn't it possible to directly use the impulse
response shown in 17-1b as the filter kernel? After all, if (a) is the Fourier
transform of (b), wouldn't convolving an input signal with (b) produce the exact
frequency response we want? The answer is no, and here's why.

The Scientist and Engineer's Guide to Digital Signal Processing300

When designing a custom filter, the desired frequency response is defined by
the values in an array. Now consider this: what does the frequency response
do between the specified points? For simplicity, two cases can be imagined,
one "good" and one "bad." In the "good" case, the frequency response is a
smooth curve between the defined samples. In the "bad" case, there are wild
fluctuations between. As luck would have it, the impulse response in (b)
corresponds to the "bad" frequency response. This can be shown by padding
it with a large number of zeros, and then taking the DFT. The frequency
response obtained by this method will show the erratic behavior between the
originally defined samples, and look just awful.

To understand this, imagine that we force the frequency response to be what
we want by defining it at an infinite number of points between 0 and 0.5.
That is, we create a continuous curve. The inverse DTFT is then used to
find the impulse response, which will be infinite in length. In other words,
the "good" frequency response corresponds to something that cannot be
represented in a computer, an infinitely long impulse response. When we
represent the frequency spectrum with samples, only N points areN/2 % 1
provided in the time domain, making it unable to correctly contain the
signal. The result is that the infinitely long impulse response wraps up
(aliases) into the N points. When this aliasing occurs, the frequency
response changes from "good" to "bad." Fortunately, windowing the N
point impulse response greatly reduces this aliasing, providing a smooth
curve between the frequency domain samples.

Designing a digital filter to produce a given frequency response is quite simple.
The hard part is finding what frequency response to use. Let's look at some
strategies used in DSP to design custom filters.

Deconvolution
Unwanted convolution is an inherent problem in transferring analog
information. For instance, all of the following can be modeled as a
convolution: image blurring in a shaky camera, echoes in long distance
telephone calls, the finite bandwidth of analog sensors and electronics, etc.
Deconvolution is the process of filtering a signal to compensate for an
undesired convolution. The goal of deconvolution is to recreate the signal as
it existed before the convolution took place. This usually requires the
characteristics of the convolution (i.e., the impulse or frequency response) to
be known. This can be distinguished from blind deconvolution, where the
characteristics of the parasitic convolution are not known. Blind deconvolution
is a much more difficult problem that has no general solution, and the approach
must be tailored to the particular application.

Deconvolution is nearly impossible to understand in the time domain, but
quite straightforward in the frequency domain. Each sinusoid that composes
the original signal can be changed in amplitude and/or phase as it passes
through the undesired convolution. To extract the original signal, the
deconvolution filter must undo these amplitude and phase changes. For

Chapter 17- Custom Filters 301

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

a. M = 10

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

c. M = 100

FIGURE 17-2
Frequency response vs. filter kernel length.
These figures show the frequency responses
obtained with various lengths of filter kernels.
The number of points in each filter kernel is
equal to , running from 0 to M. As moreM%1
points are used in the filter kernel, the resulting
frequency response more closely matches the
desired frequency response. Figure 17-1a shows
the desired frequency response for this example.

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

d. M = 300

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

e. M = 1000

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

b. M = 30

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

example, if the convolution changes a sinusoid's amplitude by 0.5 with a 30
degree phase shift, the deconvolution filter must amplify the sinusoid by 2.0
with a -30 degree phase change.

The example we will use to illustrate deconvolution is a gamma ray detector.
As illustrated in Fig. 17-3, this device is composed of two parts, a scintillator
and a light detector. A scintillator is a special type of transparent material,
such as sodium iodide or bismuth germanate. These compounds change the
energy in each gamma ray into a brief burst of visible light. This light

The Scientist and Engineer's Guide to Digital Signal Processing302

gamma ray

scintillator

light detector

amplifier

Time Time

light

FIGURE 17-3
Example of an unavoidable convolution. A gamma ray detector can be formed by mounting a scintillator on
a light detector. When a gamma ray strikes the scintillator, its energy is converted into a pulse of light. This
pulse of light is then converted into an electronic signal by the light detector. The gamma ray is an impulse,
while the output of the detector (i.e., the impulse response) resembles a one-sided exponential.

En
er

gy

V
ol

ta
ge

is then converted into an electronic signal by a light detector, such as a
photodiode or photomultiplier tube. Each pulse produced by the detector
resembles a one-sided exponential, with some rounding of the corners. This
shape is determined by the characteristics of the scintillator used. When a
gamma ray deposits its energy into the scintillator, nearby atoms are excited to
a higher energy level. These atoms randomly deexcite, each producing a single
photon of visible light. The net result is a light pulse whose amplitude decays
over a few hundred nanoseconds (for sodium iodide). Since the arrival of each
gamma ray is an impulse, the output pulse from the detector (i.e., the one-sided
exponential) is the impulse response of the system.

Figure 17-4a shows pulses generated by the detector in response to randomly
arriving gamma rays. The information we would like to extract from this
output signal is the amplitude of each pulse, which is proportional to the
energy of the gamma ray that generated it. This is useful information because
the energy can tell interesting things about where the gamma ray has been. For
example, it may provide medical information on a patient, tell the age of a
distant galaxy, detect a bomb in airline luggage, etc.

Everything would be fine if only an occasional gamma ray were detected, but
this is usually not the case. As shown in (a), two or more pulses may overlap,
shifting the measured amplitude. One answer to this problem is to deconvolve
the detector's output signal, making the pulses narrower so that less pile-up
occurs. Ideally, we would like each pulse to resemble the original impulse. As
you may suspect, this isn't possible and we must settle for a pulse that is finite
in length, but significantly shorter than the detected pulse. This goal is
illustrated in Fig. 17-4b.

Chapter 17- Custom Filters 303

Sample number
0 100 200 300 400 500

-1

0

1

2

a. Detected pulses

Sample number
0 100 200 300 400 500

-1

0

1

2

b. Filtered pulses

FIGURE 17-4
Example of deconvolution. Figure (a) shows the output signal from a gamma ray detector in response to a
series of randomly arriving gamma rays. The deconvolution filter is designed to convert (a) into (b), by
reducing the width of the pulses. This minimizes the amplitude shift when pulses land on top of each other.

A
m

pl
itu

de

A
m

pl
itu

de

Even though the detector signal has its information encoded in the time
domain, much of our analysis must be done in the frequency domain, where
the problem is easier to understand. Figure 17-5a is the signal produced by
the detector (something we know). Figure (c) is the signal we wish to have
(also something we know). This desired pulse was arbitrarily selected to
be the same shape as a Blackman window, with a length about one-third
that of the original pulse. Our goal is to find a filter kernel, (e), that when
convolved with the signal in (a), produces the signal in (c). In equation
form: if , and given a and c, find e.a t e ' c

If these signals were combined by addition or multiplication instead of
convolution, the solution would be easy: subtraction is used to "de-add" and
division is used to "de-multiply." Convolution is different; there is not a simple
inverse operation that can be called "deconvolution." Convolution is too messy
to be undone by directly manipulating the time domain signals.

Fortunately, this problem is simpler in the frequency domain. Remember,
convolution in one domain corresponds with multiplication in the other domain.
Again referring to the signals in Fig. 17-5: if , and given b and d, findb× f ' d
f. This is an easy problem to solve: the frequency response of the filter, (f),
is the frequency spectrum of the desired pulse, (d), divided by the frequency
spectrum of the detected pulse, (b). Since the detected pulse is asymmetrical,
it will have a nonzero phase. This means that a complex division must be used
(that is, a magnitude & phase divided by another magnitude & phase). In case
you have forgotten, Chapter 9 defines how to perform a complex division of
one spectrum by another. The required filter kernel, (e), is then found from the
frequency response by the custom filter method (IDFT, shift, truncate, &
multiply by a window).

There are limits to the improvement that deconvolution can provide. In
other words, if you get greedy, things will fall apart. Getting greedy in this

The Scientist and Engineer's Guide to Digital Signal Processing304

example means trying to make the desired pulse excessively narrow. Let's look
at what happens. If the desired pulse is made narrower, its frequency spectrum
must contain more high frequency components. Since these high frequency
components are at a very low amplitude in the detected pulse, the filter must
have a very high gain at these frequencies. For instance, (f) shows that some
frequencies must be multiplied by a factor of three to achieve the desired pulse
in (c). If the desired pulse is made narrower, the gain of the deconvolution
filter will be even greater at high frequencies.

The problem is, small errors are very unforgiving in this situation. For
instance, if some frequency is amplified by 30, when only 28 is required, the
deconvolved signal will probably be a mess. When the deconvolution is pushed
to greater levels of performance, the characteristics of the unwanted
convolution must be understood with greater accuracy and precision. There
are always unknowns in real world applications, caused by such villains as:
electronic noise, temperature drift, variation between devices, etc. These
unknowns set a limit on how well deconvolution will work.

Even if the unwanted convolution is perfectly understood, there is still a
factor that limits the performance of deconvolution: noise. For instance,
most unwanted convolutions take the form of a low-pass filter, reducing the
amplitude of the high frequency components in the signal. Deconvolution
corrects this by amplifying these frequencies. However, if the amplitude of
these components falls below the inherent noise of the system, the
information contained in these frequencies is lost. No amount of signal
processing can retrieve it. It's gone forever. Adios! Goodbye! Sayonara!
Trying to reclaim this data will only amplify the noise. As an extreme case,
the amplitude of some frequencies may be completely reduced to zero. This
not only obliterates the information, it will try to make the deconvolution
filter have infinite gain at these frequencies. The solution: design a less
aggressive deconvolution filter and/or place limits on how much gain is
allowed at any of the frequencies.

How far can you go? How greedy is too greedy? This depends totally on the
problem you are attacking. If the signal is well behaved and has low noise, a
significant improvement can probably be made (think a factor of 5-10). If the
signal changes over time, isn't especially well understood, or is noisy, you
won't do nearly as well (think a factor of 1-2). Successful deconvolution
involves a great deal of testing. If it works at some level, try going farther;
you will know when it falls apart. No amount of theoretical work will allow
you to bypass this iterative process.

Deconvolution can also be applied to frequency domain encoded signals. A
classic example is the restoration of old recordings of the famous opera
singer, Enrico Caruso (1873-1921). These recordings were made with very
primitive equipment by modern standards. The most significant problem
is the resonances of the long tubular recording horn used to gather the
sound. Whenever the singer happens to hit one of these resonance
frequencies, the loudness of the recording abruptly increases. Digital
deconvolution has improved the subjective quality of these recordings by

Chapter 17- Custom Filters 305

Sample number
0 10 20 30 40 50

-0.5

0.0

0.5

1.0

1.5

a. Detected pulse

Gamma ray strikes

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

b. Detected frequency spectrum

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

d. Desired frequency spectrum

Frequency DomainTime Domain

Sample number
0 10 20 30 40 50

-0.5

0.0

0.5

1.0

1.5

c. Desired pulse

Sample number
0 10 20 30 40 50

-0.4

-0.2

0.0

0.2

0.4

e. Required filter kernel

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

1.0

2.0

3.0

4.0

f. Required Frequency response

FIGURE 17-5
Example of deconvolution in the time and frequency domains. The impulse response of the example gamma ray detector
is shown in (a), while the desired impulse response is shown in (c). The frequency spectra of these two signals are shown
in (b) and (d), respectively. The filter that changes (a) into (c) has a frequency response, (f), equal to (d) divided by (b). The
filter kernel of this filter, (e), is then found from the frequency response using the custom filter design method (inverse DFT,
truncation, windowing). Only the magnitudes of the frequency domain signals are shown in this illustration; however, the
phases are nonzero and must also be used.

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

reducing the loud spots in the music. We will only describe the general
method; for a detailed description, see the original paper: T. Stockham, T.
Cannon, and R. Ingebretsen, "Blind Deconvolution Through Digital Signal
Processing", Proc. IEEE, vol. 63, Apr. 1975, pp. 678-692.

The Scientist and Engineer's Guide to Digital Signal Processing306

Frequency

b. Frequency response

Frequency Frequency

Frequency

Frequency

Undesired
Convolution Deconvolution

d. Frequency response

a. Original spectrum c. Recorded spectrum e. Deconvolved spectrum

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 17-6
Deconvolution of old phonograph recordings. The frequency spectrum produced by the original singer is
illustrated in (a). Resonance peaks in the primitive equipment, (b), produce distortion in the recorded
frequency spectrum, (c). The frequency response of the deconvolution filter, (d), is designed to counteracts
the undesired convolution, restoring the original spectrum, (e). These graphs are for illustrative purposes only;
they are not actual signals.

Figure 17-6 shows the general approach. The frequency spectrum of the
original audio signal is illustrated in (a). Figure (b) shows the frequency
response of the recording equipment, a relatively smooth curve except for
several sharp resonance peaks. The spectrum of the recorded signal, shown in
(c), is equal to the true spectrum, (a), multiplied by the uneven frequency
response, (b). The goal of the deconvolution is to counteract the undesired
convolution. In other words, the frequency response of the deconvolution filter,
(d), must be the inverse of (b). That is, each peak in (b) is cancelled by a
corresponding dip in (d). If this filter were perfectly designed, the resulting
signal would have a spectrum, (e), identical to that of the original. Here's the
catch: the original recording equipment has long been discarded, and its
frequency response, (b), is a mystery. In other words, this is a blind
deconvolution problem; given only (c), how can we determine (d)?

Blind deconvolution problems are usually attacked by making an estimate
or assumption about the unknown parameters. To deal with this example,
the average spectrum of the original music is assumed to match the average
spectrum of the same music performed by a present day singer using modern
equipment. The average spectrum is found by the techniques of Chapter 9:

Chapter 17- Custom Filters 307

Sample number
0 100 200 300 400 500

-0.5

0.0

0.5

1.0

1.5

a. Signal + noise (time domain)

signal

noise

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

signal

noise

b. Signal + noise (frequency spectrum)

FIGURE 17-7
Example of optimal filtering. In (a), an exponential pulse buried in random noise. The frequency spectra of
the pulse and noise are shown in (b). Since the signal and noise overlap in both the time and frequency
domains, the best way to separate them isn't obvious.

A
m

pl
itu

de

A
m

pl
itu

de

break the signal into a large number of segments, take the DFT of each
segment, convert into polar form, and then average the magnitudes together.
In the simplest case, the unknown frequency response is taken as the average
spectrum of the old recording, divided by the average spectrum of the modern
recording. (The method used by Stockham et al. is based on a more
sophisticated technique called homomorphic processing, providing a better
estimate of the characteristics of the recording system).

Optimal Filters

Figure 17-7a illustrates a common filtering problem: trying to extract a
waveform (in this example, an exponential pulse) buried in random noise. As
shown in (b), this problem is no easier in the frequency domain. The signal has
a spectrum composed mainly of low frequency components. In comparison, the
spectrum of the noise is white (the same amplitude at all frequencies). Since
the spectra of the signal and noise overlap, it is not clear how the two can best
be separated. In fact, the real question is how to define what "best" means.
We will look at three filters, each of which is "best" (optimal) in a different
way. Figure 17-8 shows the filter kernel and frequency response for each of
these filters. Figure 17-9 shows the result of using these filters on the example
waveform of Fig. 17-7a.

The moving average filter is the topic of Chapter 15. As you recall, each
output point produced by the moving average filter is the average of a certain
number of points from the input signal. This makes the filter kernel a
rectangular pulse with an amplitude equal to the reciprocal of the number of
points in the average. The moving average filter is optimal in the sense that it
provides the fastest step response for a given noise reduction.

The matched filter was previously discussed in Chapter 7. As shown in Fig.
17-8a, the filter kernel of the matched filter is the same as the target signal

The Scientist and Engineer's Guide to Digital Signal Processing308

FIGURE 17-8
Example of optimal filters. In (a), three filter kernels are shown, each of which is optimal in some sense. The
corresponding frequency responses are shown in (b). The moving average filter is designed to have a
rectangular pulse for a filter kernel. In comparison, the filter kernel of the matched filter looks like the signal
being detected. The Wiener filter is designed in the frequency domain, based on the relative amounts of signal
and noise present at each frequency.

Sample number
0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

0.25

moving average

Wiener

matched

a. Filter kernel

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

b. Frequency response

moving average

Wiener

matched

A
m

pl
itu

de

A
m

pl
itu

de

EQUATION 17-1
The Wiener filter. The frequency response,
represented by , is determined by theH [f]
frequency spectra of the noise, , andN [f]
the signal, . Only the magnitudes areS [f]
important; all of the phases are zero.

H [f] '
S [f]2

S [f]2%N [f]2

being detected, except it has been flipped left-for-right. The idea behind the
matched filter is correlation, and this flip is required to perform correlation
using convolution. The amplitude of each point in the output signal is a
measure of how well the filter kernel matches the corresponding section of the
input signal. Recall that the output of a matched filter does not necessarily
look like the signal being detected. This doesn't really matter; if a matched
filter is used, the shape of the target signal must already be known. The
matched filter is optimal in the sense that the top of the peak is farther above
the noise than can be achieved with any other linear filter (see Fig. 17-9b).

The Wiener filter (named after the optimal estimation theory of Norbert
Wiener) separates signals based on their frequency spectra. As shown in Fig.
17-7b, at some frequencies there is mostly signal, while at others there is
mostly noise. It seems logical that the "mostly signal" frequencies should be
passed through the filter, while the "mostly noise" frequencies should be
blocked. The Wiener filter takes this idea a step further; the gain of the filter
at each frequency is determined by the relative amount of signal and noise at
that frequency:

This relation is used to convert the spectra in Fig. 17-7b into the Wiener
filter's frequency response in Fig. 17-8b. The Wiener filter is optimal in the
sense that it maximizes the ratio of the signal power to the noise power

Chapter 17- Custom Filters 309

Sample number
0 100 200 300 400 500

-0.5

0.0

0.5

1.0

1.5

a. Moving average filter

Sample number
0 100 200 300 400 500

-0.5

0.0

0.5

1.0

1.5

b. Matched filter

FIGURE 17-9
Example of using three optimal filters. These
signals result from filtering the waveform in Fig.
17-7 with the filters in Fig. 17-8. Each of these
three filters is optimal in some sense. In (a), the
moving average filter results in the sharpest
edge response for a given level of random noise
reduction. In (b), the matched filter produces a
peak that is farther above the residue noise than
provided by any other filter. In (c), the Wiener
filter optimizes the signal-to-noise ratio.

Sample number
0 100 200 300 400 500

-0.5

0.0

0.5

1.0

1.5

c. Wiener filter

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

(over the length of the signal, not at each individual point). An appropriate
filter kernel is designed from the Wiener frequency response using the custom
method.

While the ideas behind these optimal filters are mathematically elegant, they
often fail in practicality. This isn't to say they should never be used. The point
is, don't hear the word "optimal" and stop thinking. Let's look at several
reasons why you might not want to use them.

First, the difference between the signals in Fig. 17-9 is very unimpressive. In
fact, if you weren't told what parameters were being optimized, you probably
couldn't tell by looking at the signals. This is usually the case for problems
involving overlapping frequency spectra. The small amount of extra
performance obtained from an optimal filter may not be worth the the
increased program complexity, the extra design effort, or the longer execution
time.

Second: The Wiener and matched filters are completely determined by the
characteristics of the problem. Other filters, such as the windowed-sinc and
moving average, can be tailored to your liking. Optimal filter advocates would
claim that this diddling can only reduce the effectiveness of the filter. This is

The Scientist and Engineer's Guide to Digital Signal Processing310

very arguable. Remember, each of these filters is optimal in one specific way
(i.e., "in some sense"). This is seldom sufficient to claim that the entire
problem has been optimized, especially if the resulting signals are interpreted
by a human observer. For instance, a biomedical engineer might use a Wiener
filter to maximize the signal-to-noise ratio in an electro-cardiogram. However,
it is not obvious that this also optimizes a physician's ability to detect irregular
heart activity by looking at the signal.

Third: The Wiener and matched filter must be carried out by convolution,
making them extremely slow to execute. Even with the speed improvements
discussed in the next chapter (FFT convolution), the computation time can be
excessively long. In comparison, recursive filters (such as the moving average
or others presented in Chapter 19) are much faster, and may provide an
acceptable level of performance.

311

CHAPTER

18 FFT Convolution

This chapter presents two important DSP techniques, the overlap-add method, and FFT
convolution. The overlap-add method is used to break long signals into smaller segments for
easier processing. FFT convolution uses the overlap-add method together with the Fast Fourier
Transform, allowing signals to be convolved by multiplying their frequency spectra. For filter
kernels longer than about 64 points, FFT convolution is faster than standard convolution, while
producing exactly the same result.

The Overlap-Add Method
There are many DSP applications where a long signal must be filtered in
segments. For instance, high fidelity digital audio requires a data rate of
about 5 Mbytes/min, while digital video requires about 500 Mbytes/min. With
data rates this high, it is common for computers to have insufficient memory to
simultaneously hold the entire signal to be processed. There are also systems
that process segment-by-segment because they operate in real time. For
example, telephone signals cannot be delayed by more than a few hundred
milliseconds, limiting the amount of data that are available for processing at
any one instant. In still other applications, the processing may require that the
signal be segmented. An example is FFT convolution, the main topic of this
chapter.

The overlap-add method is based on the fundamental technique in DSP: (1)
decompose the signal into simple components, (2) process each of the
components in some useful way, and (3) recombine the processed components
into the final signal. Figure 18-1 shows an example of how this is done for
the overlap-add method. Figure (a) is the signal to be filtered, while (b) shows
the filter kernel to be used, a windowed-sinc low-pass filter. Jumping to the
bottom of the figure, (i) shows the filtered signal, a smoothed version of (a).
The key to this method is how the lengths of these signals are affected by the
convolution. When an N sample signal is convolved with an M sample

The Scientist and Engineer's Guide to Digital Signal Processing312

filter kernel, the output signal is samples long. For instance, the inputN%M&1
signal, (a), is 300 samples (running from 0 to 299), the filter kernel, (b), is 101
samples (running from 0 to 100), and the output signal, (i), is 400 samples
(running from 0 to 399).

In other words, when an N sample signal is filtered, it will be expanded by
 points to the right. (This is assuming that the filter kernel runs fromM&1

index 0 to M. If negative indexes are used in the filter kernel, the expansion
will also be to the left). In (a), zeros have been added to the signal between
sample 300 and 399 to illustrate where this expansion will occur. Don't be
confused by the small values at the ends of the output signal, (i). This is
simply a result of the windowed-sinc filter kernel having small values near its
ends. All 400 samples in (i) are nonzero, even though some of them are too
small to be seen in the graph.

Figures (c), (d) and (e) show the decomposition used in the overlap-add
method. The signal is broken into segments, with each segment having 100
samples from the original signal. In addition, 100 zeros are added to the right
of each segment. In the next step, each segment is individually filtered by
convolving it with the filter kernel. This produces the output segments shown
in (f), (g), and (h). Since each input segment is 100 samples long, and the
filter kernel is 101 samples long, each output segment will be 200 samples
long. The important point to understand is that the 100 zeros were added to
each input segment to allow for the expansion during the convolution.

Notice that the expansion results in the output segments overlapping each
other. These overlapping output segments are added to give the output
signal, (i). For instance, samples 200 to 299 in (i) are found by adding the
corresponding samples in (g) and (h). The overlap-add method produces
exactly the same output signal as direct convolution. The disadvantage is
a much greater program complexity to keep track of the overlapping
samples.

FFT Convolution
FFT convolution uses the principle that multiplication in the frequency
domain corresponds to convolution in the time domain. The input signal is
transformed into the frequency domain using the DFT, multiplied by the
frequency response of the filter, and then transformed back into the time
domain using the Inverse DFT. This basic technique was known since the
days of Fourier; however, no one really cared. This is because the time
required to calculate the DFT was longer than the time to directly calculate
the convolution. This changed in 1965 with the development of the Fast
Fourier Transform (FFT). By using the FFT algorithm to calculate the
DFT, convolution via the frequency domain can be faster than directly
convolving the time domain signals. The final result is the same; only the
number of calculations has been changed by a more efficient algorithm. For
this reason, FFT convolution is also called high-speed convolution.

Chapter 18- FFT Convolution 313

Sample number
0 100 200 300 400

-4

-2

0

2

4

Sample number
0 100 200 300 400

-4

-2

0

2

4

Sample number
0 100 200 300 400

-4

-2

0

2

4

Sample number
0 100 200 300 400

-4

-2

0

2

4

Sample number
0 100 200 300 400

-4

-2

0

2

4

Sample number
0 100 200 300 400

-4

-2

0

2

4

Sample number
0 100 200 300 400

-4

-2

0

2

4

Sample number
0 100 200 300 400

-4

-2

0

2

4

a. Input signal

c. Input segment 1 f. Output segment 1

d. Input segment 2

e. Input segment 3 h. Output segment 3

i. Output signal

g. Output segment 2

 Sample
-50 0 50 100 150

-0.060

0.000

0.060

0.120

0.180

b. Filter
kernel

?

added
zeros

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 18-1
The overlap-add method. The goal is to convolve the
input signal, (a), with the filter kernel, (b). This is
done by breaking the input signal into a number of
segments, such as (c), (d) and (e), each padded with
enough zeros to allow for the expansion during the
convolution. Convolving each of the input segments
with the filter kernel produces the output segments,
(f), (g), and (h). The output signal, (i), is then found
by adding the overlapping output segments.

The Scientist and Engineer's Guide to Digital Signal Processing314

FFT convolution uses the overlap-add method shown in Fig. 18-1; only the way
that the input segments are converted into the output segments is changed.
Figure 18-2 shows an example of how an input segment is converted into an
output segment by FFT convolution. To start, the frequency response of the
filter is found by taking the DFT of the filter kernel, using the FFT. For
instance, (a) shows an example filter kernel, a windowed-sinc band-pass filter.
The FFT converts this into the real and imaginary parts of the frequency
response, shown in (b) & (c). These frequency domain signals may not look
like a band-pass filter because they are in rectangular form. Remember, polar
form is usually best for humans to understand the frequency domain, while
rectangular form is normally best for mathematical calculations. These real
and imaginary parts are stored in the computer for use when each segment is
being calculated.

Figure (d) shows the input segment to being processed. The FFT is used to find
its frequency spectrum, shown in (e) & (f). The frequency spectrum of the
output segment, (h) & (i) is then found by multiplying the filter's frequency
response, (b) & (c), by the spectrum of the input segment, (e) & (f). Since
these spectra consist of real and imaginary parts, they are multiplied according
to Eq. 9-1 in Chapter 9. The Inverse FFT is then used to find the output
segment, (g), from its frequency spectrum, (h) & (i). It is important to
recognize that this output segment is exactly the same as would be obtained by
the direct convolution of the input segment, (d), and the filter kernel, (a).

The FFTs must be long enough that circular convolution does not take place
(also described in Chapter 9). This means that the FFT should be the same
length as the output segment, (g). For instance, in the example of Fig. 18-2,
the filter kernel contains 129 points and each segment contains 128 points,
making output segment 256 points long. This calls for 256 point FFTs to be
used. This means that the filter kernel, (a), must be padded with 127 zeros to
bring it to a total length of 256 points. Likewise, each of the input segments,
(d), must be padded with 128 zeros. As another example, imagine you need
to convolve a very long signal with a filter kernel having 600 samples. One
alternative would be to use segments of 425 points, and 1024 point FFTs.
Another alternative would be to use segments of 1449 points, and 2048 point
FFTs.

Table 18-1 shows an example program to carry out FFT convolution. This
program filters a 10 million point signal by convolving it with a 400 point filter
kernel. This is done by breaking the input signal into 16000 segments, with
each segment having 625 points. When each of these segments is convolved
with the filter kernel, an output segment of points is625% 400& 1 ' 1024
produced. Thus, 1024 point FFTs are used. After defining and initializing all
the arrays (lines 130 to 230), the first step is to calculate and store the
frequency response of the filter (lines 250 to 310). Line 260 calls a
mythical subroutine that loads the filter kernel into XX[0] through
XX[399], and sets XX[400] through XX[1023] to a value of zero. The
subroutine in line 270 is the FFT, transforming the 1024 samples held in
XX[] into the 513 samples held in REX[] & IMX[], the real and

Chapter 18- FFT Convolution 315

Sample number
0 64 128 192 256

-0.2

-0.1

0.0

0.1

0.2

0.3

Sample number
0 64 128 192 256

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

Sample number
0 64 128 192 256

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

Frequency
0 64 128

-2.0

-1.0

0.0

1.0

2.0

Frequency
0 64 128

-2.0

-1.0

0.0

1.0

2.0

Frequency
0 64 128

-100

-50

0

50

100

Frequency
0 64 128

-100

-50

0

50

100

Frequency
0 64 128

-100

-50

0

50

100

Frequency
0 64 128

-100

-50

0

50

100

a. Filter kernel

d. Input segment

g. Output segment

b. Real c. Imaginary

e. Real f. Imaginary

h. Real i. Imaginary

Time Domain Frequency Domain

FFT

FFT

IFFT

signal in 0 to 128
zeros in 129 to 255

signal in 0 to 127
zeros in 128 to 255

signal in 0 to 255

255

255

255

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 18-2
FFT convolution. The filter kernel, (a), and the signal segment, (d), are converted into their respective spectra,
(b) & (c) and (e) & (f), via the FFT. These spectra are multiplied, resulting in the spectrum of the output
segment, (h) & (i). The Inverse FFT then finds the output segment, (g).

imaginary parts of the frequency response. These values are transferred into
the arrays REFR[] & IMFR[] (for: REal and IMaginary Frequency Response),
to be used later in the program.

The Scientist and Engineer's Guide to Digital Signal Processing316

The FOR-NEXT loop between lines 340 and 580 controls how the 16000
segments are processed. In line 360, a subroutine loads the next segment to be
processed into XX[0] through XX[624], and sets XX[625] through XX[1023]
to a value of zero. In line 370, the FFT subroutine is used to find this
segment's frequency spectrum, with the real part being placed in the 513 points
of REX[], and the imaginary part being placed in the 513 points of IMX[].
Lines 390 to 430 show the multiplication of the segment's frequency spectrum,
held in REX[] & IMX[], by the filter's frequency response, held in REFR[]
and IMFR[]. The result of the multiplication is stored in REX[] & IMX[],
overwriting the data previously there. Since this is now the frequency spectrum
of the output segment, the IFFT can be used to find the output segment. This is
done by the mythical IFFT subroutine in line 450, which transforms the 513
points held in REX[] & IMX[] into the 1024 points held in XX[], the output
segment.

Lines 470 to 550 handle the overlapping of the segments. Each output segment
is divided into two sections. The first 625 points (0 to 624) need to be
combined with the overlap from the previous output segment, and then written
to the output signal. The last 399 points (625 to 1023) need to be saved so that
they can overlap with the next output segment.

To understand this, look back at Fig 18-1. Samples 100 to 199 in (g) need to
be combined with the overlap from the previous output segment, (f), and can
then be moved to the output signal (i). In comparison, samples 200 to 299 in
(g) need to be saved so that they can be combined with the next output
segment, (h).

Now back to the program. The array OLAP[] is used to hold the 399 samples
that overlap from one segment to the next. In lines 470 to 490 the 399 values
in this array (from the previous output segment) are added to the output
segment currently being worked on, held in XX[]. The mythical subroutine in
line 550 then outputs the 625 samples in XX[0] to XX[624] to the file holding
the output signal. The 399 samples of the current output segment that need to
be held over to the next output segment are then stored in OLAP[] in lines 510
to 530.

After all 0 to 15999 segments have been processed, the array, OLAP[], will
contain the 399 samples from segment 15999 that should overlap segment
16000. Since segment 16000 doesn't exist (or can be viewed as containing all
zeros), the 399 samples are written to the output signal in line 600. This
makes the length of the output signal points.16000×625% 399 ' 10,000,399
This matches the length of input signal, plus the length of the filter kernel,
minus 1.

Speed Improvements
When is FFT convolution faster than standard convolution? The answer
depends on the length of the filter kernel, as shown in Fig. 18-3. The time

Chapter 18- FFT Convolution 317

100 'FFT CONVOLUTION
110 'This program convolves a 10 million point signal with a 400 point filter kernel. The input
120 'signal is broken into 16000 segments, each with 625 points. 1024 point FFTs are used.
130 '
130 ' 'INITIALIZE THE ARRAYS
140 DIM XX[1023] 'the time domain signal (for the FFT)
150 DIM REX[512] 'real part of the frequency domain (for the FFT)
160 DIM IMX[512] 'imaginary part of the frequency domain (for the FFT)
170 DIM REFR[512] 'real part of the filter's frequency response
180 DIM IMFR[512] 'imaginary part of the filter's frequency response
190 DIM OLAP[398] 'holds the overlapping samples from segment to segment
200 '
210 FOR I% = 0 TO 398 'zero the array holding the overlapping samples
220 OLAP[I%] = 0
230 NEXT I%
240 '
250 ' 'FIND & STORE THE FILTER'S FREQUENCY RESPONSE
260 GOSUB XXXX 'Mythical subroutine to load the filter kernel into XX[]
270 GOSUB XXXX 'Mythical FFT subroutine: XX[] --> REX[] & IMX[]
280 FOR F% = 0 TO 512 'Save the frequency response in REFR[] & IMFR[]
290 REFR[F%] = REX[F%]
300 IMFR[F%] = IMX[F%]
310 NEXT F%
320 '
330 ' 'PROCESS EACH OF THE 16000 SEGMENTS
340 FOR SEGMENT% = 0 TO 15999
350 '
360 GOSUB XXXX 'Mythical subroutine to load the next input segment into XX[]
370 GOSUB XXXX 'Mythical FFT subroutine: XX[] --> REX[] & IMX[]
380 '
390 FOR F% = 0 TO 512 'Multiply the frequency spectrum by the frequency response
400 TEMP = REX[F%]*REFR[F%] - IMX[F%]*IMFR[F%]
410 IMX[F%] = REX[F%]*IMFR[F%] + IMX[F%]*REFR[F%]
420 REX[F%] = TEMP
430 NEXT F%
440 '
450 GOSUB XXXX 'Mythical IFFT subroutine: REX[] & IMX[] --> XX[]
460 '
470 FOR I% = 0 TO 398 'Add the last segment's overlap to this segment
480 XX[I%] = XX[I%] + OLAP[I%]
490 NEXT I%
500 '
510 FOR I% = 625 TO 1023 'Save the samples that will overlap the next segment
520 OLAP[I%-625] = XX[I%]
530 NEXT I%
540 '
550 GOSUB XXXX 'Mythical subroutine to output the 625 samples stored
560 ' 'in XX[0] to XX[624]
570 '
580 NEXT SEGMENT%
590 '
600 GOSUB XXXX 'Mythical subroutine to output all 399 samples in OLAP[]
610 END

 TABLE 18-1

for standard convolution is directly proportional to the number of points in
the filter kernel. In comparison, the time required for FFT convolution
increases very slowly, only as the logarithm of the number of points in the

The Scientist and Engineer's Guide to Digital Signal Processing318

Impulse Response Length
8 16 32 64 128 256 512 1024

0

0.5

1

1.5

Standard

FFT

FIGURE 18-3
Execution times for FFT convolution. FFT
convolution is faster than the standard
method when the filter kernel is longer than
about 60 points. These execution times are
for a 100 MHz Pentium, using single
precision floating point.

Ex
ec

ut
io

n
Ti

m
e

(m
se

c/
po

in
t)

filter kernel. The crossover occurs when the filter kernel has about 40 to 80
samples (depending on the particular hardware used).

The important idea to remember: filter kernels shorter than about 60 points
can be implemented faster with standard convolution, and the execution time
is proportional to the kernel length. Longer filter kernels can be implemented
faster with FFT convolution. With FFT convolution, the filter kernel can be
made as long as you like, with very little penalty in execution time. For
instance, a 16,000 point filter kernel only requires about twice as long to
execute as one with only 64 points.

The speed of the convolution also dictates the precision of the calculation (just
as described for the FFT in Chapter 12). This is because the round-off error in
the output signal depends on the total number of calculations, which is directly
proportional to the computation time. If the output signal is calculated faster,
it will also be calculated more precisely. For instance, imagine convolving a
signal with a 1000 point filter kernel, with single precision floating point.
Using standard convolution, the typical round-off noise can be expected to be
about 1 part in 20,000 (from the guidelines in Chapter 4). In comparison, FFT
convolution can be expected to be an order of magnitude faster, and an order
of magnitude more precise (i.e., 1 part in 200,000).

Keep FFT convolution tucked away for when you have a large amount of data
to process and need an extremely long filter kernel. Think in terms of a million
sample signal and a thousand point filter kernel. Anything less won't justify
the extra programming effort. Don't want to write your own FFT convolution
routine? Look in software libraries and packages for prewritten code. Start
with this book's web site (see the copyright page).

319

CHAPTER

19 Recursive Filters

Recursive filters are an efficient way of achieving a long impulse response, without having to
perform a long convolution. They execute very rapidly, but have less performance and flexibility
than other digital filters. Recursive filters are also called Infinite Impulse Response (IIR) filters,
since their impulse responses are composed of decaying exponentials. This distinguishes them
from digital filters carried out by convolution, called Finite Impulse Response (FIR) filters. This
chapter is an introduction to how recursive filters operate, and how simple members of the family
can be designed. Chapters 20, 26 and 33 present more sophisticated design methods.

The Recursive Method
To start the discussion of recursive filters, imagine that you need to extract
information from some signal, . Your need is so great that you hire an oldx[]
mathematics professor to process the data for you. The professor's task is to
filter to produce , which hopefully contains the information you arex[] y[]
interested in. The professor begins his work of calculating each point in y[]
according to some algorithm that is locked tightly in his over-developed brain.
Part way through the task, a most unfortunate event occurs. The professor
begins to babble about analytic singularities and fractional transforms, and
other demons from a mathematician's nightmare. It is clear that the professor
has lost his mind. You watch with anxiety as the professor, and your algorithm,
are taken away by several men in white coats.

You frantically review the professor's notes to find the algorithm he was
using. You find that he had completed the calculation of points throughy[0]

, and was about to start on point . As shown in Fig. 19-1, we willy[27] y[28]
let the variable, n, represent the point that is currently being calculated. This
means that is sample 28 in the output signal, is sample 27,y[n] y[n&1]

 is sample 26, etc. Likewise, is point 28 in the input signal,y[n&2] x[n]

The Scientist and Engineer's Guide to Digital Signal Processing320

y [n] ' a0 x [n] % a1 x [n &1] % a2 x [n &2] % a3 x [n &3] % ˛

y [n] ' a0 x [n] % a1 x [n &1] % a2 x [n &2] % a3 x [n &3] % ˛
% b1 y [n &1] % b2 y [n &2] % b3 y [n &3] % ˛

EQUATION 19-1
The recursion equation. In this equation, isx[]
the input signal, is the output signal, and they[]
a's and b's are coefficients.

 is point 27, etc. To understand the algorithm being used, we askx[n&1]
ourselves: "What information was available to the professor to calculate ,y[n]
the sample currently being worked on?"

The most obvious source of information is the input signal, that is, the values:
. The professor could have been multiplying each pointx[n], x[n&1], x[n&2],˛

in the input signal by a coefficient, and adding the products together:

You should recognize that this is nothing more than simple convolution, with
the coefficients: , forming the convolution kernel. If this was all thea0, a1, a2,˛
professor was doing, there wouldn't be much need for this story, or this chapter.
However, there is another source of information that the professor had access
to: the previously calculated values of the output signal, held in:

. Using this additional information, the algorithmy[n&1], y[n&2], y[n&3],˛
would be in the form:

In words, each point in the output signal is found by multiplying the values
from the input signal by the "a" coefficients, multiplying the previously
calculated values from the output signal by the "b" coefficients, and adding the
products together. Notice that there isn't a value for , because thisb0
corresponds to the sample being calculated. Equation 19-1 is called the
recursion equation, and filters that use it are called recursive filters. The
"a" and "b" values that define the filter are called the recursion coefficients.
In actual practice, no more than about a dozen recursion coefficients can be
used or the filter becomes unstable (i.e., the output continually increases or
oscillates). Table 19-1 shows an example recursive filter program.

Recursive filters are useful because they bypass a longer convolution. For
instance, consider what happens when a delta function is passed through a
recursive filter. The output is the filter's impulse response, and will typically
be a sinusoidal oscillation that exponentially decays. Since this impulse
response in infinitely long, recursive filters are often called infinite impulse
response (IIR) filters. In effect, recursive filters convolve the input signal with
a very long filter kernel, although only a few coefficients are involved.

Chapter 19- Recursive Filters 321

Sample number
0 10 20 30

-2

-1

0

1

2

a. The input signal, x[]

x[n-3]
x[n-2]

x[n]
x[n-1]

Sample number
0 10 20 30

-2

-1

0

1

2

b. The output signal, y[]

y[n-3]
y[n-2]

y[n]
y[n-1]

FIGURE 19-1
Recursive filter notation. The output sample being calculated, , is determined by the values fromy[n]
the input signal, , as well as the previously calculated values in the outputx[n], x[n&1], x[n&2], ˛
signal, . These figures are shown for . y[n&1], y[n&2], y[n&3], ˛ n ' 28

A
m

pl
itu

de

A
m

pl
itu

de

100 'RECURSIVE FILTER
110 '
120 DIM X[499] 'holds the input signal
130 DIM Y[499] 'holds the filtered output signal
140 '
150 GOSUB XXXX 'mythical subroutine to calculate the recursion
160 ' 'coefficients: A0, A1, A2, B1, B2
170 '
180 GOSUB XXXX 'mythical subroutine to load X[] with the input data
190 '
200 FOR I% = 2 TO 499
210 Y[I%] = A0*X[I%] + A1*X[I%-1] + A2*X[I%-2] + B1*Y[I%-1] + B2*Y[I%-2]
220 NEXT I%
230 '
240 END

 TABLE 19-1

The relationship between the recursion coefficients and the filter's response is
given by a mathematical technique called the z-transform, the topic of
Chapter 33. For example, the z-transform can be used for such tasks as:
converting between the recursion coefficients and the frequency response,
combining cascaded and parallel stages into a single filter, designing recursive
systems that mimic analog filters, etc. Unfortunately, the z-transform is very
mathematical, and more complicated than most DSP users are willing to deal
with. This is the realm of those that specialize in DSP.

There are three ways to find the recursion coefficients without having to
understand the z-transform. First, this chapter provides design equations for
several types of simple recursive filters. Second, Chapter 20 provides a
"cookbook" computer program for designing the more sophisticated Chebyshev
low-pass and high-pass filters. Third, Chapter 26 describes an iterative method
for designing recursive filters with an arbitrary frequency response.

The Scientist and Engineer's Guide to Digital Signal Processing322

Sample number
0 10 20 30 40

-0.5

0.0

0.5

1.0

1.5

Sample number
0 10 20 30 40

-0.5

0.0

0.5

1.0

1.5

Time
0 10 20 30

-0.5

0.0

0.5

1.0

1.5

Time
0 10 20 30 40

-0.5

0.0

0.5

1.0

1.5

R

C

Digital Filter

Analog Filter

Recursive
Filter

a0 = 0.15
b1 = 0.85

FIGURE 19-2
Single pole low-pass filter. Digital recursive filters can mimic analog filters composed of resistors and
capacitors. As shown in this example, a single pole low-pass recursive filter smoothes the edge of a step input,
just as an electronic RC filter.

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Single Pole Recursive Filters

Figure 19-2 shows an example of what is called a single pole low-pass filter.
This recursive filter uses just two coefficients, and . Fora0 ' 0.15 b1 ' 0.85
this example, the input signal is a step function. As you should expect for a
low-pass filter, the output is a smooth rise to the steady state level. This figure
also shows something that ties into your knowledge of electronics. This low-
pass recursive filter is completely analogous to an electronic low-pass filter
composed of a single resistor and capacitor.

The beauty of the recursive method is in its ability to create a wide variety of
responses by changing only a few parameters. For example, Fig. 19-3 shows
a filter with three coefficients: , and . Asa0 ' 0.93 a1 ' &0.93 b1 ' 0.86
shown by the similar step responses, this digital filter mimics an electronic RC
high-pass filter.

These single pole recursive filters are definitely something you want to keep
in your DSP toolbox. You can use them to process digital signals just as
you would use RC networks to process analog electronic signals. This
includes everything you would expect: DC removal, high-frequency noise
suppression, wave shaping, smoothing, etc. They are easy to program, fast

Chapter 19- Recursive Filters 323

Sample number
0 10 20 30 40

-0.5

0.0

0.5

1.0

1.5

Sample number
0 10 20 30 40

-0.5

0.0

0.5

1.0

1.5

Time
0 10 20 30

-0.5

0.0

0.5

1.0

1.5

Time
0 10 20 30 40

-0.5

0.0

0.5

1.0

1.5

Recursive
Filter

a0 = 0.93
a1 = -0.93

R

C

Digital Filter

Analog Filter

b1 = 0.86

FIGURE 19-3
Single pole high-pass filter. Proper coefficient selection can also make the recursive filter mimic an electronic
RC high-pass filter. These single pole recursive filters can be used in DSP just as you would use RC circuits
in analog electronics.

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

EQUATION 19-3
Single pole high-pass filter.

a0 ' (1% x) / 2
a1 ' & (1% x) /2
b1 ' x

EQUATION 19-2
Single pole low-pass filter. The filter's
response is controlled by the parameter, x,
a value between zero and one.

a0 ' 1& x
b1 ' x

to execute, and produce few surprises. The coefficients are found from these
simple equations:

The characteristics of these filters are controlled by the parameter, x, a
value between zero and one. Physically, x is the amount of decay between
adjacent samples. For instance, x is 0.86 in Fig. 19-3, meaning that the
value of each sample in the output signal is 0.86 the value of the sample
before it. The higher the value of x, the slower the decay. Notice that the

The Scientist and Engineer's Guide to Digital Signal Processing324

Sample number

0 100 200 300 400 500

-0.5

0.0

0.5

1.0

1.5

a. Original signal

Sample number

0 100 200 300 400 500

-0.5

0.0

0.5

1.0

1.5

b. Filtered signals

low-pass

high-pass

FIGURE 19-4
Example of single pole recursive filters. In (a), a high frequency burst rides on a slowly varying signal. In (b),
single pole low-pass and high-pass filters are used to separate the two components. The low-pass filter uses x
= 0.95, while the high-pass filter is for x = 0.86.

A
m

pl
itu

de

A
m

pl
itu

de

EQUATION 19-4
Time constant of single pole filters. This
equation relates the amount of decay
between samples, x, with the filter's time
constant, d, the number of samples for the
filter to decay to 36.8%.

x ' e &1/d

EQUATION 19-5
Cutoff frequency of single pole filters.
The amount of decay between samples, x,
is related to the cutoff frequency of the
filter, , a value between 0 and 0.5.fC

x ' e &2BfC

filter becomes unstable if x is made greater than one. That is, any nonzero
value on the input will make the output increase until an overflow occurs.

The value for x can be directly specified, or found from the desired time
constant of the filter. Just as R×C is the number of seconds it takes an RC
circuit to decay to 36.8% of its final value, d is the number of samples it takes
for a recursive filter to decay to this same level:

For instance, a sample-to-sample decay of corresponds to a timex ' 0.86
constant of samples (as shown in Fig 19-3). There is also a fixedd ' 6.63
relationship between x and the -3dB cutoff frequency, , of the digital filter:fC

This provides three ways to find the "a" and "b" coefficients, starting with the
time constant, the cutoff frequency, or just directly picking x.

Figure 19-4 shows an example of using single pole recursive filters. In (a), the
original signal is a smooth curve, except a burst of a high frequency sine wave.
Figure (b) shows the signal after passing through low-pass and high-pass
filters. The signals have been separated fairly well, but not perfectly, just as
if simple RC circuits were used on an analog signal.

Chapter 19- Recursive Filters 325

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

fc = 0.25

0.05

0.01

c. Low-pass filter (4 stage)

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

fc = 0.25

a. High-pass filter

0.05

0.01

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

fc = 0.25

0.05

0.01

b. Low-pass filter

FIGURE 19-5
Single pole frequency responses. Figures (a)
and (b) show the frequency responses of high-
pass and low-pass single pole recursive filters,
respectively. Figure (c) shows the frequency
response of a cascade of four low-pass filters.
The frequency response of recursive filters is
not always what you expect, especially if the
filter is pushed to extreme limits. For example,
the curve in (c) is quite useless. ManyfC ' 0.25
factors are to blame, including: aliasing, round-
off noise, and the nonlinear phase response.

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Figure 19-5 shows the frequency responses of various single pole recursive
filters. These curves are obtained by passing a delta function through the filter
to find the filter's impulse response. The FFT is then used to convert the
impulse response into the frequency response. In principle, the impulse
response is infinitely long; however, it decays below the single precision round-
off noise after about 15 to 20 time constants. For example, when the time
constant of the filter is samples, the impulse response can bed ' 6.63
contained in about 128 samples.

The key feature in Fig. 19-5 is that single pole recursive filters have little
ability to separate one band of frequencies from another. In other words,
they perform well in the time domain, and poorly in the frequency domain.
The frequency response can be improved slightly by cascading several
stages. This can be accomplished in two ways. First, the signal can be
passed through the filter several times. Second, the z-transform can be used
to find the recursion coefficients that combine the cascade into a single
stage. Both ways work and are commonly used. Figure (c) shows the
frequency response of a cascade of four low-pass filters. Although the
stopband attenuation is significantly improved, the roll-off is still terrible.
If you need better performance in the frequency domain, look at the
Chebyshev filters of the next chapter.

The Scientist and Engineer's Guide to Digital Signal Processing326

EQUATION 19-6
Four stage low-pass filter. These equations
provide the "a" and "b" coefficients for a
cascade of four single pole low-pass filters.
The relationship between x and the cutoff
frequency of this filter is given by Eq. 19-5,
with the 2B replaced by 14.445.

a0 ' (1& x)4

b1 ' 4x
b2 ' &6x 2

b3 ' 4x 3

b4 ' & x 4

EQUATION 19-7
Band-pass filter. An example frequency
response is shown in Fig. 19-6a. To use
these equations, first select the center
frequency, f, and the bandwidth, BW. Both
of these are expressed as a fraction of the
sampling rate, and therefore in the range of
0 to 0.5. Next, calculate R, and then K, and
then the recursion coefficients.

a0 ' 1&K
a1 ' 2(K&R) cos(2Bf)
a2 ' R 2&K
b1 ' 2R cos(2Bf)
b2 ' &R 2

EQUATION 19-8
Band-reject filter. This filter is commonly
called a notch filter. Example frequency
responses are shown in Fig. 19-6b.

a0 ' K
a1 ' &2K cos(2Bf)
a2 ' K
b1 ' 2R cos(2Bf)
b2 ' &R 2

K '
1& 2R cos(2Bf)% R 2

2& 2cos(2Bf)

R ' 1 & 3BW

where:

The four stage low-pass filter is comparable to the Blackman and Gaussian
filters (relatives of the moving average, Chapter 15), but with a much faster
execution speed. The design equations for a four stage low-pass filter are:

Narrow-band Filters
A common need in electronics and DSP is to isolate a narrow band of
frequencies from a wider bandwidth signal. For example, you may want to
eliminate 60 hertz interference in an instrumentation system, or isolate the
signaling tones in a telephone network. Two types of frequency responses are
available: the band-pass and the band-reject (also called a notch filter).
Figure 19-6 shows the frequency response of these filters, with the recursion
coefficients provided by the following equations:

Chapter 19- Recursive Filters 327

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

a. Band-pass frequency response

BW=0.0066
single stage

three stages
cascade of

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

b. Band-reject frequency response

BW=0.0066

BW=0.033

FIGURE 19-6
Characteristics of narrow-band filters. Figure (a)
and (b) shows the frequency responses of
various band-pass and band-reject filters. The
step response of the band-reject filter is shown
in (c). The band-reject (notch) filter is useful
for removing 60 Hz and similar interference
from time domain encoded waveforms.

Sample number
0 50 100 150 200

0.0

0.5

1.0

1.5

c. Band-reject step response

BW=0.0066
A

m
pl

itu
de

A
m

pl
itu

de

A
m

pl
itu

de

Two parameters must be selected before using these equations: f, the center
frequency, and BW, the bandwidth (measured at an amplitude of 0.707). Both
of these are expressed as a fraction of the sampling frequency, and therefore
must be between 0 and 0.5. From these two specified values, calculate the
intermediate variables: R and K, and then the recursion coefficients.

As shown in (a), the band-pass filter has relatively large tails extending from
the main peak. This can be improved by cascading several stages. Since the
design equations are quite long, it is simpler to implement this cascade by
filtering the signal several times, rather than trying to find the coefficients
needed for a single filter.

Figure (b) shows examples of the band-reject filter. The narrowest bandwidth
that can be obtain with single precision is about 0.0003 of the sampling
frequency. When pushed beyond this limit, the attenuation of the notch will
degrade. Figure (c) shows the step response of the band-reject filter. There is
noticeable overshoot and ringing, but its amplitude is quite small. This allows
the filter to remove narrowband interference (60 Hz and the like) with only a
minor distortion to the time domain waveform.

The Scientist and Engineer's Guide to Digital Signal Processing328

Phase Response
There are three types of phase response that a filter can have: zero phase,
linear phase, and nonlinear phase. An example of each of these is shown
in Figure 19-7. As shown in (a), the zero phase filter is characterized by an
impulse response that is symmetrical around sample zero. The actual shape
doesn't matter, only that the negative numbered samples are a mirror image of
the positive numbered samples. When the Fourier transform is taken of this
symmetrical waveform, the phase will be entirely zero, as shown in (b).

The disadvantage of the zero phase filter is that it requires the use of negative
indexes, which can be inconvenient to work with. The linear phase filter is a
way around this. The impulse response in (d) is identical to that shown in (a),
except it has been shifted to use only positive numbered samples. The impulse
response is still symmetrical between the left and right; however, the location
of symmetry has been shifted from zero. This shift results in the phase, (e),
being a straight line, accounting for the name: linear phase. The slope of this
straight line is directly proportional to the amount of the shift. Since the shift
in the impulse response does nothing but produce an identical shift in the output
signal, the linear phase filter is equivalent to the zero phase filter for most
purposes.

Figure (g) shows an impulse response that is not symmetrical between the left
and right. Correspondingly, the phase, (h), is not a straight line. In other
words, it has a nonlinear phase. Don't confuse the terms: nonlinear and
linear phase with the concept of system linearity discussed in Chapter 5.
Although both use the word linear, they are not related.

Why does anyone care if the phase is linear or not? Figures (c), (f), and (i)
show the answer. These are the pulse responses of each of the three filters.
The pulse response is nothing more than a positive going step response
followed by a negative going step response. The pulse response is used here
because it displays what happens to both the rising and falling edges in a
signal. Here is the important part: zero and linear phase filters have left and
right edges that look the same, while nonlinear phase filters have left and right
edges that look different. Many applications cannot tolerate the left and right
edges looking different. One example is the display of an oscilloscope, where
this difference could be misinterpreted as a feature of the signal being
measured. Another example is in video processing. Can you imagine turning
on your TV to find the left ear of your favorite actor looking different from his
right ear?

It is easy to make an FIR (finite impulse response) filter have a linear phase.
This is because the impulse response (filter kernel) is directly specified in the
design process. Making the filter kernel have left-right symmetry is all that is
required. This is not the case with IIR (recursive) filters, since the recursion
coefficients are what is specified, not the impulse response. The impulse
response of a recursive filter is not symmetrical between the left and right, and
therefore has a nonlinear phase.

Chapter 19- Recursive Filters 329

Sample number
-25 0 25 50

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

a. Impulse response

Frequency
0 0.1 0.2 0.3 0.4 0.5

-12

-8

-4

0

4

8

12

b. Phase

Sample number
-25 0 25 50 75 100

-0.5

0.0

0.5

1.0

1.5

2.0

c. Pulse response

Sample number
-25 0 25 50

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

d. Impulse response

Frequency
0 0.1 0.2 0.3 0.4 0.5

-96

-64

-32

0

32

64

96

e. Phase

Sample number
-25 0 25 50 75 100

-0.5

0.0

0.5

1.0

1.5

2.0

f. Pulse response

Sample number
-25 0 25 50

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

g. Impulse response

Frequency
0 0.1 0.2 0.3 0.4 0.5

-12

-8

-4

0

4

8

12

h. Phase

Sample number
-25 0 25 50 75 100

-0.5

0.0

0.5

1.0

1.5

2.0

i. Pulse response

Zero Phase Filter

Linear Phase Filter

Nonlinear Phase Filter

FIGURE 19-7
Zero, linear, and nonlinear phase filters. A zero phase filter has an impulse response that has left-right symmetry
around sample number zero, as in (a). This results in a frequency response that has a phase composed entirely of
zeros, as in (b). Zero phase impulse responses are desirable because their step responses are symmetrical between
the top and bottom, making the left and right edges of pulses look the same, as is shown in (c). Linear phase filters
have left-right symmetry, but not around sample zero, as illustrated in (d). This results in a phase that is linear, that
is, a straight line, as shown in (e). The linear phase pulse response, shown in (f), has all the advantages of the zero
phase pulse response. In comparison, the impulse responses of nonlinear phase filters are not symmetrical between
the left and right, as in (g), and the phases are not a straight line, as in (h). The worst part is that the left and right
edges of the pulse response are not the same, as shown in (i).

A
m

pl
itu

de
A

m
pl

itu
de

Ph
as

e
(r

ad
ia

ns
)

A
m

pl
itu

de

Ph
as

e
(r

ad
ia

ns
)

Ph
as

e
(r

ad
ia

ns
)

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

The Scientist and Engineer's Guide to Digital Signal Processing330

y [n] ' a0 x [n] % a1 x [n %1] % a2 x [n %2] % a3 x [n %3] % ˛
% b1 y [n %1] % b2 y [n %2] % b3 y [n %3] % ˛

EQUATION 19-9
The reverse recursion equation. This is the
same as Eq. 19-1, except the signal is filtered
from left-to-right, instead of right-to-left.

Analog electronic circuits have this same problem with the phase response.
Imagine a circuit composed of resistors and capacitors sitting on your desk. If
the input has always been zero, the output will also have always been zero.
When an impulse is applied to the input, the capacitors quickly charge to some
value and then begin to exponentially decay through the resistors. The impulse
response (i.e., the output signal) is a combination of these various decaying
exponentials. The impulse response cannot be symmetrical, because the output
was zero before the impulse, and the exponential decay never quite reaches a
value of zero again. Analog filter designers attack this problem with the
Bessel filter, presented in Chapter 3. The Bessel filter is designed to have as
linear phase as possible; however, it is far below the performance of digital
filters. The ability to provide an exact linear phase is a clear advantage of
digital filters.

Fortunately, there is a simple way to modify recursive filters to obtain a zero
phase. Figure 19-8 shows an example of how this works. The input signal to
be filtered is shown in (a). Figure (b) shows the signal after it has been
filtered by a single pole low-pass filter. Since this is a nonlinear phase filter,
the left and right edges do not look the same; they are inverted versions of each
other. As previously described, this recursive filter is implemented by starting
at sample 0 and working toward sample 150, calculating each sample along the
way.

Now, suppose that instead of moving from sample 0 toward sample 150, we
start at sample 150 and move toward sample 0. In other words, each sample
in the output signal is calculated from input and output samples to the right of
the sample being worked on. This means that the recursion equation, Eq. 19-1,
is changed to:

Figure (c) shows the result of this reverse filtering. This is analogous to
passing an analog signal through an electronic RC circuit while running time
backwards. !esrevinu eht pu-wercs nac lasrever emit -noituaC

Filtering in the reverse direction does not produce any benefit in itself; the
filtered signal still has left and right edges that do not look alike. The
magic happens when forward and reverse filtering are combined. Figure (d)
results from filtering the signal in the forward direction and then filtering again
in the reverse direction. Voila! This produces a zero phase recursive filter.
In fact, any recursive filter can be converted to zero phase with this
bidirectional filtering technique. The only penalty for this improved
performance is a factor of two in execution time and program complexity.

Chapter 19- Recursive Filters 331

Sample number

0 25 50 75 100 125 150

-0.5

0.0

0.5

1.0

1.5

a. Original signal

Sample number

0 25 50 75 100 125 150

-0.5

0.0

0.5

1.0

1.5

b. Filtered

FIGURE 19-8
Bidirectional recursive filtering. A rectangular
pulse input signal is shown in (a). Figure (b)
shows the signal after being filtered with a
single pole recursive low-pass filter, passing
from left-to-right. In (c), the signal has been
processed in the same manner, except with the
filter moving right-to-left. Figure (d) shows the
signal after being filtered both left-to-right and
then right-to-left. Any recursive filter can be
made zero phase by using this technique.

Sample number

0 25 50 75 100 125 150

-0.5

0.0

0.5

1.0

1.5

c. Filtered

Sample number

0 25 50 75 100 125 150

-0.5

0.0

0.5

1.0

1.5

d. Filtered

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

A
m

pl
itu

de

How do you find the impulse and frequency responses of the overall filter? The
magnitude of the frequency response is the same for each direction, while the
phases are opposite in sign. When the two directions are combined, the
magnitude becomes squared, while the phase cancels to zero. In the time
domain, this corresponds to convolving the original impulse response with a
left-for-right flipped version of itself. For instance, the impulse response of a

The Scientist and Engineer's Guide to Digital Signal Processing332

single pole low-pass filter is a one-sided exponential. The impulse response of
the corresponding bidirectional filter is a one-sided exponential that decays to
the right, convolved with a one-sided exponential that decays to the left. Going
through the mathematics, this turns out to be a double-sided exponential that
decays both to the left and right, with the same decay constant as the original
filter.

Some applications only have a portion of the signal in the computer at a
particular time, such as systems that alternately input and output data on a
continuing basis. Bidirectional filtering can be used in these cases by
combining it with the overlap-add method described in the last chapter. When
you come to the question of how long the impulse response is, don't say
"infinite." If you do, you will need to pad each signal segment with an infinite
number of zeros. Remember, the impulse response can be truncated when it
has decayed below the round-off noise level, i.e., about 15 to 20 time constants.
Each segment will need to be padded with zeros on both the left and right to
allow for the expansion during the bidirectional filtering.

Using Integers
Single precision floating point is ideal to implement these simple recursive
filters. The use of integers is possible, but it is much more difficult. There are
two main problems. First, the round-off error from the limited number of bits
can degrade the response of the filter, or even make it unstable. Second, the
fractional values of the recursion coefficients must be handled with integer
math. One way to attack this problem is to express each coefficient as a
fraction. For example, 0.15 becomes 19/128. Instead of multiplying by 0.15,
you first multiply by 19 and then divide by 128. Another way is to replace the
multiplications with look-up tables. For example, a 12 bit ADC produces
samples with a value between 0 and 4095. Instead of multiplying each sample
by 0.15, you pass the samples through a look-up table that is 4096 entries long.
The value obtained from the look-up table is equal to 0.15 times the value
entering the look-up table. This method is very fast, but it does require extra
memory; a separate look-up table is needed for each coefficient. Before you
try either of these integer methods, make sure the recursive algorithm for the
moving average filter will not suit your needs. It loves integers.

333

CHAPTER

20 Chebyshev Filters

Chebyshev filters are used to separate one band of frequencies from another. Although they
cannot match the performance of the windowed-sinc filter, they are more than adequate for many
applications. The primary attribute of Chebyshev filters is their speed, typically more than an
order of magnitude faster than the windowed-sinc. This is because they are carried out by
recursion rather than convolution. The design of these filters is based on a mathematical
technique called the z-transform, discussed in Chapter 33. This chapter presents the information
needed to use Chebyshev filters without wading through a mire of advanced mathematics.

The Chebyshev and Butterworth Responses
The Chebyshev response is a mathematical strategy for achieving a faster roll-
off by allowing ripple in the frequency response. Analog and digital filters that
use this approach are called Chebyshev filters. For instance, analog
Chebyshev filters were used in Chapter 3 for analog-to-digital and digital-to-
analog conversion. These filters are named from their use of the Chebyshev
polynomials, developed by the Russian mathematician Pafnuti Chebyshev
(1821-1894). This name has been translated from Russian and appears in the
literature with different spellings, such as: Chebychev, Tschebyscheff,
Tchebysheff and Tchebichef.

Figure 20-1 shows the frequency response of low-pass Chebyshev filters with
passband ripples of: 0%, 0.5% and 20%. As the ripple increases (bad), the
roll-off becomes sharper (good). The Chebyshev response is an optimal trade-
off between these two parameters. When the ripple is set to 0%, the filter is
called a maximally flat or Butterworth filter (after S. Butterworth, a
British engineer who described this response in 1930). A ripple of 0.5% is a
often good choice for digital filters. This matches the typical precision and
accuracy of the analog electronics that the signal has passed through.

The Chebyshev filters discussed in this chapter are called type 1 filters,
meaning that the ripple is only allowed in the passband. In comparison,

The Scientist and Engineer's Guide to Digital Signal Processing334

Frequency

0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

Ripple

0%

20%

0.5%

A
m

pl
itu

de

FIGURE 20-1
The Chebyshev response. Chebyshev filters
achieve a faster roll-off by allowing ripple in the
passband. When the ripple is set to 0%, it is
called a maximally flat or Butterworth filter.
Consider using a ripple of 0.5% in your designs;
this passband unflatness is so small that it
cannot be seen in this graph, but the roll-off is
much faster than the Butterworth.

type 2 Chebyshev filters have ripple only in the stopband. Type 2 filters are
seldom used, and we won't discuss them. There is, however, an important
design called the elliptic filter, which has ripple in both the passband and the
stopband. Elliptic filters provide the fastest roll-off for a given number of
poles, but are much harder to design. We won't discuss the elliptic filter here,
but be aware that it is frequently the first choice of professional filter
designers, both in analog electronics and DSP. If you need this level of
performance, buy a software package for designing digital filters.

Designing the Filter
You must select four parameters to design a Chebyshev filter: (1) a high-pass
or low-pass response, (2) the cutoff frequency, (3) the percent ripple in the
passband, and (4) the number of poles. Just what is a pole? Here are two
answers. If you don't like one, maybe the other will help:

Answer 1- The Laplace transform and z-transform are mathematical ways of
breaking an impulse response into sinusoids and decaying exponentials. This
is done by expressing the system's characteristics as one complex polynomial
divided by another complex polynomial. The roots of the numerator are called
zeros, while the roots of the denominator are called poles. Since poles and
zeros can be complex numbers, it is common to say they have a "location" in
the complex plane. Elaborate systems have more poles and zeros than simple
ones. Recursive filters are designed by first selecting the location of the poles
and zeros, and then finding the appropriate recursion coefficients (or analog
components). For example, Butterworth filters have poles that lie on a circle
in the complex plane, while in a Chebyshev filter they lie on an ellipse. This
is the topic of Chapters 32 and 33.

Answer 2- Poles are containers filled with magic powder. The more poles in
a filter, the better the filter works.

Chapter 20- Chebyshev Filters 335

Frequency

0 0.1 0.2 0.3 0.4 0.5

-100

-80

-60

-40

-20

0

20

2

4

4 pole

8

12

2

4

6

b. Low-pass frequency response (dB)

6

Frequency

0 0.1 0.2 0.3 0.4 0.5

0.00

0.25

0.50

0.75

1.00

1.25

4
2

6

4
8

2

4

6 pole
12

c. High-pass frequency response

Frequency

0 0.1 0.2 0.3 0.4 0.5

0.00

0.25

0.50

0.75

1.00

1.25

4

2

6

4 pole
8

2

4
612

a. Low-pass frequency response

Frequency

0 0.1 0.2 0.3 0.4 0.5

-100

-80

-60

-40

-20

0

20

2

4
6

4

8
2

4

12 6 pole

d. High-pass frequency response (dB)

FIGURE 20-2
Chebyshev frequency responses. Figures (a) and (b) show the frequency responses of low-pass Chebyshev
filters with 0.5% ripple, while (c) and (d) show the corresponding high-pass filter responses.

A
m

pl
itu

de
 (d

B
)

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

 (d
B

)

Kidding aside, the point is that you can use these filters very effectively
without knowing the nasty mathematics behind them. Filter design is a
specialty. In actual practice, more engineers, scientists and programmers think
in terms of answer 2, than answer 1.

Figure 20-2 shows the frequency response of several Chebyshev filters with
0.5% ripple. For the method used here, the number of poles must be even. The
cutoff frequency of each filter is measured where the amplitude crosses 0.707
(-3dB). Filters with a cutoff frequency near 0 or 0.5 have a sharper roll-off
than filters in the center of the frequency range. For example, a two pole filter
at has about the same roll-off as a four pole filter at . ThisfC ' 0.05 fC ' 0.25
is fortunate; fewer poles can be used near 0 and 0.5 because of round-off noise.
More about this later.

There are two ways of finding the recursion coefficients without using the z-
transform. First, the cowards way: use a table. Tables 20-1 and 20-2 provide
the recursion coefficients for low-pass and high-pass filters with 0.5% passband
ripple. If you only need a quick and dirty design, copy the appropriate
coefficients into your program, and you're done.

The Scientist and Engineer's Guide to Digital Signal Processing336

a0= 8.663387E-04 a0= 4.149425E-07 (!! Unstable !!) a0= 1.391351E-10 (!! Unstable !!)
a1= 1.732678E-03 b1= 1.919129E+00 a1= 1.659770E-06 b1= 3.893453E+00 a1= 8.348109E-10 b1= 5.883343E+00
a2= 8.663387E-04 b2= -9.225943E-01 a2= 2.489655E-06 b2= -5.688233E+00 a2= 2.087027E-09 b2= -1.442798E+01
 a3= 1.659770E-06 b3= 3.695783E+00 a3= 2.782703E-09 b3= 1.887786E+01
 a4= 4.149425E-07 b4= -9.010106E-01 a4= 2.087027E-09 b4= -1.389914E+01
 a5= 8.348109E-10 b5= 5.459909E+00
 a6= 1.391351E-10 b6= -8.939932E-01

a0= 5.112374E-03 a0= 1.504626E-05 a0= 3.136210E-08 (!! Unstable !!)
a1= 1.022475E-02 b1= 1.797154E+00 a1= 6.018503E-05 b1= 3.725385E+00 a1= 1.881726E-07 b1= 5.691653E+00
a2= 5.112374E-03 b2= -8.176033E-01 a2= 9.027754E-05 b2= -5.226004E+00 a2= 4.704314E-07 b2= -1.353172E+01
 a3= 6.018503E-05 b3= 3.270902E+00 a3= 6.272419E-07 b3= 1.719986E+01
 a4= 1.504626E-05 b4= -7.705239E-01 a4= 4.704314E-07 b4= -1.232689E+01
 a5= 1.881726E-07 b5= 4.722721E+00
 a6= 3.136210E-08 b6= -7.556340E-01

a0= 1.868823E-02 a0= 2.141509E-04 a0= 1.771089E-06
a1= 3.737647E-02 b1= 1.593937E+00 a1= 8.566037E-04 b1= 3.425455E+00 a1= 1.062654E-05 b1= 5.330512E+00
a2= 1.868823E-02 b2= -6.686903E-01 a2= 1.284906E-03 b2= -4.479272E+00 a2= 2.656634E-05 b2= -1.196611E+01
 a3= 8.566037E-04 b3= 2.643718E+00 a3= 3.542179E-05 b3= 1.447067E+01
 a4= 2.141509E-04 b4= -5.933269E-01 a4= 2.656634E-05 b4= -9.937710E+00
 a5= 1.062654E-05 b5= 3.673283E+00
 a6= 1.771089E-06 b6= -5.707561E-01

a0= 3.869430E-02 a0= 9.726342E-04 a0= 1.797538E-05
a1= 7.738860E-02 b1= 1.392667E+00 a1= 3.890537E-03 b1= 3.103944E+00 a1= 1.078523E-04 b1= 4.921746E+00
a2= 3.869430E-02 b2= -5.474446E-01 a2= 5.835806E-03 b2= -3.774453E+00 a2= 2.696307E-04 b2= -1.035734E+01
 a3= 3.890537E-03 b3= 2.111238E+00 a3= 3.595076E-04 b3= 1.189764E+01
 a4= 9.726342E-04 b4= -4.562908E-01 a4= 2.696307E-04 b4= -7.854533E+00
 a5= 1.078523E-04 b5= 2.822109E+00
 a6= 1.797538E-05 b6= -4.307710E-01

a0= 6.372802E-02 a0= 2.780755E-03 a0= 9.086148E-05
a1= 1.274560E-01 b1= 1.194365E+00 a1= 1.112302E-02 b1= 2.764031E+00 a1= 5.451688E-04 b1= 4.470118E+00
a2= 6.372802E-02 b2= -4.492774E-01 a2= 1.668453E-02 b2= -3.122854E+00 a2= 1.362922E-03 b2= -8.755594E+00
 a3= 1.112302E-02 b3= 1.664554E+00 a3= 1.817229E-03 b3= 9.543712E+00
 a4= 2.780755E-03 b4= -3.502232E-01 a4= 1.362922E-03 b4= -6.079376E+00
 a5= 5.451688E-04 b5= 2.140062E+00
 a6= 9.086148E-05 b6= -3.247363E-01

a0= 1.254285E-01 a0= 1.180009E-02 a0= 8.618665E-04
a1= 2.508570E-01 b1= 8.070778E-01 a1= 4.720034E-02 b1= 2.039039E+00 a1= 5.171199E-03 b1= 3.455239E+00
a2= 1.254285E-01 b2= -3.087918E-01 a2= 7.080051E-02 b2= -2.012961E+00 a2= 1.292800E-02 b2= -5.754735E+00
 a3= 4.720034E-02 b3= 9.897915E-01 a3= 1.723733E-02 b3= 5.645387E+00
 a4= 1.180009E-02 b4= -2.046700E-01 a4= 1.292800E-02 b4= -3.394902E+00
 a5= 5.171199E-03 b5= 1.177469E+00
 a6= 8.618665E-04 b6= -1.836195E-01

a0= 1.997396E-01 a0= 3.224554E-02 a0= 4.187408E-03
a1= 3.994792E-01 b1= 4.291048E-01 a1= 1.289821E-01 b1= 1.265912E+00 a1= 2.512445E-02 b1= 2.315806E+00
a2= 1.997396E-01 b2= -2.280633E-01 a2= 1.934732E-01 b2= -1.203878E+00 a2= 6.281112E-02 b2= -3.293726E+00
 a3= 1.289821E-01 b3= 5.405908E-01 a3= 8.374816E-02 b3= 2.904826E+00
 a4= 3.224554E-02 b4= -1.185538E-01 a4= 6.281112E-02 b4= -1.694128E+00
 a5= 2.512445E-02 b5= 6.021426E-01
 a6= 4.187408E-03 b6= -1.029147E-01

a0= 2.858110E-01 a0= 7.015301E-02 a0= 1.434449E-02
a1= 5.716221E-01 b1= 5.423258E-02 a1= 2.806120E-01 b1= 4.541481E-01 a1= 8.606697E-02 b1= 1.076052E+00
a2= 2.858110E-01 b2= -1.974768E-01 a2= 4.209180E-01 b2= -7.417536E-01 a2= 2.151674E-01 b2= -1.662847E+00
 a3= 2.806120E-01 b3= 2.361222E-01 a3= 2.868899E-01 b3= 1.191063E+00
 a4= 7.015301E-02 b4= -7.096476E-02 a4= 2.151674E-01 b4= -7.403087E-01
 a5= 8.606697E-02 b5= 2.752158E-01
 a6= 1.434449E-02 b6= -5.722251E-02

a0= 3.849163E-01 a0= 1.335566E-01 a0= 3.997487E-02
a1= 7.698326E-01 b1= -3.249116E-01 a1= 5.342263E-01 b1= -3.904486E-01 a1= 2.398492E-01 b1= -2.441152E-01
a2= 3.849163E-01 b2= -2.147536E-01 a2= 8.013394E-01 b2= -6.784138E-01 a2= 5.996231E-01 b2= -1.130306E+00
 a3= 5.342263E-01 b3= -1.412021E-02 a3= 7.994975E-01 b3= 1.063167E-01
 a4= 1.335566E-01 b4= -5.392238E-02 a4= 5.996231E-01 b4= -3.463299E-01
 a5= 2.398492E-01 b5= 8.882992E-02
 a6= 3.997487E-02 b6= -3.278741E-02

a0= 5.001024E-01 a0= 2.340973E-01 a0= 9.792321E-02
a1= 1.000205E+00 b1= -7.158993E-01 a1= 9.363892E-01 b1= -1.263672E+00 a1= 5.875393E-01 b1= -1.627573E+00
a2= 5.001024E-01 b2= -2.845103E-01 a2= 1.404584E+00 b2= -1.080487E+00 a2= 1.468848E+00 b2= -1.955020E+00
 a3= 9.363892E-01 b3= -3.276296E-01 a3= 1.958464E+00 b3= -1.075051E+00
 a4= 2.340973E-01 b4= -7.376791E-02 a4= 1.468848E+00 b4= -5.106501E-01
 a5= 5.875393E-01 b5= -7.239843E-02
 a6= 9.792321E-02 b6= -2.639193E-02

a0= 6.362308E-01 a0= 3.896966E-01 a0= 2.211834E-01
a1= 1.272462E+00 b1= -1.125379E+00 a1= 1.558787E+00 b1= -2.161179E+00 a1= 1.327100E+00 b1= -3.058672E+00
a2= 6.362308E-01 b2= -4.195441E-01 a2= 2.338180E+00 b2= -2.033992E+00 a2= 3.317751E+00 b2= -4.390465E+00
 a3= 1.558787E+00 b3= -8.789098E-01 a3= 4.423668E+00 b3= -3.523254E+00
 a4= 3.896966E-01 b4= -1.610655E-01 a4= 3.317751E+00 b4= -1.684185E+00
 a5= 1.327100E+00 b5= -4.414881E-01
 a6= 2.211834E-01 b6= -5.767513E-02

a0= 8.001101E-01 a0= 6.291693E-01 a0= 4.760635E-01
a1= 1.600220E+00 b1= -1.556269E+00 a1= 2.516677E+00 b1= -3.077062E+00 a1= 2.856381E+00 b1= -4.522403E+00
a2= 8.001101E-01 b2= -6.441713E-01 a2= 3.775016E+00 b2= -3.641323E+00 a2= 7.140952E+00 b2= -8.676844E+00
 a3= 2.516677E+00 b3= -1.949229E+00 a3= 9.521270E+00 b3= -9.007512E+00
 a4= 6.291693E-01 b4= -3.990945E-01 a4= 7.140952E+00 b4= -5.328429E+00
 a5= 2.856381E+00 b5= -1.702543E+00
 a6= 4.760635E-01 b6= -2.303303E-01TABLE 20-1

Low-pass Chebyshev filters (0.5% ripple)

fC
 2 Pole 4 Pole 6 Pole

0.01

0.025

0.05

0.075

0.1

0.15

0.2

0.25

0.3

0.35

0.40

0.45

Chapter 20- Chebyshev Filters 337

a0= 9.567529E-01 a0= 9.121579E-01 (!! Unstable !!) a0= 8.630195E-01 (!! Unstable !!)
a1= -1.913506E+00 b1= 1.911437E+00 a1= -3.648632E+00 b1= 3.815952E+00 a1= -5.178118E+00 b1= 5.705102E+00
a2= 9.567529E-01 b2= -9.155749E-01 a2= 5.472947E+00 b2= -5.465026E+00 a2= 1.294529E+01 b2= -1.356935E+01
 a3= -3.648632E+00 b3= 3.481295E+00 a3= -1.726039E+01 b3= 1.722231E+01
 a4= 9.121579E-01 b4= -8.322529E-01 a4= 1.294529E+01 b4= -1.230214E+01
 a5= -5.178118E+00 b5= 4.689218E+00
 a6= 8.630195E-01 b6= -7.451429E-01

a0= 8.950355E-01 a0= 7.941874E-01 a0= 6.912863E-01 (!! Unstable !!)
a1= -1.790071E+00 b1= 1.777932E+00 a1= -3.176750E+00 b1= 3.538919E+00 a1= -4.147718E+00 b1= 5.261399E+00
a2= 8.950355E-01 b2= -8.022106E-01 a2= 4.765125E+00 b2= -4.722213E+00 a2= 1.036929E+01 b2= -1.157800E+01
 a3= -3.176750E+00 b3= 2.814036E+00 a3= -1.382573E+01 b3= 1.363599E+01
 a4= 7.941874E-01 b4= -6.318300E-01 a4= 1.036929E+01 b4= -9.063840E+00
 a5= -4.147718E+00 b5= 3.223738E+00
 a6= 6.912863E-01 b6= -4.793541E-01

a0= 8.001102E-01 a0= 6.291694E-01 a0= 4.760636E-01
a1= -1.600220E+00 b1= 1.556269E+00 a1= -2.516678E+00 b1= 3.077062E+00 a1= -2.856382E+00 b1= 4.522403E+00
a2= 8.001102E-01 b2= -6.441715E-01 a2= 3.775016E+00 b2= -3.641324E+00 a2= 7.140954E+00 b2= -8.676846E+00
 a3= -2.516678E+00 b3= 1.949230E+00 a3= -9.521272E+00 b3= 9.007515E+00
 a4= 6.291694E-01 b4= -3.990947E-01 a4= 7.140954E+00 b4= -5.328431E+00
 a5= -2.856382E+00 b5= 1.702544E+00
 a6= 4.760636E-01 b6= -2.303304E-01

a0= 7.142028E-01 a0= 4.965350E-01 a0= 3.259100E-01
a1= -1.428406E+00 b1= 1.338264E+00 a1= -1.986140E+00 b1= 2.617304E+00 a1= -1.955460E+00 b1= 3.787397E+00
a2= 7.142028E-01 b2= -5.185469E-01 a2= 2.979210E+00 b2= -2.749252E+00 a2= 4.888651E+00 b2= -6.288362E+00
 a3= -1.986140E+00 b3= 1.325548E+00 a3= -6.518201E+00 b3= 5.747801E+00
 a4= 4.965350E-01 b4= -2.524546E-01 a4= 4.888651E+00 b4= -3.041570E+00
 a5= -1.955460E+00 b5= 8.808669E-01
 a6= 3.259100E-01 b6= -1.122464E-01

a0= 6.362307E-01 a0= 3.896966E-01 a0= 2.211833E-01
a1= -1.272461E+00 b1= 1.125379E+00 a1= -1.558786E+00 b1= 2.161179E+00 a1= -1.327100E+00 b1= 3.058671E+00
a2= 6.362307E-01 b2= -4.195440E-01 a2= 2.338179E+00 b2= -2.033991E+00 a2= 3.317750E+00 b2= -4.390464E+00
 a3= -1.558786E+00 b3= 8.789094E-01 a3= -4.423667E+00 b3= 3.523252E+00
 a4= 3.896966E-01 b4= -1.610655E-01 a4= 3.317750E+00 b4= -1.684184E+00
 a5= -1.327100E+00 b5= 4.414878E-01
 a6= 2.211833E-01 b6= -5.767508E-02

a0= 5.001024E-01 a0= 2.340973E-01 a0= 9.792321E-02
a1= -1.000205E+00 b1= 7.158993E-01 a1= -9.363892E-01 b1= 1.263672E+00 a1= -5.875393E-01 b1= 1.627573E+00
a2= 5.001024E-01 b2= -2.845103E-01 a2= 1.404584E+00 b2= -1.080487E+00 a2= 1.468848E+00 b2= -1.955020E+00
 a3= -9.363892E-01 b3= 3.276296E-01 a3= -1.958464E+00 b3= 1.075051E+00
 a4= 2.340973E-01 b4= -7.376791E-02 a4= 1.468848E+00 b4= -5.106501E-01
 a5= -5.875393E-01 b5= 7.239843E-02
 a6= 9.792321E-02 b6= -2.639193E-02

a0= 3.849163E-01 a0= 1.335566E-01 a0= 3.997486E-02
a1= -7.698326E-01 b1= 3.249116E-01 a1= -5.342262E-01 b1= 3.904484E-01 a1= -2.398492E-01 b1= 2.441149E-01
a2= 3.849163E-01 b2= -2.147536E-01 a2= 8.013393E-01 b2= -6.784138E-01 a2= 5.996230E-01 b2= -1.130306E+00
 a3= -5.342262E-01 b3= 1.412016E-02 a3= -7.994973E-01 b3= -1.063169E-01
 a4= 1.335566E-01 b4= -5.392238E-02 a4= 5.996230E-01 b4= -3.463299E-01
 a5= -2.398492E-01 b5= -8.882996E-02
 a6= 3.997486E-02 b6= -3.278741E-02

a0= 2.858111E-01 a0= 7.015302E-02 a0= 1.434450E-02
a1= -5.716222E-01 b1= -5.423243E-02 a1= -2.806121E-01 b1= -4.541478E-01 a1= -8.606701E-02 b1= -1.076051E+00
a2= 2.858111E-01 b2= -1.974768E-01 a2= 4.209182E-01 b2= -7.417535E-01 a2= 2.151675E-01 b2= -1.662847E+00
 a3= -2.806121E-01 b3= -2.361221E-01 a3= -2.868900E-01 b3= -1.191062E+00
 a4= 7.015302E-02 b4= -7.096475E-02 a4= 2.151675E-01 b4= -7.403085E-01
 a5= -8.606701E-02 b5= -2.752156E-01
 a6= 1.434450E-02 b6= -5.722250E-02

a0= 1.997396E-01 a0= 3.224553E-02 a0= 4.187407E-03
a1= -3.994792E-01 b1= -4.291049E-01 a1= -1.289821E-01 b1= -1.265912E+00 a1= -2.512444E-02 b1= -2.315806E+00
a2= 1.997396E-01 b2= -2.280633E-01 a2= 1.934732E-01 b2= -1.203878E+00 a2= 6.281111E-02 b2= -3.293726E+00
 a3= -1.289821E-01 b3= -5.405908E-01 a3= -8.374815E-02 b3= -2.904827E+00
 a4= 3.224553E-02 b4= -1.185538E-01 a4= 6.281111E-02 b4= -1.694129E+00
 a5= -2.512444E-02 b5= -6.021426E-01
 a6= 4.187407E-03 b6= -1.029147E-01

a0= 1.254285E-01 a0= 1.180009E-02 a0= 8.618665E-04
a1= -2.508570E-01 b1= -8.070777E-01 a1= -4.720035E-02 b1= -2.039039E+00 a1= -5.171200E-03 b1= -3.455239E+00
a2= 1.254285E-01 b2= -3.087918E-01 a2= 7.080051E-02 b2= -2.012961E+00 a2= 1.292800E-02 b2= -5.754734E+00
 a3= -4.720035E-02 b3= -9.897915E-01 a3= -1.723733E-02 b3= -5.645387E+00
 a4= 1.180009E-02 b4= -2.046700E-01 a4= 1.292800E-02 b4= -3.394902E+00
 a5= -5.171200E-03 b5= -1.177469E+00
 a6= 8.618665E-04 b6= -1.836195E-01

a0= 6.372801E-02 a0= 2.780754E-03 a0= 9.086141E-05
a1= -1.274560E-01 b1= -1.194365E+00 a1= -1.112302E-02 b1= -2.764031E+00 a1= -5.451685E-04 b1= -4.470118E+00
a2= 6.372801E-02 b2= -4.492774E-01 a2= 1.668453E-02 b2= -3.122854E+00 a2= 1.362921E-03 b2= -8.755595E+00
 a3= -1.112302E-02 b3= -1.664554E+00 a3= -1.817228E-03 b3= -9.543712E+00
 a4= 2.780754E-03 b4= -3.502233E-01 a4= 1.362921E-03 b4= -6.079377E+00
 a5= -5.451685E-04 b5= -2.140062E+00
 a6= 9.086141E-05 b6= -3.247363E-01

a0= 1.868823E-02 a0= 2.141509E-04 a0= 1.771089E-06
a1= -3.737647E-02 b1= -1.593937E+00 a1= -8.566037E-04 b1= -3.425455E+00 a1= -1.062654E-05 b1= -5.330512E+00
a2= 1.868823E-02 b2= -6.686903E-01 a2= 1.284906E-03 b2= -4.479272E+00 a2= 2.656634E-05 b2= -1.196611E+01
 a3= -8.566037E-04 b3= -2.643718E+00 a3= -3.542179E-05 b3= -1.447067E+01
 a4= 2.141509E-04 b4= -5.933269E-01 a4= 2.656634E-05 b4= -9.937710E+00
 a5= -1.062654E-05 b5= -3.673283E+00
 a6= 1.771089E-06 b6= -5.707561E-01TABLE 20-2

High-pass Chebyshev filters (0.5% ripple)

fC
 2 Pole 4 Pole 6 Pole

0.01

0.025

0.05

0.075

0.1

0.15

0.2

0.25

0.3

0.35

0.40

0.45

The Scientist and Engineer's Guide to Digital Signal Processing338

Sample number
-10 0 10 20 30 40 50 60

0.0

0.5

1.0

1.5

a. Step response
4 pole

2 pole

Frequency

0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

20

25

30

6 pole

2 pole

b. Overshoot

FIGURE 20-3
Chebyshev step response. The overshoot in the Chebyshev filter's step response is 5% to 30%,
depending on the number of poles, as shown in (a), and the cutoff frequency, as shown in (b). Figure
(a) is for a cutoff frequency of 0.05, and may be scaled to other cutoff frequencies.

Pe
rc

en
t o

ve
rs

ho
ot

A
m

pl
itu

de
There are two problems with using tables to design digital filters. First, tables
have a limited choice of parameters. For instance, Table 20-1 only provides
12 different cutoff frequencies, a maximum of 6 poles per filter, and no choice
of passband ripple. Without the ability to select parameters from a continuous
range of values, the filter design cannot be optimized. Second, the coefficients
must be manually transferred from the table into the program. This is very time
consuming and will discourage you from trying alternative values.

Instead of using tabulated values, consider including a subroutine in your
program that calculates the coefficients. Such a program is shown in Table 20-
4. The good news is that the program is relatively simple in structure. After
the four filter parameters are entered, the program spits out the "a" and "b"
coefficients in the arrays A[] and B[]. The bad news is that the program calls
the subroutine in Table 20-5. At first glance this subroutine is really ugly.
Don't despair; it isn't as bad as it seems! There is one simple branch in line
1120. Everything else in the subroutine is straightforward number crunching.
Six variables enter the routine, five variables leave the routine, and fifteen
temporary variables (plus indexes) are used within. Table 20-5 provides two
sets of test data for debugging this subroutine. Chapter 31 discusses the
operation of this program in detail.

Step Response Overshoot
Butterworth and Chebyshev filters have an overshoot of 5 to 30% in their step
responses, becoming larger as the number of poles is increased. Figure 20-3a
shows the step response for two example Chebyshev filters. Figure (b) shows
something that is unique to digital filters and has no counterpart in analog
electronics: the amount of overshoot in the step response depends to a small
degree on the cutoff frequency of the filter. The excessive overshoot and
ringing in the step response results from the Chebyshev filter being optimized
for the frequency domain at the expense of the time domain.

Chapter 20- Chebyshev Filters 339

a0= 1.391351E-10
a1= 8.348109E-10 b1= 5.883343E+00
a2= 2.087027E-09 b2= -1.442798E+01
a3= 2.782703E-09 b3= 1.887786E+01
a4= 2.087027E-09 b4= -1.389914E+01
a5= 8.348109E-10 b5= 5.459909E+00
a6= 1.391351E-10 b6= -8.939932E-01

TABLE 20-3
The maximum number of
poles for single precision.

 Cutoff frequency 0.02 0.05 0.10 0.25 0.40 0.45 0.48

 Maximum poles 4 6 10 20 10 6 4

Stability
The main limitation of digital filters carried out by convolution is execution
time. It is possible to achieve nearly any filter response, provided you are
willing to wait for the result. Recursive filters are just the opposite. They run
like lightning; however, they are limited in performance. For example, consider
a 6 pole, 0.5% ripple, low-pass filter with a 0.01 cutoff frequency. The
recursion coefficients for this filter can be obtained from Table 20-1:

Look carefully at these coefficients. The "b" coefficients have an absolute
value of about ten. Using single precision, the round-off noise on each of these
numbers is about one ten-millionth of the value, i.e., . Now look at the "a"10&6

coefficients, with a value of about . Something is obviously wrong here.10&9

The contribution from the input signal (via the "a" coefficients) will be 1000
times smaller than the noise from the previously calculated output signal (via
the "b" coefficients). This filter won't work! In short, round-off noise limits
the number of poles that can be used in a filter. The actual number will depend
slightly on the ripple and if it is a high or low-pass filter. The approximate
numbers for single precision are:

The filter's performance will start to degrade as this limit is approached; the
step response will show more overshoot, the stopband attenuation will be poor,
and the frequency response will have excessive ripple. If the filter is pushed
too far, or there is an error in the coefficients, the output will probably oscillate
until an overflow occurs.

There are two ways of extending the maximum number of poles that can be
used. First, use double precision. This requires using double precision in the
coefficient calculation as well (including the value for pi).

The second method is to implement the filter in stages. For example, a six
pole filter starts out as a cascade of three stages of two poles each. The
program in Table 20-4 combines these three stages into a single set of
recursion coefficients for easier programming. However, the filter is more
stable if carried out as the original three separate stages. This requires
knowing the "a" and "b" coefficients for each of the stages. These can

The Scientist and Engineer's Guide to Digital Signal Processing340

100 'CHEBYSHEV FILTER- RECURSION COEFFICIENT CALCULATION
110 '
120 'INITIALIZE VARIABLES
130 DIM A[22] 'holds the "a" coefficients upon program completion
140 DIM B[22] 'holds the "b" coefficients upon program completion
150 DIM TA[22] 'internal use for combining stages
160 DIM TB[22] 'internal use for combining stages
170 '
180 FOR I% = 0 TO 22
190 A[I%] = 0
200 B[I%] = 0
210 NEXT I%
220 '
230 A[2] = 1
240 B[2] = 1
250 PI = 3.14159265
260 'ENTER THE FOUR FILTER PARAMETERS
270 INPUT "Enter cutoff frequency (0 to .5): ", FC
280 INPUT "Enter 0 for LP, 1 for HP filter: ", LH
290 INPUT "Enter percent ripple (0 to 29): ", PR
300 INPUT "Enter number of poles (2,4,...20): ", NP
310 '
320 FOR P% = 1 TO NP/2 'LOOP FOR EACH POLE-PAIR
330 '
340 GOSUB 1000 'The subroutine in TABLE 20-5
350 '
360 FOR I% = 0 TO 22 'Add coefficients to the cascade
370 TA[I%] = A[I%]
380 TB[I%] = B[I%]
390 NEXT I%
400 '
410 FOR I% = 2 TO 22
420 A[I%] = A0*TA[I%] + A1*TA[I%-1] + A2*TA[I%-2]
430 B[I%] = TB[I%] - B1*TB[I%-1] - B2*TB[I%-2]
440 NEXT I%
450 '
460 NEXT P%
470 '
480 B[2] = 0 'Finish combining coefficients
490 FOR I% = 0 TO 20
500 A[I%] = A[I%+2]
510 B[I%] = -B[I%+2]
520 NEXT I%
530 '
540 SA = 0 'NORMALIZE THE GAIN
550 SB = 0
560 FOR I% = 0 TO 20
570 IF LH = 0 THEN SA = SA + A[I%]
580 IF LH = 0 THEN SB = SB + B[I%]
590 IF LH = 1 THEN SA = SA + A[I%] * (-1)^I%
600 IF LH = 1 THEN SB = SB + B[I%] * (-1)^I%
610 NEXT I%
620 '
630 GAIN = SA / (1 - SB)
640 '
650 FOR I% = 0 TO 20
660 A[I%] = A[I%] / GAIN
670 NEXT I%
680 ' 'The final recursion coefficients are in A[] and B[]
690 END

 TABLE 20-4

Chapter 20- Chebyshev Filters 341

TABLE 20-4 and 20-5
Program to calculate the "a" and "b" coefficients for Chebyshev recursive filters. In lines 270-300, four parameters are
entered into the program. The cutoff frequency, FC, is expressed as a fraction of the sampling frequency, and therefore
must be in the range: 0 to 0.5. The variable, LH, is set to a value of one for a high-pass filter, and zero for a low-pass
filter. The value entered for PR must be in the range of 0 to 29, corresponding to 0 to 29% ripple in the filter's frequency
response. The number of poles in the filter, entered in the variable NP, must be an even integer between 2 and 20. At
the completion of the program, the "a" and "b" coefficients are stored in the arrays A[] and B[] (a0 = A[0], a1 = A[1],
etc.). TABLE 20-5 is a subroutine called from line 340 of the main program. Six variables are passed to this subroutine,
and five variables are returned. Table 20-6 (next page) contains two sets of data to help debug this subroutine. The
functions: COS and SIN, use radians, not degrees. The function: LOG is the natural (base e) logarithm. Declaring all
floating point variables (including the value of B) to be double precision will allow more poles to be used. Tables 20-1
and 20-2 were generated with this program and can be used to test for proper operation. Chapter 33 describes the
mathematical operation of this program.

1000 'THIS SUBROUTINE IS CALLED FROM TABLE 20-4, LINE 340
1010 '
1020 ' Variables entering subroutine: PI, FC, LH, PR, HP, P%
1030 ' Variables exiting subroutine: A0, A1, A2, B1, B2
1040 ' Variables used internally: RP, IP, ES, VX, KX, T, W, M, D, K,
1050 ' X0, X1, X2, Y1, Y2
1060 '
1070 ' 'Calculate the pole location on the unit circle
1080 RP = -COS(PI/(NP*2) + (P%-1) * PI/NP)
1090 IP = SIN(PI/(NP*2) + (P%-1) * PI/NP)
1100 '
1110 ' 'Warp from a circle to an ellipse
1120 IF PR = 0 THEN GOTO 1210
1130 ES = SQR((100 / (100-PR))^2 -1)
1140 VX = (1/NP) * LOG((1/ES) + SQR((1/ES^2) + 1))
1150 KX = (1/NP) * LOG((1/ES) + SQR((1/ES^2) - 1))
1160 KX = (EXP(KX) + EXP(-KX))/2
1170 RP = RP * ((EXP(VX) - EXP(-VX)) /2) / KX
1180 IP = IP * ((EXP(VX) + EXP(-VX)) /2) / KX
1190 '
1200 ' 's-domain to z-domain conversion
1210 T = 2 * TAN(1/2)
1220 W = 2*PI*FC
1230 M = RP^2 + IP^2
1240 D = 4 - 4*RP*T + M*T^2
1250 X0 = T^2/D
1260 X1 = 2*T^2/D
1270 X2 = T^2/D
1280 Y1 = (8 - 2*M*T^2)/D
1290 Y2 = (-4 - 4*RP*T - M*T^2)/D
1300 '
1310 ' 'LP TO LP, or LP TO HP transform
1320 IF LH = 1 THEN K = -COS(W/2 + 1/2) / COS(W/2 - 1/2)
1330 IF LH = 0 THEN K = SIN(1/2 - W/2) / SIN(1/2 + W/2)
1340 D = 1 + Y1*K - Y2*K^2
1350 A0 = (X0 - X1*K + X2*K^2)/D
1360 A1 = (-2*X0*K + X1 + X1*K^2 - 2*X2*K)/D
1370 A2 = (X0*K^2 - X1*K + X2)/D
1380 B1 = (2*K + Y1 + Y1*K^2 - 2*Y2*K)/D
1390 B2 = (-(K^2) - Y1*K + Y2)/D
1400 IF LH = 1 THEN A1 = -A1
1410 IF LH = 1 THEN B1 = -B1
1420 '
1430 RETURN

 TABLE 20-5

The Scientist and Engineer's Guide to Digital Signal Processing342

TABLE 20-6
Debugging data. This table contains two sets of data for debugging the
subroutine listed in Table 20-5.

DATA SET 1 DATA SET 2

Enter the subroutine with these values:

FC = 0.1 FC = 0.1
LH = 0 LH = 1
PR = 0 PR = 10
NP = 4 NP = 4
P% = 1 P% = 2
PI = 3.141592 PI = 3.141592

These values should be present at line 1200:

RP = -0.923879 RP = -0.136178
IP = 0.382683 IP = 0.933223
ES = not used ES = 0.484322
VX = not used VX = 0.368054
KX = not used KX = 1.057802

These values should be present at line 1310:

T = 1.092605 T = 1.092605
W = 0.628318 W = 0.628318
M = 1.000000 M = 0.889450
D = 9.231528 D = 5.656972
X0 = 0.129316 X0 = 0.211029
X1 = 0.258632 X1 = 0.422058
X2 = 0.129316 X2 = 0.211029
Y1 = 0.607963 Y1 = 1.038784
Y2 = -0.125227 Y2 = -0.789584

These values should be return to the main program:

A0 = 0.061885 A0 = 0.922919
A1 = 0.123770 A1 = -1.845840
A2 = 0.061885 A2 = 0.922919
B1 = 1.048600 B1 = 1.446913
B2 = -0.296140 B2 = -0.836653

be obtained from the program in Table 20-4. The subroutine in Table 20-5 is
called once for each stage in the cascade. For example, it is called three times
for a six pole filter. At the completion of the subroutine, five variables are
return to the main program: A0, A1, A2, B1, & B2. These are the recursion
coefficients for the two pole stage being worked on, and can be used to
implement the filter in stages.

343

CHAPTER

21 Filter Comparison

Decisions, decisions, decisions! With all these filters to choose from, how do you know which
to use? This chapter is a head-to-head competition between filters; we'll select champions from
each side and let them fight it out. In the first match, digital filters are pitted against analog
filters to see which technology is best. In the second round, the windowed-sinc is matched
against the Chebyshev to find the king of the frequency domain filters. In the final battle, the
moving average fights the single pole filter for the time domain championship. Enough talk; let
the competition begin!

Match #1: Analog vs. Digital Filters
Most digital signals originate in analog electronics. If the signal needs to be
filtered, is it better to use an analog filter before digitization, or a digital filter
after? We will answer this question by letting two of the best contenders
deliver their blows.

The goal will be to provide a low-pass filter at 1 kHz. Fighting for the analog
side is a six pole Chebyshev filter with 0.5 dB (6%) ripple. As described in
Chapter 3, this can be constructed with 3 op amps, 12 resistors, and 6
capacitors. In the digital corner, the windowed-sinc is warming up and ready
to fight. The analog signal is digitized at a 10 kHz sampling rate, making the
cutoff frequency 0.1 on the digital frequency scale. The length of the
windowed-sinc will be chosen to be 129 points, providing the same 90% to
10% roll-off as the analog filter. Fair is fair. Figure 21-1 shows the frequency
and step responses for these two filters.

Let's compare the two filters blow-by-blow. As shown in (a) and (b), the
analog filter has a 6% ripple in the passband, while the digital filter is
perfectly flat (within 0.02%). The analog designer might argue that the ripple
can be selected in the design; however, this misses the point. The flatness
achievable with analog filters is limited by the accuracy of their resistors and

The Scientist and Engineer's Guide to Digital Signal Processing344

capacitors. Even if a Butterworth response is designed (i.e., 0% ripple), filters
of this complexity will have a residue ripple of, perhaps, 1%. On the other
hand, the flatness of digital filters is primarily limited by round-off error,
making them hundreds of times flatter than their analog counterparts. Score
one point for the digital filter.

Next, look at the frequency response on a log scale, as shown in (c) and (d).
Again, the digital filter is clearly the victor in both roll-off and stopband
attenuation. Even if the analog performance is improved by adding additional
stages, it still can't compare to the digital filter. For instance, imagine that you
need to improve these two parameters by a factor of 100. This can be done
with simple modifications to the windowed-sinc, but is virtually impossible for
the analog circuit. Score two more for the digital filter.

The step response of the two filters is shown in (e) and (f). The digital filter's
step response is symmetrical between the lower and upper portions of the
step, i.e., it has a linear phase. The analog filter's step response is not
symmetrical, i.e., it has a nonlinear phase. One more point for the digital
filter. Lastly, the analog filter overshoots about 20% on one side of the step.
The digital filter overshoots about 10%, but on both sides of the step. Since
both are bad, no points are awarded.

In spite of this beating, there are still many applications where analog filters
should, or must, be used. This is not related to the actual performance of the
filter (i.e., what goes in and what comes out), but to the general advantages that
analog circuits have over digital techniques. The first advantage is speed:
digital is slow; analog is fast. For example, a personal computer can only filter
data at about 10,000 samples per second, using FFT convolution. Even simple
op amps can operate at 100 kHz to 1 MHz, 10 to 100 times as fast as the
digital system!

The second inherent advantage of analog over digital is dynamic range. This
comes in two flavors. Amplitude dynamic range is the ratio between the
largest signal that can be passed through a system, and the inherent noise of the
system. For instance, a 12 bit ADC has a saturation level of 4095, and an rms
quantization noise of 0.29 digital numbers, for a dynamic range of about
14000. In comparison, a standard op amp has a saturation voltage of about
20 volts and an internal noise of about 2 microvolts, for a dynamic range
of about ten million. Just as before, a simple op amp devastates the digital
system.

The other flavor is frequency dynamic range. For example, it is easy to
design an op amp circuit to simultaneously handle frequencies between 0.01
Hz and 100 kHz (seven decades). When this is tried with a digital system,
the computer becomes swamped with data. For instance, sampling at 200
kHz, it takes 20 million points to capture one complete cycle at 0.01 Hz. You
may have noticed that the frequency response of digital filters is almost
always plotted on a linear frequency scale, while analog filters are usually
displayed with a logarithmic frequency. This is because digital filters need

Chapter 21- Filter Comparison 345

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

b. Frequency response

Frequency (hertz)
0 1000 2000 3000 4000 5000

-100

-80

-60

-40

-20

0

20

40

c. Frequency response (dB)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-100

-80

-60

-40

-20

0

20

40

d. Frequency response (dB)

Time (milliseconds)
-4 -2 0 2 4 6 8

-0.5

0.0

0.5

1.0

1.5

2.0

e. Step response

Sample number
-40 -20 0 20 40 60 80

-0.5

0.0

0.5

1.0

1.5

2.0

f. Step response

 Analog Filter
(6 pole 0.5dB Chebyshev)

 Digital Filter
(129 point windowed-sinc)

Frequency (hertz)
0 1000 2000 3000 4000 5000

0.00

0.25

0.50

0.75

1.00

1.25

1.50

a. Frequency response

FIGURE 21-1
Comparison of analog and digital filters. Digital filters have better performance in many areas, such as:
passband ripple, (a) vs. (b), roll-off and stopband attenuation, (c) vs. (d), and step response symmetry,
(e) vs. (f). The digital filter in this example has a cutoff frequency of 0.1 of the 10 kHz sampling rate.
This provides a fair comparison to the 1 kHz cutoff frequency of the analog filter.

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de
 (d

B
)

A
m

pl
itu

de
A

m
pl

itu
de

 (d
B

)

A
m

pl
itu

de

a linear scale to show their exceptional filter performance, while analog filters
need the logarithmic scale to show their huge dynamic range.

The Scientist and Engineer's Guide to Digital Signal Processing346

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

Chebyshev
recursive

windowed-sinc

a. Frequency response

FIGURE 21-2
Windowed-sinc and Chebyshev frequency responses. Frequency responses are shown for a 51 point
windowed-sinc filter and a 6 pole, 0.5% ripple Chebyshev recursive filter. The windowed-sinc has better
stopband attenuation, but either will work in moderate performance applications. The cutoff frequency of both
filters is 0.2, measured at an amplitude of 0.5 for the windowed-sinc, and 0.707 for the recursive.

Frequency
0 0.1 0.2 0.3 0.4 0.5

-100

-80

-60

-40

-20

0

20

40

b. Frequency response (dB)

Chebyshev
recursive

windowed-sinc

A
m

pl
itu

de
 (d

B
)

A
m

pl
itu

de

Match #2: Windowed-Sinc vs. Chebyshev
Both the windowed-sinc and the Chebyshev filters are designed to separate one
band of frequencies from another. The windowed-sinc is an FIR filter
implemented by convolution, while the Chebyshev is an IIR filter carried out
by recursion. Which is the best digital filter in the frequency domain? We'll
let them fight it out.

The recursive filter contender will be a 0.5% ripple, 6 pole Chebyshev
low-pass filter. A fair comparison is complicated by the fact that the
Chebyshev's frequency response changes with the cutoff frequency. We will
use a cutoff frequency of 0.2, and select the windowed-sinc's filter kernel to be
51 points. This makes both filters have the same 90% to 10% roll-off, as
shown in Fig. 21-2(a).

Now the pushing and shoving begins. The recursive filter has a 0.5% ripple
in the passband, while the windowed-sinc is flat. However, we could easily set
the recursive filter ripple to 0% if needed. No points. Figure 21-2b shows that
the windowed-sinc has a much better stopband attenuation than the Chebyshev.
One point for the windowed-sinc.

Figure 21-3 shows the step response of the two filters. Both are bad, as you
should expect for frequency domain filters. The recursive filter has a nonlinear
phase, but this can be corrected with bidirectional filtering. Since both filters
are so ugly in this parameter, we will call this a draw.

So far, there isn't much difference between these two filters; either will work
when moderate performance is needed. The heavy hitting comes over two
critical issues: maximum performance and speed. The windowed-sinc is a
powerhouse, while the Chebyshev is quick and agile. Suppose you have a
really tough frequency separation problem, say, needing to isolate a 100

Chapter 21- Filter Comparison 347

Sample number
-30 -20 -10 0 10 20 30

-0.5

0.0

0.5

1.0

1.5

2.0

a. Windowed-sinc step response

FIGURE 21-3
Windowed--sinc and Chebyshev step responses. The step responses are shown for a 51 point windowed-sinc
filter and a 6 pole, 0.5% ripple Chebyshev recursive filter. Each of these filters has a cutoff frequency of 0.2.
The windowed-sinc has a slightly better step response because it has less overshoot and a zero phase.

Sample number
-30 -20 -10 0 10 20 30

-0.5

0.0

0.5

1.0

1.5

2.0

b. Chebyshev step response

A
m

pl
itu

de

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-100

-80

-60

-40

-20

0

20

Chebyshev (IIR)

Windowed-sinc (FIR)

FIGURE 21-4
Maximum performance of FIR and IIR filters.
The frequency response of the windowed-sinc
can be virtually any shape needed, while the
Chebyshev recursive filter is very limited. This
graph compares the frequency response of a six
pole Chebyshev recursive filter with a 1001
point windowed-sinc filter. A

m
pl

itu
de

 (d
B

)
millivolt signal at 61 hertz that is riding on a 120 volt power line at 60 hertz.
Figure 21-4 shows how these two filters compare when you need maximum
performance. The recursive filter is a 6 pole Chebyshev with 0.5% ripple.
This is the maximum number of poles that can be used at a 0.05 cutoff
frequency with single precision. The windowed-sinc uses a 1001 point filter
kernel, formed by convolving a 501 point windowed-sinc filter kernel with
itself. As shown in Chapter 16, this provides greater stopband attenuation.

How do these two filters compare when maximum performance is needed? The
windowed-sinc crushes the Chebyshev! Even if the recursive filter were
improved (more poles, multistage implementation, double precision, etc.), it is
still no match for the FIR performance. This is especially impressive when you
consider that the windowed-sinc has only begun to fight. There are strong
limits on the maximum performance that recursive filters can provide. The
windowed-sinc, in contrast, can be pushed to incredible levels. This is, of
course, provided you are willing to wait for the result. Which brings up the
second critical issue: speed.

The Scientist and Engineer's Guide to Digital Signal Processing348

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

50

standard
convolution

FFT
convolution

Recursive

FIGURE 21-5
Comparing FIR and IIR execution speeds. These
curves shows the relative execution times for a
windowed-sinc filter compared with an equivalent
six pole Chebyshev recursive filter. Curves are
shown for implementing the FIR filter by both the
standard and the FFT convolution algorithms. The
windowed-sinc execution time rises at low and high
frequencies because the filter kernel must be made
longer to keep up with the greater performance of
the recursive filter at these frequencies. In general,
IIR filters are an order of magnitude faster than FIR
filters of comparable performance.

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Comparing these filters for speed is like racing a Ferrari against a go-cart.
Figure 21-5 shows how much longer the windowed-sinc takes to execute,
compared to a six pole recursive filter. Since the recursive filter has a faster
roll-off at low and high frequencies, the length of the windowed-sinc kernel
must be made longer to match the performance (i.e., to keep the comparison
fair). This accounts for the increased execution time for the windowed-sinc
near frequencies 0 and 0.5. The important point is that FIR filters can be
expected to be about an order of magnitude slower than comparable IIR filters
(go-cart: 15 mph, Ferrari: 150 mph).

Match #3: Moving Average vs. Single Pole
Our third competition will be a battle of the time domain filters. The first
fighter will be a nine point moving average filter. Its opponent for today's
match will be a single pole recursive filter using the bidirectional technique. To
achieve a comparable frequency response, the single pole filter will use a
sample-to-sample decay of . The battle begins in Fig. 21-6 where thex ' 0.70
frequency response of each filter is shown. Neither one is very impressive, but
of course, frequency separation isn't what these filters are used for. No points
for either side.

Figure 21-7 shows the step responses of the filters. In (a), the moving average
step response is a straight line, the most rapid way of moving from one level
to another. In (b), the recursive filter's step response is smoother, which may
be better for some applications. One point for each side.

These filters are quite equally matched in terms of performance and often the
choice between the two is made on personal preference. However, there are

Chapter 21- Filter Comparison 349

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Moving average

Single pole
recursive

FIGURE 21-6
Moving average and single pole frequency
responses. Both of these filters have a poor
frequency response, as you should expect for
time domain filters. A

m
pl

itu
de

Sample number
-20 -10 0 10 20

-0.5

0.0

0.5

1.0

1.5

a. Moving average

FIGURE 21-7
Step responses of the moving average and the bidirectional single pole filter. The moving average
step response occurs over a smaller number of samples, while the single pole filter's step response
is smoother.

Sample number
-20 -15 -10 -5 0 5 10 15 20

-0.5

0.0

0.5

1.0

1.5

b. Bidirectional recursive

A
m

pl
itu

de

A
m

pl
itu

de

two cases where one filter has a slight edge over the other. These are based
on the trade-off between development time and execution time. In the first
instance, you want to reduce development time and are willing to accept a
slower filter. For example, you might have a one time need to filter a few
thousand points. Since the entire program runs in only a few seconds, it is
pointless to spend time optimizing the algorithm. Floating point will almost
certainly be used. The choice is to use the moving average filter carried out
by convolution, or a single pole recursive filter. The winner here is the
recursive filter. It will be slightly easier to program and modify, and will
execute much faster.

The second case is just the opposite; your filter must operate as fast as
possible and you are willing to spend the extra development time to get it.
For instance, this filter might be a part of a commercial product, with the
potential to be run millions of times. You will probably use integers for the
highest possible speed. Your choice of filters will be the moving average

The Scientist and Engineer's Guide to Digital Signal Processing350

carried out by recursion, or the single pole recursive filter implemented with
look-up tables or integer math. The winner is the moving average filter. It will
execute faster and not be susceptible to the development and execution
problems of integer arithmetic.

351

CHAPTER

22 Audio Processing

Audio processing covers many diverse fields, all involved in presenting sound to human listeners.
Three areas are prominent: (1) high fidelity music reproduction, such as in audio compact discs,
(2) voice telecommunications, another name for telephone networks, and (3) synthetic speech,
where computers generate and recognize human voice patterns. While these applications have
different goals and problems, they are linked by a common umpire: the human ear. Digital Signal
Processing has produced revolutionary changes in these and other areas of audio processing.

Human Hearing
The human ear is an exceedingly complex organ. To make matters even more
difficult, the information from two ears is combined in a perplexing neural
network, the human brain. Keep in mind that the following is only a brief
overview; there are many subtle effects and poorly understood phenomena
related to human hearing.

Figure 22-1 illustrates the major structures and processes that comprise the
human ear. The outer ear is composed of two parts, the visible flap of skin
and cartilage attached to the side of the head, and the ear canal, a tube
about 0.5 cm in diameter extending about 3 cm into the head. These
structures direct environmental sounds to the sensitive middle and inner ear
organs located safely inside of the skull bones. Stretched across the end of
the ear canal is a thin sheet of tissue called the tympanic membrane or ear
drum. Sound waves striking the tympanic membrane cause it to vibrate.
The middle ear is a set of small bones that transfer this vibration to the
cochlea (inner ear) where it is converted to neural impulses. The cochlea
is a liquid filled tube roughly 2 mm in diameter and 3 cm in length.
Although shown straight in Fig. 22-1, the cochlea is curled up and looks
like a small snail shell. In fact, cochlea is derived from the Greek word for
snail.

The Scientist and Engineer's Guide to Digital Signal Processing352

When a sound wave tries to pass from air into liquid, only a small fraction of
the sound is transmitted through the interface, while the remainder of the
energy is reflected. This is because air has a low mechanical impedance (low
acoustic pressure and high particle velocity resulting from low density and high
compressibility), while liquid has a high mechanical impedance. In less
technical terms, it requires more effort to wave your hand in water than it does
to wave it in air. This difference in mechanical impedance results in most of
the sound being reflected at an air/liquid interface.

The middle ear is an impedance matching network that increases the fraction
of sound energy entering the liquid of the inner ear. For example, fish do not
have an ear drum or middle ear, because they have no need to hear in air.
Most of the impedance conversion results from the difference in area between
the ear drum (receiving sound from the air) and the oval window (transmitting
sound into the liquid, see Fig. 22-1). The ear drum has an area of about 60
(mm)2, while the oval window has an area of roughly 4 (mm)2. Since pressure
is equal to force divided by area, this difference in area increases the sound
wave pressure by about 15 times.

Contained within the cochlea is the basilar membrane, the supporting structure
for about 12,000 sensory cells forming the cochlear nerve. The basilar
membrane is stiffest near the oval window, and becomes more flexible toward
the opposite end, allowing it to act as a frequency spectrum analyzer. When
exposed to a high frequency signal, the basilar membrane resonates where it is
stiff, resulting in the excitation of nerve cells close to the oval window.
Likewise, low frequency sounds excite nerve cells at the far end of the basilar
membrane. This makes specific fibers in the cochlear nerve respond to specific
frequencies. This organization is called the place principle, and is preserved
throughout the auditory pathway into the brain.

Another information encoding scheme is also used in human hearing, called the
volley principle. Nerve cells transmit information by generating brief
electrical pulses called action potentials. A nerve cell on the basilar membrane
can encode audio information by producing an action potential in response to
each cycle of the vibration. For example, a 200 hertz sound wave can be
represented by a neuron producing 200 action potentials per second. However,
this only works at frequencies below about 500 hertz, the maximum rate that
neurons can produce action potentials. The human ear overcomes this problem
by allowing several nerve cells to take turns performing this single task. For
example, a 3000 hertz tone might be represented by ten nerve cells alternately
firing at 300 times per second. This extends the range of the volley principle
to about 4 kHz, above which the place principle is exclusively used.

Table 22-1 shows the relationship between sound intensity and perceived
loudness. It is common to express sound intensity on a logarithmic scale,
called decibel SPL (Sound Power Level). On this scale, 0 dB SPL is a sound
wave power of 10-16 watts/cm2, about the weakest sound detectable by the
human ear. Normal speech is at about 60 dB SPL, while painful damage to the
ear occurs at about 140 dB SPL.

Chapter 22- Audio Processing 353

sound
waves
in air

ear
outer

canal
ear tympanic membrane

(ear drum)

oval window
sound waves
in liquid

middle
ear bones

cochlea
basilar
membrane

high
frequency
detection

medium
frequency
detection

low
frequency
detection

FIGURE 22-1
Functional diagram of the human ear. The outer ear collects sound waves from the environment and channels
them to the tympanic membrane (ear drum), a thin sheet of tissue that vibrates in synchronization with the air
waveform. The middle ear bones (hammer, anvil and stirrup) transmit these vibrations to the oval window, a
flexible membrane in the fluid filled cochlea. Contained within the cochlea is the basilar membrane, the supporting
structure for about 12,000 nerve cells that form the cochlear nerve. Due to the varying stiffness of the basilar
membrane, each nerve cell only responses to a narrow range of audio frequencies, making the ear a frequency
spectrum analyzer.

The difference between the loudest and faintest sounds that humans can hear
is about 120 dB, a range of one-million in amplitude. Listeners can detect a
change in loudness when the signal is altered by about 1 dB (a 12% change in
amplitude). In other words, there are only about 120 levels of loudness that
can be perceived from the faintest whisper to the loudest thunder. The
sensitivity of the ear is amazing; when listening to very weak sounds, the ear
drum vibrates less than the diameter of a single molecule!

The perception of loudness relates roughly to the sound power to an exponent
of 1/3. For example, if you increase the sound power by a factor of ten,
listeners will report that the loudness has increased by a factor of about two
(). This is a major problem for eliminating undesirable environmental101/3 . 2
sounds, for instance, the beefed-up stereo in the next door apartment. Suppose
you diligently cover 99% of your wall with a perfect soundproof material,
missing only 1% of the surface area due to doors, corners, vents, etc. Even
though the sound power has been reduced to only 1% of its former value, the
perceived loudness has only dropped to about , or 20%. 0.011/3 . 0.2

The range of human hearing is generally considered to be 20 Hz to 20 kHz,
but it is far more sensitive to sounds between 1 kHz and 4 kHz. For example,
listeners can detect sounds as low as 0 dB SPL at 3 kHz, but require 40 dB
SPL at 100 hertz (an amplitude increase of 100). Listeners can tell that two
tones are different if their frequencies differ by more than about 0.3% at 3
kHz. This increases to 3% at 100 hertz. For comparison, adjacent keys on a
piano differ by about 6% in frequency.

The Scientist and Engineer's Guide to Digital Signal Processing354

Watts/cm2 Decibels SPL Example sound

10-2 140 dB Pain
10-3 130 dB
10-4 120 dB Discomfort
10-5 110 dB Jack hammers and rock concerts
10-6 100 dB
10-7 90 dB OSHA limit for industrial noise
10-8 80 dB
10-9 70 dB
10-10 60 dB Normal conversation
10-11 50 dB
10-12 40 dB Weakest audible at 100 hertz
10-13 30 dB
10-14 20 dB Weakest audible at 10kHz
10-15 10 dB
10-16 0 dB Weakest audible at 3 kHz
10-17 -10 dB
10-18 -20 dB

TABLE 22-1
Units of sound intensity. Sound
intensity is expressed as power per
unit area (such as watts/cm2), or
more commonly on a logarithmic
scale called decibels SPL. As this
table shows, human hearing is the
most sensitive between 1 kHz and
4 kHz.

So
fte

r

Lo
ud

er

The primary advantage of having two ears is the ability to identify the
direction of the sound. Human listeners can detect the difference between
two sound sources that are placed as little as three degrees apart, about the
width of a person at 10 meters. This directional information is obtained in
two separate ways. First, frequencies above about 1 kHz are strongly
shadowed by the head. In other words, the ear nearest the sound receives
a stronger signal than the ear on the opposite side of the head. The second
clue to directionality is that the ear on the far side of the head hears the
sound slightly later than the near ear, due to its greater distance from the
source. Based on a typical head size (about 22 cm) and the speed of sound
(about 340 meters per second), an angular discrimination of three degrees
requires a timing precision of about 30 microseconds. Since this timing
requires the volley principle, this clue to directionality is predominately
used for sounds less than about 1 kHz.

Both these sources of directional information are greatly aided by the ability
to turn the head and observe the change in the signals. An interesting sensation
occurs when a listener is presented with exactly the same sounds to both ears,
such as listening to monaural sound through headphones. The brain concludes
that the sound is coming from the center of the listener's head!

While human hearing can determine the direction a sound is from, it does
poorly in identifying the distance to the sound source. This is because there
are few clues available in a sound wave that can provide this information.
Human hearing weakly perceives that high frequency sounds are nearby, while
low frequency sounds are distant. This is because sound waves dissipate their
higher frequencies as they propagate long distances. Echo content is another
weak clue to distance, providing a perception of the room size. For example,

Chapter 22- Audio Processing 355

Time (milliseconds)

0 1 2 3 4 5

-2

-1

0

1

2

3

b. 1 kHz - 3 kHz sine waves

Time (milliseconds)

0 1 2 3 4 5

-2

-1

0

1

2

3

a. 1 kHz + 3 kHz sine waves

FIGURE 22-2
Phase detection of the human ear. The human ear is very insensitive to the relative phase of the component
sinusoids. For example, these two waveforms would sound identical, because the amplitudes of their
components are the same, even though their relative phases are different.

A
m

pl
itu

de

A
m

pl
itu

de

sounds in a large auditorium will contain echoes at about 100 millisecond
intervals, while 10 milliseconds is typical for a small office. Some species
have solved this ranging problem by using active sonar. For example, bats and
dolphins produce clicks and squeaks that reflect from nearby objects. By
measuring the interval between transmission and echo, these animals can locate
objects with about 1 cm resolution. Experiments have shown that some
humans, particularly the blind, can also use active echo localization to a small
extent.

Timbre
The perception of a continuous sound, such as a note from a musical
instrument, is often divided into three parts: loudness, pitch, and timbre
(pronounced "timber"). Loudness is a measure of sound wave intensity, as
previously described. Pitch is the frequency of the fundamental component in
the sound, that is, the frequency with which the waveform repeats itself. While
there are subtle effects in both these perceptions, they are a straightforward
match with easily characterized physical quantities.

Timbre is more complicated, being determined by the harmonic content of the
signal. Figure 22-2 illustrates two waveforms, each formed by adding a 1 kHz
sine wave with an amplitude of one, to a 3 kHz sine wave with an amplitude
of one-half. The difference between the two waveforms is that the one shown
in (b) has the higher frequency inverted before the addition. Put another way,
the third harmonic (3 kHz) is phase shifted by 180 degrees compared to the
first harmonic (1 kHz). In spite of the very different time domain waveforms,
these two signals sound identical. This is because hearing is based on the
amplitude of the frequencies, and is very insensitive to their phase. The shape
of the time domain waveform is only indirectly related to hearing, and usually
not considered in audio systems.

The Scientist and Engineer's Guide to Digital Signal Processing356

The ear's insensitivity to phase can be understood by examining how sound
propagates through the environment. Suppose you are listening to a person
speaking across a small room. Much of the sound reaching your ears is
reflected from the walls, ceiling and floor. Since sound propagation depends
on frequency (such as: attenuation, reflection, and resonance), different
frequencies will reach your ear through different paths. This means that the
relative phase of each frequency will change as you move about the room.
Since the ear disregards these phase variations, you perceive the voice as
unchanging as you move position. From a physics standpoint, the phase of an
audio signal becomes randomized as it propagates through a complex
environment. Put another way, the ear is insensitive to phase because it
contains little useful information.

However, it cannot be said that the ear is completely deaf to the phase. This
is because a phase change can rearrange the time sequence of an audio signal.
An example is the chirp system (Chapter 11) that changes an impulse into a
much longer duration signal. Although they differ only in their phase, the ear
can distinguish between the two sounds because of their difference in duration.
For the most part, this is just a curiosity, not something that happens in the
normal listening environment.

Suppose that we ask a violinist to play a note, say, the A below middle C.
When the waveform is displayed on an oscilloscope, it appear much as the
sawtooth shown in Fig. 22-3a. This is a result of the sticky rosin applied to the
fibers of the violinist's bow. As the bow is drawn across the string, the
waveform is formed as the string sticks to the bow, is pulled back, and
eventually breaks free. This cycle repeats itself over and over resulting in the
sawtooth waveform.

Figure 22-3b shows how this sound is perceived by the ear, a frequency of 220
hertz, plus harmonics at 440, 660, 880 hertz, etc. If this note were played on
another instrument, the waveform would look different; however, the ear would
still hear a frequency of 220 hertz plus the harmonics. Since the two
instruments produce the same fundamental frequency for this note, they sound
similar, and are said to have identical pitch. Since the relative amplitude of the
harmonics is different, they will not sound identical, and will be said to have
different timbre.

It is often said that timbre is determined by the shape of the waveform. This
is true, but slightly misleading. The perception of timbre results from the ear
detecting harmonics. While harmonic content is determined by the shape of the
waveform, the insensitivity of the ear to phase makes the relationship very one-
sided. That is, a particular waveform will have only one timbre, while a
particular timbre has an infinite number of possible waveforms.

The ear is very accustomed to hearing a fundamental plus harmonics. If a
listener is presented with the combination of a 1 kHz and 3 kHz sine wave,
they will report that it sounds natural and pleasant. If sine waves of 1 kHz and
3.1 kHz are used, it will sound objectionable.

Chapter 22- Audio Processing 357

Frequency (hertz)

0 200 400 600 800 1000 1200 1400 1600

0

1

2

3

4

b. Frequency spectrum

harmonics

fundamental

Time (milliseconds)

0 5 10 15 20 25

-8

-4

0

4

8

a. Time domain waveform

FIGURE 22-3
Violin waveform. A bowed violin produces a sawtooth waveform, as illustrated in (a). The sound
heard by the ear is shown in (b), the fundamental frequency plus harmonics.

A
m

pl
itu

de

A
m

pl
itu

de

B C D E F G B C D E F G B C D E F G B C D E F G B C D E F G B C D E F G B C D E F G B C

A- 27.5 Hz A- 55 Hz A- 110 Hz A- 880 Hz A- 1760 Hz A- 3520 HzA- 440 HzA- 220 Hz

C- 262 Hz
(Middle C)

FIGURE 22-4
The Piano keyboard. The keyboard of the piano is a logarithmic frequency scale, with the fundamental
frequency doubling after every seven white keys. These white keys are the notes: A, B, C, D, E, F and G.

This is the basis of the standard musical scale, as illustrated by the piano
keyboard in Fig. 22-4. Striking the farthest left key on the piano produces a
fundamental frequency of 27.5 hertz, plus harmonics at 55, 110, 220, 440, 880
hertz, etc. (there are also harmonics between these frequencies, but they aren't
important for this discussion). These harmonics correspond to the fundamental
frequency produced by other keys on the keyboard. Specifically, every seventh
white key is a harmonic of the far left key. That is, the eighth key from the left
has a fundamental frequency of 55 hertz, the 15th key has a fundamental
frequency of 110 hertz, etc. Being harmonics of each other, these keys sound
similar when played, and are harmonious when played in unison. For this
reason, they are all called the note, A. In this same manner, the white key
immediate right of each A is called a B, and they are all harmonics of each
other. This pattern repeats for the seven notes: A, B, C, D, E, F, and G.

The term octave means a factor of two in frequency. On the piano, one
octave comprises eight white keys, accounting for the name (octo is Latin
for eight). In other words, the piano’s frequency doubles after every seven
white keys, and the entire keyboard spans a little over seven octaves. The
range of human hearing is generally quoted as 20 hertz to 20 kHz,

The Scientist and Engineer's Guide to Digital Signal Processing358

corresponding to about ½ octave to the left, and two octaves to the right of
the piano keyboard. Since octaves are based on doubling the frequency
every fixed number of keys, they are a logarithmic representation of
frequency. This is important because audio information is generally
distributed in this same way. For example, as much audio information is
carried in the octave between 50 hertz and 100 hertz, as in the octave
between 10 kHz and 20 kHz. Even though the piano only covers about 20%
of the frequencies that humans can hear (4 kHz out of 20 kHz), it can
produce more than 70% of the audio information that humans can perceive
(7 out of 10 octaves). Likewise, the highest frequency a human can detect
drops from about 20 kHz to 10 kHz over the course of an adult's lifetime.
However, this is only a loss of about 10% of the hearing ability (one octave
out of ten). As shown next, this logarithmic distribution of information
directly affects the required sampling rate of audio signals.

Sound Quality vs. Data Rate
When designing a digital audio system there are two questions that need to be
asked: (1) how good does it need to sound? and (2) what data rate can be
tolerated? The answer to these questions usually results in one of three
categories. First, high fidelity music, where sound quality is of the greatest
importance, and almost any data rate will be acceptable. Second, telephone
communication, requiring natural sounding speech and a low data rate to
reduce the system cost. Third, compressed speech, where reducing the data
rate is very important and some unnaturalness in the sound quality can be
tolerated. This includes military communication, cellular telephones, and
digitally stored speech for voice mail and multimedia.

Table 22-2 shows the tradeoff between sound quality and data rate for these
three categories. High fidelity music systems sample fast enough (44.1 kHz),
and with enough precision (16 bits), that they can capture virtually all of the
sounds that humans are capable of hearing. This magnificent sound quality
comes at the price of a high data rate, 44.1 kHz × 16 bits = 706k bits/sec.
This is pure brute force.

Whereas music requires a bandwidth of 20 kHz, natural sounding speech only
requires about 3.2 kHz. Even though the frequency range has been reduced to
only 16% (3.2 kHz out of 20 kHz), the signal still contains 80% of the original
sound information (8 out of 10 octaves). Telecommunication systems typically
operate with a sampling rate of about 8 kHz, allowing natural sounding speech,
but greatly reduced music quality. You are probably already familiar with this
difference in sound quality: FM radio stations broadcast with a bandwidth of
almost 20 kHz, while AM radio stations are limited to about 3.2 kHz. Voices
sound normal on the AM stations, but the music is weak and unsatisfying.

Voice-only systems also reduce the precision from 16 bits to 12 bits per
sample, with little noticeable change in the sound quality. This can be
reduced to only 8 bits per sample if the quantization step size is made
unequal. This is a widespread procedure called companding, and will be

Chapter 22- Audio Processing 359

TABLE 22-2
Audio data rate vs. sound quality. The sound quality of a digitized audio signal depends on its data rate, the product
of its sampling rate and number of bits per sample. This can be broken into three categories, high fidelity music (706
kbits/sec), telephone quality speech (64 kbits/sec), and compressed speech (4 kbits/sec).

Sound Quality Required Bandwidth Sampling
rate

Number
of bits

Data rate
(bits/sec) Comments

High fidelity music
(compact disc)

5 Hz to
20 kHz

44.1 kHz 16 bit 706k Satisfies even the most picky
audiophile. Better than
human hearing.

Telephone quality speech 200 Hz to
3.2 kHz

8 kHz 12 bit 96k Good speech quality, but
very poor for music.

 (with companding) 200 Hz to
3.2 kHz

8 kHz 8 bit 64k Nonlinear ADC reduces the
data rate by 50%. A very
common technique.

Speech encoded by Linear
Predictive Coding

200 Hz to
3.2 kHz

8 kHz 12 bit 4k DSP speech compression
technique. Very low data
rates, poor voice quality.

discussed later in this chapter. An 8 kHz sampling rate, with an ADC
precision of 8 bits per sample, results in a data rate of 64k bits/sec. This is
the brute force data rate for natural sounding speech. Notice that speech
requires less than 10% of the data rate of high fidelity music.

The data rate of 64k bits/sec represents the straightforward application of
sampling and quantization theory to audio signals. Techniques for lowering the
data rate further are based on compressing the data stream by removing the
inherent redundancies in speech signals. Data compression is the topic of
Chapter 27. One of the most efficient ways of compressing an audio signal is
Linear Predictive Coding (LPC), of which there are several variations and
subgroups. Depending on the speech quality required, LPC can reduce the data
rate to as little as 2-6k bits/sec. We will revisit LPC later in this chapter with
speech synthesis.

High Fidelity Audio
Audiophiles demand the utmost sound quality, and all other factors are treated
as secondary. If you had to describe the mindset in one word, it would be:
overkill. Rather than just matching the abilities of the human ear, these
systems are designed to exceed the limits of hearing. It's the only way to be
sure that the reproduced music is pristine. Digital audio was brought to the
world by the compact laser disc, or CD. This was a revolution in music; the
sound quality of the CD system far exceeds older systems, such as records and
tapes. DSP has been at the forefront of this technology.

The Scientist and Engineer's Guide to Digital Signal Processing360

0.5 µm
pit width

1.6 µm
track spacing

0.8 µm minimum length 3.5 µm maximum length

direction
readout

FIGURE 22-5
Compact disc surface. Micron size pits
are burned into the surface of the CD to
represent ones and zeros. This results in
a data density of 1 bit per µm2, or one
million bits per mm2. The pit depth is
0.16 µm.

Figure 22-5 illustrates the surface of a compact laser disc, such as viewed
through a high power microscope. The main surface is shiny (reflective of
light), with the digital information stored as a series of dark pits burned on the
surface with a laser. The information is arranged in a single track that spirals
from the inside to the outside, the opposite of a phonograph record. The rotation
of the CD is changed from about 210 to 480 rpm as the information is read
from the outside to the inside of the spiral, making the scanning velocity a
constant 1.2 meters per second. (In comparison, phonograph records spin at a
fixed rate, such as 33, 45 or 78 rpm). During playback, an optical sensor
detects if the surface is reflective or nonreflective, generating the corresponding
binary information.

As shown by the geometry in Fig. 22-5, the CD stores about 1 bit per (µm)2,
corresponding to 1 million bits per (mm)2, and 15 billion bits per disk. This is
about the same feature size used in integrated circuit manufacturing, and for a
good reason. One of the properties of light is that it cannot be focused to
smaller than about one-half wavelength, or 0.3 µm. Since both integrated
circuits and laser disks are created by optical means, the fuzziness of light
below 0.3 µm limits how small of features can be used.

Figure 22-6 shows a block diagram of a typical compact disc playback system.
The raw data rate is 4.3 million bits per second, corresponding to 1 bit each
0.28 µm of track length. However, this is in conflict with the specified
geometry of the CD; each pit must be no shorter than 0.8 µm, and no longer
than 3.5 µm. In other words, each binary one must be part of a group of 3 to
13 ones. This has the advantage of reducing the error rate due to the optical
pickup, but how do you force the binary data to comply with this strange
bunching?

The answer is an encoding scheme called eight-to-fourteen modulation
(EFM). Instead of directly storing a byte of data on the disc, the 8 bits are
passed through a look-up table that pops out 14 bits. These 14 bits have the
desired bunching characteristics, and are stored on the laser disc. Upon
playback, the binary values read from the disc are passed through the inverse
of the EFM look-up table, resulting in each 14 bit group being turned back into
the correct 8 bits.

Chapter 22- Audio Processing 361

Reed-
Solomon
decoding

Sample
rate

converter
(×4)

14 bit
DAC

Bessel
Filter

Power
Amplifier

EFM
decoding

Optical
pickup

Speaker

Sample
rate

converter
(×4)

14 bit
DAC

Bessel
Filter

Power
Amplifier Speaker

(4.3 Mbits/sec)

serial data

(706 Kbits/sec)

16 bit samples

at 44.1 kHz
14 bit samples

at 176.4 kHz

Compact disc
Left channel

Right channel

FIGURE 22-6
Compact disc playback block diagram. The digital information is retrieved from the disc with an optical
sensor, corrected for EFM and Reed-Solomon encoding, and converted to stereo analog signals.

In addition to EFM, the data are encoded in a format called two-level Reed-
Solomon coding. This involves combining the left and right stereo channels
along with data for error detection and correction. Digital errors detected
during playback are either: corrected by using the redundant data in the
encoding scheme, concealed by interpolating between adjacent samples, or
muted by setting the sample value to zero. These encoding schemes result in
the data rate being tripled, i.e., 1.4 Mbits/sec for the stereo audio signals
versus 4.3 Mbits/sec stored on the disc.

After decoding and error correction, the audio signals are represented as 16 bit
samples at a 44.1 kHz sampling rate. In the simplest system, these signals
could be run through a 16 bit DAC, followed by a low-pass analog filter.
However, this would require high performance analog electronics to pass
frequencies below 20 kHz, while rejecting all frequencies above 22.05 kHz, ½
of the sampling rate. A more common method is to use a multirate technique,
that is, convert the digital data to a higher sampling rate before the DAC. A
factor of four is commonly used, converting from 44.1 kHz to 176.4 kHz. This
is called interpolation, and can be explained as a two step process (although
it may not actually be carried out this way). First, three samples with a value
of zero are placed between the original samples, producing the higher sampling
rate. In the frequency domain, this has the effect of duplicating the 0 to 22.05
kHz spectrum three times, at 22.05 to 44.1 kHz, 41 to 66.15 kHz, and 66.15
to 88.2 kHz. In the second step, an efficient digital filter is used to remove the
newly added frequencies.

The sample rate increase makes the sampling interval smaller, resulting in a
smoother signal being generated by the DAC. The signal still contains
frequencies between 20 Hz and 20 kHz; however, the Nyquist frequency has
been increased by a factor of four. This means that the analog filter only needs
to pass frequencies below 20 kHz, while blocking frequencies above 88.2 kHz.
This is usually done with a three pole Bessel filter. Why use a Bessel filter if
the ear is insensitive to phase? Overkill, remember?

The Scientist and Engineer's Guide to Digital Signal Processing362

Since there are four times as many samples, the number of bits per sample can
be reduced from 16 bits to 15 bits, without degrading the sound quality. The sin(x)/x
correction needed to compensate for the zeroth order hold of the DAC can be
part of either the analog or digital filter.

Audio systems with more than one channel are said to be in stereo (from the
Greek word for solid, or three-dimensional). Multiple channels send sound to
the listener from different directions, providing a more accurate reproduction
of the original music. Music played through a monaural (one channel) system
often sounds artificial and bland. In comparison, a good stereo reproduction
makes the listener feel as if the musicians are only a few feet away. Since the
1960s, high fidelity music has used two channels (left and right), while motion
pictures have used four channels (left, right, center, and surround). In early
stereo recordings (say, the Beatles or the Mamas And The Papas), individual
singers can often be heard in only one channel or the other. This rapidly
progressed into a more sophisticated mix-down, where the sound from many
microphones in the recording studio is combined into the two channels.
Mix-down is an art, aimed at providing the listener with the perception of
being there.

The four channel sound used in motion pictures is called Dolby Stereo,
with the home version called Dolby Surround Pro Logic. ("Dolby" and
"Pro Logic" are trademarks of Dolby Laboratories Licensing Corp.). The
four channels are encoded into the standard left and right channels, allowing
regular two-channel stereo systems to reproduce the music. A Dolby
decoder is used during playback to recreate the four channels of sound. The
left and right channels, from speakers placed on each side of the movie or
television screen, is similar to that of a regular two-channel stereo system.
The speaker for the center channel is usually placed directly above or below
the screen. Its purpose is to reproduce speech and other visually connected
sounds, keeping them firmly centered on the screen, regardless of the
seating position of the viewer/listener. The surround speakers are placed
to the left and right of the listener, and may involve as many as twenty
speakers in a large auditorium. The surround channel only contains
midrange frequencies (say, 100 Hz to 7 kHz), and is delayed by 15 to 30
milliseconds. This delay makes the listener perceive that speech is coming
from the screen, and not the sides. That is, the listener hears the speech
coming from the front, followed by a delayed version of the speech coming
from the sides. The listener's mind interprets the delayed signal as a
reflection from the walls, and ignores it.

Companding
The data rate is important in telecommunication because it is directly
proportional to the cost of transmitting the signal. Saving bits is the same as
saving money. Companding is a common technique for reducing the data rate
of audio signals by making the quantization levels unequal. As previously
mentioned, the loudest sound that can be tolerated (120 dB SPL) is about one-
million times the amplitude of the weakest sound that can be detected (0 dB

Chapter 22- Audio Processing 363

EQUATION 22-1
Mu law companding. This equation
provides the nonlinearity for µ255 law
companding. The constant, µ, has a
value of 255, accounting for the name
of this standard.

y '
ln(1%µx)
ln(1%µ) for 0 # x # 1

y '
1% ln(Ax)
1% ln(A) for 1/A # x # 1

for 0 # x # 1/Ay '
Ax

1% ln(A)

EQUATION 22-2
"A" law companding. The constant, A,
has a value of 87.6.

SPL). However, the ear cannot distinguish between sounds that are closer than
about 1 dB (12% in amplitude) apart. In other words, there are only about 120
different loudness levels that can be detected, spaced logarithmically over an
amplitude range of one-million.

This is important for digitizing audio signals. If the quantization levels are
equally spaced, 12 bits must be used to obtain telephone quality speech.
However, only 8 bits are required if the quantization levels are made unequal,
matching the characteristics of human hearing. This is quite intuitive: if the
signal is small, the levels need to be very close together; if the signal is large,
a larger spacing can be used.

Companding can be carried out in three ways: (1) run the analog signal through
a nonlinear circuit before reaching a linear 8 bit ADC, (2) use an 8 bit ADC
that internally has unequally spaced steps, or (3) use a linear 12 bit ADC
followed by a digital look-up table (12 bits in, 8 bits out). Each of these three
options requires the same nonlinearity, just in a different place: an analog
circuit, an ADC, or a digital circuit.

Two nearly identical standards are used for companding curves: µ255 law (also
called mu law), used in North America, and "A" law, used in Europe. Both
use a logarithmic nonlinearity, since this is what converts the spacing
detectable by the human ear into a linear spacing. In equation form, the curves
used in µ255 law and "A" law are given by:

Figure 22-7 graphs these equations for the input variable, x, being between -1
and +1, resulting in the output variable also assuming values between -1 and
+1. Equations 22-1 and 22-2 only handle positive input values; portions of the
curves for negative input values are found from symmetry. As shown in (a),
the curves for µ255 law and "A" law are nearly identical. The only significant
difference is near the origin, shown in (b), where µ255 law is a smooth curve,
and "A" law switches to a straight line.

Producing a stable nonlinearity is a difficult task for analog electronics. One
method is to use the logarithmic relationship between current and

The Scientist and Engineer's Guide to Digital Signal Processing364

Input

-1.0 0.0 1.0

-1.0

0.0

1.0

Input

-0.05 0.00 0.05

-0.5

0.0

0.5

a. µ law and A law b. Zoom of zero crossing

µ law

A law

O
u
tp

u
t

FIGURE 22-7
Companding curves. The µ255 law and "A" law companding curves are nearly identical, differing only near
the origin. Companding increases the amplitude when the signal is small, and decreases it when it is large.

O
u
tp

u
t

voltage across a pn diode junction, and then add circuitry to correct for the
ghastly temperature drift. Most companding circuits take another strategy:
approximate the nonlinearity with a group of straight lines. A typical scheme
is to approximate the logarithmic curve with a group of 16 straight segments,
called cords. The first bit of the 8 bit output indicates if the input is positive
or negative. The next three bits identify which of the 8 positive or 8 negative
cords is used. The last four bits break each cord into 16 equally spaced
increments. As with most integrated circuits, companding chips have
sophisticated and proprietary internal designs. Rather than worrying about
what goes on inside of the chip, pay the most attention to the pinout and the
specification sheet.

Speech Synthesis and Recognition
Computer generation and recognition of speech are formidable problems; many
approaches have been tried, with only mild success. This is an active area of
DSP research, and will undoubtedly remain so for many years to come. You
will be very disappointed if you are expecting this section to describe how to
build speech synthesis and recognition circuits. Only a brief introduction to the
typical approaches can be presented here. Before starting, it should be pointed
out that most commercial products that produce human sounding speech do not
synthesize it, but merely play back a digitally recorded segment from a human
speaker. This approach has great sound quality, but it is limited to the
prerecorded words and phrases.

Nearly all techniques for speech synthesis and recognition are based on the
model of human speech production shown in Fig. 22-8. Most human speech
sounds can be classified as either voiced or fricative. Voiced sounds occur
when air is forced from the lungs, through the vocal cords, and out of the mouth
and/or nose. The vocal cords are two thin flaps of tissue stretched across

Chapter 22- Audio Processing 365

Noise

Generator

Pulse train

Generator

Digital

Filter

unvoiced

voiced

pitch

vocal tract
response

synthetic
speech

FIGURE 22-8
Human speech model. Over a short segment of time, about 2 to 40 milliseconds, speech can be modeled by
three parameters: (1) the selection of either a periodic or a noise excitation, (2) the pitch of the periodic
excitation, and (3) the coefficients of a recursive linear filter mimicking the vocal tract response.

the air flow, just behind the Adam's apple. In response to varying muscle
tension, the vocal cords vibrate at frequencies between 50 and 1000 Hz,
resulting in periodic puffs of air being injected into the throat. Vowels are an
example of voiced sounds. In Fig. 22-8, voiced sounds are represented by the
pulse train generator, with the pitch (i.e., the fundamental frequency of the
waveform) being an adjustable parameter.

In comparison, fricative sounds originate as random noise, not from vibration
of the vocal cords. This occurs when the air flow is nearly blocked by the
tongue, lips, and/or teeth, resulting in air turbulence near the constriction.
Fricative sounds include: s, f, sh, z, v, and th. In the model of Fig. 22-8,
fricatives are represented by a noise generator.

Both these sound sources are modified by the acoustic cavities formed from the
tongue, lips, mouth, throat, and nasal passages. Since sound propagation
through these structures is a linear process, it can be represented as a linear
filter with an appropriately chosen impulse response. In most cases, a
recursive filter is used in the model, with the recursion coefficients specifying
the filter's characteristics. Because the acoustic cavities have dimensions of
several centimeters, the frequency response is primarily a series of resonances
in the kilohertz range. In the jargon of audio processing, these resonance peaks
are called the formant frequencies. By changing the relative position of the
tongue and lips, the formant frequencies can be changed in both frequency and
amplitude.

Figure 22-9 shows a common way to display speech signals, the voice
spectrogram, or voiceprint. The audio signal is broken into short segments,

The Scientist and Engineer's Guide to Digital Signal Processing366

say 2 to 40 milliseconds, and the FFT used to find the frequency spectrum of
each segment. These spectra are placed side-by-side, and converted into a
grayscale image (low amplitude becomes light, and high amplitude becomes
dark). This provides a graphical way of observing how the frequency content
of speech changes with time. The segment length is chosen as a tradeoff
between frequency resolution (favored by longer segments) and time resolution
(favored by shorter segments).

As demonstrated by the a in rain, voiced sounds have a periodic time domain
waveform, shown in (a), and a frequency spectrum that is a series of regularly
spaced harmonics, shown in (b). In comparison, the s in storm, shows that
fricatives have a noisy time domain signal, as in (c), and a noisy spectrum,
displayed in (d). These spectra also show the shaping by the formant
frequencies for both sounds. Also notice that the time-frequency display of the
word rain looks similar both times it is spoken.

Over a short period, say 25 milliseconds, a speech signal can be approximated
by specifying three parameters: (1) the selection of either a periodic or random
noise excitation, (2) the frequency of the periodic wave (if used), and (3) the
coefficients of the digital filter used to mimic the vocal tract response.
Continuous speech can then be synthesized by continually updating these three
parameters about 40 times a second. This approach was responsible for one the
early commercial successes of DSP: the Speak & Spell, a widely marketed
electronic learning aid for children. The sound quality of this type of speech
synthesis is poor, sounding very mechanical and not quite human. However,
it requires a very low data rate, typically only a few kbits/sec.

This is also the basis for the linear predictive coding (LPC) method of
speech compression. Digitally recorded human speech is broken into short
segments, and each is characterized according to the three parameters of the
model. This typically requires about a dozen bytes per segment, or 2 to 6
kbytes/sec. The segment information is transmitted or stored as needed, and
then reconstructed with the speech synthesizer.

Speech recognition algorithms take this a step further by trying to recognize
patterns in the extracted parameters. This typically involves comparing the
segment information with templates of previously stored sounds, in an
attempt to identify the spoken words. The problem is, this method does not
work very well. It is useful for some applications, but is far below the
capabilities of human listeners. To understand why speech recognition is
so difficult for computers, imagine someone unexpectedly speaking the
following sentence:

 Larger run medical buy dogs fortunate almost when.

Of course, you will not understand the meaning of this sentence, because it has
none. More important, you will probably not even understand all of the
individual words that were spoken. This is basic to the way that humans

Chapter 22- Audio Processing 367

Time (seconds)

0 0.5 1 1.5 2 2.5

0

1

2

3

4

5

The rain bow was seen after the rain storm

Frequency (kHz)

0 1 2 3 4 5

0

200

400

600

800

1000

d. Frequency domain: s in storm

Time (milliseconds)

0 2 4 6 8 10 12 14 16 18 20 22

1200

1400

1600

1800

2000

2200

2400

2600

2800

a. Time domain: a in rain

Time (milliseconds)

0 2 4 6 8 10 12 14 16 18 20 22

2000

2020

2040

2060

2080

2100

c. Time domain: s in storm

Frequency (kHz)

0 1 2 3 4 5

0

500

1000

1500

2000

2500

b. Frequency domain: a in rain

Fr
eq

ue
nc

y
(k

H
z)

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

 (×
10

)

FIGURE 22-9
Voice spectrogram. The spectrogram of the phrase: "The rainbow was seen after the rain storm." Figures
(a) and (b) shows the time and frequency signals for the voiced a in rain. Figures (c) and (d) show the time
and frequency signals for the fricative s in storm.

The Scientist and Engineer's Guide to Digital Signal Processing368

perceive and understand speech. Words are recognized by their sounds, but
also by the context of the sentence, and the expectations of the listener. For
example, imagine hearing the two sentences:

 The child wore a spider ring on Halloween.

 He was an American spy during the war.

Even if exactly the same sounds were produced to convey the underlined words,
listeners hear the correct words for the context. From your accumulated
knowledge about the world, you know that children don't wear secret agents,
and people don't become spooky jewelry during wartime. This usually isn't a
conscious act, but an inherent part of human hearing.

Most speech recognition algorithms rely only on the sound of the individual
words, and not on their context. They attempt to recognize words, but not to
understand speech. This places them at a tremendous disadvantage compared
to human listeners. Three annoyances are common in speech recognition
systems: (1) The recognized speech must have distinct pauses between the
words. This eliminates the need for the algorithm to deal with phrases that
sound alike, but are composed of different words (i.e., spider ring and spy
during). This is slow and awkward for people accustomed to speaking in an
overlapping flow. (2) The vocabulary is often limited to only a few hundred
words. This means that the algorithm only has to search a limited set to find
the best match. As the vocabulary is made larger, the recognition time and
error rate both increase. (3) The algorithm must be trained on each speaker.
This requires each person using the system to speak each word to be
recognized, often needing to be repeated five to ten times. This personalized
database greatly increases the accuracy of the word recognition, but it is
inconvenient and time consuming.

The prize for developing a successful speech recognition technology is
enormous. Speech is the quickest and most efficient way for humans to
communicate. Speech recognition has the potential of replacing writing,
typing, keyboard entry, and the electronic control provided by switches and
knobs. It just needs to work a little better to become accepted by the
commercial marketplace. Progress in speech recognition will likely come from
the areas of artificial intelligence and neural networks as much as through DSP
itself. Don't think of this as a technical difficulty; think of it as a technical
opportunity.

Nonlinear Audio Processing

Digital filtering can improve audio signals in many ways. For instance, Wiener
filtering can be used to separate frequencies that are mainly signal, from
frequencies that are mainly noise (see Chapter 17). Likewise, deconvolution
can compensate for an undesired convolution, such as in the restoration of old

Chapter 22- Audio Processing 369

Frequency

0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

5

6

7

8

9

10

a. Signal spectrum

Frequency

0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

5

6

7

8

9

10

b. Noise spectrum

FIGURE 22-10
Spectra of speech and noise. While the frequency spectra of speech and noise generally overlap, there is some
separation if the signal segment is made short enough. Figure (a) illustrates the spectrum of a 16 millisecond
speech segment, showing that many frequencies carry little speech information, in this particular segment.
Figure (b) illustrates the spectrum of a random noise source; all the components have a small amplitude.
(These graphs are not of real signals, but illustrations to show the noise reduction technique).

A
m

pl
itu

de

A
m

pl
itu

de

recordings (also discussed in Chapter 17). These types of linear techniques are
the backbone of DSP. Several nonlinear techniques are also useful for audio
processing. Two will be briefly described here.

The first nonlinear technique is used for reducing wideband noise in speech
signals. This type of noise includes: magnetic tape hiss, electronic noise in
analog circuits, wind blowing by microphones, cheering crowds, etc. Linear
filtering is of little use, because the frequencies in the noise completely overlap
the frequencies in the voice signal, both covering the range from 200 hertz to
3.2 kHz. How can two signals be separated when they overlap in both the time
domain and the frequency domain?

Here's how it is done. In a short segment of speech, the amplitude of the
frequency components are greatly unequal. As an example, Fig. 22-10a
illustrates the frequency spectrum of a 16 millisecond segment of speech (i.e.,
128 samples at an 8 kHz sampling rate). Most of the signal is contained in a
few large amplitude frequencies. In contrast, (b) illustrates the spectrum when
only random noise is present; it is very irregular, but more uniformly
distributed at a low amplitude.

Now the key concept: if both signal and noise are present, the two can be
partially separated by looking at the amplitude of each frequency. If the
amplitude is large, it is probably mostly signal, and should therefore be
retained. If the amplitude is small, it can be attributed to mostly noise, and
should therefore be discarded, i.e., set to zero. Mid-size frequency components
are adjusted in some smooth manner between the two extremes.

Another way to view this technique is as a time varying Wiener filter. As
you recall, the frequency response of the Wiener filter passes frequencies
that are mostly signal, and rejects frequencies that are mostly noise. This

The Scientist and Engineer's Guide to Digital Signal Processing370

requires a knowledge of the signal and noise spectra beforehand, so that the
filter's frequency response can be determined. This nonlinear technique uses
the same idea, except that the Wiener filter's frequency response is recalculated
for each segment, based on the spectrum of that segment. In other words, the
filter's frequency response changes from segment-to-segment, as determined by
the characteristics of the signal itself.

One of the difficulties in implementing this (and other) nonlinear techniques is
that the overlap-add method for filtering long signals is not valid. Since the
frequency response changes, the time domain waveform of each segment will
no longer align with the neighboring segments. This can be overcome by
remembering that audio information is encoded in frequency patterns that
change over time, and not in the shape of the time domain waveform. A typical
approach is to divide the original time domain signal into overlapping
segments. After processing, a smooth window is applied to each of the over-
lapping segments before they are recombined. This provides a smooth transition
of the frequency spectrum from one segment to the next.

The second nonlinear technique is called homomorphic signal processing.
This term literally means: the same structure. Addition is not the only way
that noise and interference can be combined with a signal of interest;
multiplication and convolution are also common means of mixing signals
together. If signals are combined in a nonlinear way (i.e., anything other than
addition), they cannot be separated by linear filtering. Homomorphic
techniques attempt to separate signals combined in a nonlinear way by making
the problem become linear. That is, the problem is converted to the same
structure as a linear system.

For example, consider an audio signal transmitted via an AM radio wave. As
atmospheric conditions change, the received amplitude of the signal increases
and decreases, resulting in the loudness of the received audio signal slowly
changing over time. This can be modeled as the audio signal, represented by

, being multiplied by a slowly varying signal, , that represents thea[] g[]
changing gain. This problem is usually handled in an electronic circuit called
an automatic gain control (AGC), but it can also be corrected with nonlinear
DSP.

As shown in Fig. 22-11, the input signal, , is passed through thea []×g []
logarithm function. From the identity, log (x y) ' log x % log y, this results in
two signals that are combined by addition, i.e., . In otherlog a [] % log g []
words, the logarithm is the homomorphic transform that turns the nonlinear
problem of multiplication into the linear problem of addition.

Next, the added signals are separated by a conventional linear filter, that is,
some frequencies are passed, while others are rejected. For the AGC, the
gain signal, , will be composed of very low frequencies, far below theg[]
200 hertz to 3.2 kHz band of the voice signal. The logarithm of these signals
will have more complicated spectra, but the idea is the same: a high-pass
filter is used to eliminate the varying gain component from the signal.

Chapter 22- Audio Processing 371

Logarithm

Linear

Filter

Anti-
Logarithm

log a []log a [] % log g []

a [] × g [] a []

FIGURE 22-11
Homomorphic separation of multiplied signals. Taking the logarithm of the input signal transforms
components that are multiplied into components that are added. These components can then be separated by
linear filtering, and the effect of the logarithm undone.

Fourier

Transform Logarithm

Linear

Filter

Anti-
Inverse

Fourier

Transform

Logarithm

Homomorphic Transform Inverse Homomorphic Transform

X []

log X []

log X [] % log Y []

X [] × Y []

FIGURE 22-12
Homomorphic separation of convolved signals. Components that have been convolved are converted into
components that are added by taking the Fourier transform followed by the logarithm. After linear filtering
to separate the added components, the original steps are undone.

x []x [] t y []

In effect, is converted into . In the last step, thelog a [] % log g [] log a []
logarithm is undone by using the exponential function (the anti-logarithm, or

), producing the desired output signal, e

x a [].

Figure 22-12 shows a homomorphic system for separating signals that have
been convolved. An application where this has proven useful is in removing
echoes from audio signals. That is, the audio signal is convolved with an
impulse response consisting of a delta function plus a shifted and scaled delta
function. The homomorphic transform for convolution is composed of two
stages, the Fourier transform, changing the convolution into a multiplication,
followed by the logarithm, turning the multiplication into an addition. As
before, the signals are then separated by linear filtering, and the homomorphic
transform undone.

An interesting twist in Fig. 22-12 is that the linear filtering is dealing with
frequency domain signals in the same way that time domain signals are usually
processed. In other words, the time and frequency domains have been swapped
from their normal use. For example, if FFT convolution were used to carry out
the linear filtering stage, the "spectra" being multiplied would be in the time
domain. This role reversal has given birth to a strange jargon. For instance,
cepstrum (a rearrangment of spectrum) is the Fourier transform of the
logarithm of the Fourier transform. Likewise, there are long-pass and short-
pass filters, rather than low-pass and high-pass filters. Some authors even use
the terms Quefrency Alanysis and liftering.

The Scientist and Engineer's Guide to Digital Signal Processing372

Keep in mind that these are simplified descriptions of sophisticated DSP
algorithms; homomorphic processing is filled with subtle details. For example,
the logarithm must be able to handle both negative and positive values in the
input signal, since this is a characteristic of audio signals. This requires the
use of the complex logarithm, a more advanced concept than the logarithm
used in everyday science and engineering. When the linear filtering is
restricted to be a zero phase filter, the complex log is found by taking the
simple logarithm of the absolute value of the signal. After passing through the
zero phase filter, the sign of the original signal is reapplied to the filtered
signal.

Another problem is aliasing that occurs when the logarithm is taken. For
example, imagine digitizing a continuous sine wave. In accordance with the
sampling theorem, two or more samples per cycle is sufficient. Now consider
digitizing the logarithm of this continuous sine wave. The sharp corners
require many more samples per cycle to capture the waveform, i.e., to prevent
aliasing. The required sampling rate can easily be 100 times as great after the
log, as before. Further, it doesn't matter if the logarithm is applied to the
continuous signal, or to its digital representation; the result is the same.
Aliasing will result unless the sampling rate is high enough to capture the sharp
corners produced by the nonlinearity. The result is that audio signals may need
to be sampled at 100 kHz or more, instead of only the standard 8 kHz.

Even if these details are handled, there is no guarantee that the linearized
signals can be separated by the linear filter. This is because the spectra of the
linearized signals can overlap, even if the spectra of the original signals do not.
 For instance, imagine adding two sine waves, one at 1 kHz, and one at 2 kHz.
Since these signals do not overlap in the frequency domain, they can be
completely separated by linear filtering. Now imagine that these two sine
waves are multiplied. Using homomorphic processing, the log is taken of the
combined signal, resulting in the log of one sine wave plus the log of the other
sine wave. The problem is, the logarithm of a sine wave contains many
harmonics. Since the harmonics from the two signals overlap, their complete
separation is not possible.

In spite of these obstacles, homomorphic processing teaches an important
lesson: signals should be processed in a manner consistent with how they are
formed. Put another way, the first step in any DSP task is to understand how
information is represented in the signals being processed.

373

CHAPTER

23 Image Formation & Display

Images are a description of how a parameter varies over a surface. For example, standard visual
images result from light intensity variations across a two-dimensional plane. However, light is
not the only parameter used in scientific imaging. For example, an image can be formed of the
temperature of an integrated circuit, blood velocity in a patient's artery, x-ray emission from a
distant galaxy, ground motion during an earthquake, etc. These exotic images are usually
converted into conventional pictures (i.e., light images), so that they can be evaluated by the
human eye. This first chapter on image processing describes how digital images are formed and
presented to human observers.

Digital Image Structure
Figure 23-1 illustrates the structure of a digital image. This example image is
of the planet Venus, acquired by microwave radar from an orbiting space
probe. Microwave imaging is necessary because the dense atmosphere blocks
visible light, making standard photography impossible. The image shown is
represented by 40,000 samples arranged in a two-dimensional array of 200
columns by 200 rows. Just as with one-dimensional signals, these rows and
columns can be numbered 0 through 199, or 1 through 200. In imaging jargon,
each sample is called a pixel, a contraction of the phrase: picture element.
Each pixel in this example is a single number between 0 and 255. When the
image was acquired, this number related to the amount of microwave energy
being reflected from the corresponding location on the planet's surface. To
display this as a visual image, the value of each pixel is converted into a
grayscale, where 0 is black, 255 is white, and the intermediate values are
shades of gray.

Images have their information encoded in the spatial domain, the image
equivalent of the time domain. In other words, features in images are
represented by edges, not sinusoids. This means that the spacing and
number of pixels are determined by how small of features need to be seen,

The Scientist and Engineer's Guide to Digital Signal Processing374

rather than by the formal constraints of the sampling theorem. Aliasing can
occur in images, but it is generally thought of as a nuisance rather than a major
problem. For instance, pinstriped suits look terrible on television because the
repetitive pattern is greater than the Nyquist frequency. The aliased
frequencies appear as light and dark bands that move across the clothing as the
person changes position.

A "typical" digital image is composed of about 500 rows by 500 columns. This
is the image quality encountered in television, personal computer applications,
and general scientific research. Images with fewer pixels, say 250 by 250, are
regarded as having unusually poor resolution. This is frequently the case with
new imaging modalities; as the technology matures, more pixels are added.
These low resolution images look noticeably unnatural, and the individual
pixels can often be seen. On the other end, images with more than 1000 by
1000 pixels are considered exceptionally good. This is the quality of the best
computer graphics, high-definition television, and 35 mm motion pictures.
There are also applications needing even higher resolution, requiring several
thousand pixels per side: digitized x-ray images, space photographs, and glossy
advertisements in magazines.

The strongest motivation for using lower resolution images is that there are
fewer pixels to handle. This is not trivial; one of the most difficult problems
in image processing is managing massive amounts of data. For example, one
second of digital audio requires about eight kilobytes. In comparison, one
second of television requires about eight Megabytes. Transmitting a 500 by
500 pixel image over a 33.6 kbps modem requires nearly a minute! Jumping
to an image size of 1000 by 1000 quadruples these problems.

It is common for 256 gray levels (quantization levels) to be used in image
processing, corresponding to a single byte per pixel. There are several reasons
for this. First, a single byte is convenient for data management, since this is
how computers usually store data. Second, the large number of pixels in an
image compensate to a certain degree for a limited number of quantization
steps. For example, imagine a group of adjacent pixels alternating in value
between digital numbers (DN) 145 and 146. The human eye perceives the
region as a brightness of 145.5. In other words, images are very dithered.
Third, and most important, a brightness step size of 1/256 (0.39%) is smaller
than the eye can perceive. An image presented to a human observer will not
be improved by using more than 256 levels.

However, some images need to be stored with more than 8 bits per pixel.
Remember, most of the images encountered in DSP represent nonvisual
parameters. The acquired image may be able to take advantage of more
quantization levels to properly capture the subtle details of the signal. The
point of this is, don't expect to human eye to see all the information contained
in these finely spaced levels. We will consider ways around this problem
during a later discussion of brightness and contrast.

The value of each pixel in the digital image represents a small region in the
continuous image being digitized. For example, imagine that the Venus

Chapter 23- Image Formation and Display 375

FIGURE 23-1
Digital image structure. This example
image is the planet Venus, as viewed in
reflected microwaves. Digital images
are represented by a two-dimensional
array of numbers, each called a pixel. In
this image, the array is 200 rows by 200
columns, with each pixel a number
between 0 to 255. When this image was
acquired, the value of each pixel
corresponded to the level of reflected
microwave energy. A grayscale image
is formed by assigning each of the 0 to
255 values to varying shades of gray.

183 183 181 184 177 200 200 189 159 135 94 105 160 174 191 196

186 195 190 195 191 205 216 206 174 153 112 80 134 157 174 196

194 196 198 201 206 209 215 216 199 175 140 77 106 142 170 186

184 212 200 204 201 202 214 214 214 205 173 102 84 120 134 159

202 215 203 179 165 165 199 207 202 208 197 129 73 112 131 146

203 208 166 159 160 168 166 157 174 211 204 158 69 79 127 143

174 149 143 151 156 148 146 123 118 203 208 162 81 58 101 125

143 137 147 153 150 140 121 133 157 184 203 164 94 56 66 80

164 165 159 179 188 159 126 134 150 199 174 119 100 41 41 58

173 187 193 181 167 151 162 182 192 175 129 60 88 47 37 50

172 184 179 153 158 172 163 207 205 188 127 63 56 43 42 55

156 191 196 159 167 195 178 203 214 201 143 101 69 38 44 52

154 163 175 165 207 211 197 201 201 199 138 79 76 67 51 53

144 150 143 162 215 212 211 209 197 198 133 71 69 77 63 53

140 151 150 185 215 214 210 210 211 209 135 80 45 69 66 60

135 143 151 179 213 216 214 191 201 205 138 61 59 61 77 63

150 155 160 165
Column

100 150 199500

150 155 160 165
Column

Column

R
ow

55
50

65
60

50
55

60
65

10
0

0
50

15
0

19
9

R
ow

R
ow

probe takes samples every 10 meters along the planet's surface as it orbits
overhead. This defines a square sample spacing and sampling grid, with
each pixel representing a 10 meter by 10 meter area. Now, imagine what
happens in a single microwave reflection measurement. The space probe emits

The Scientist and Engineer's Guide to Digital Signal Processing376

a highly focused burst of microwave energy, striking the surface in, for
example, a circular area 15 meters in diameter. Each pixel therefore
contains information about this circular area, regardless of the size of the
sampling grid.

This region of the continuous image that contributes to the pixel value is called
the sampling aperture. The size of the sampling aperture is often related to
the inherent capabilities of the particular imaging system being used. For
example, microscopes are limited by the quality of the optics and the
wavelength of light, electronic cameras are limited by random electron diffusion
in the image sensor, and so on. In most cases, the sampling grid is made
approximately the same as the sampling aperture of the system. Resolution in
the final digital image will be limited primary by the larger of the two, the
sampling grid or the sampling aperture. We will return to this topic in Chapter
25 when discussing the spatial resolution of digital images.

Color is added to digital images by using three numbers for each pixel,
representing the intensity of the three primary colors: red, green and blue.
Mixing these three colors generates all possible colors that the human eye can
perceive. A single byte is frequently used to store each of the color
intensities, allowing the image to capture a total of 256×256×256 = 16.8
million different colors.

Color is very important when the goal is to present the viewer with a true
picture of the world, such as in television and still photography. However, this
is usually not how images are used in science and engineering. The purpose
here is to analyze a two-dimensional signal by using the human visual system
as a tool. Black and white images are sufficient for this.

Cameras and Eyes
The structure and operation of the eye is very similar to an electronic camera,
and it is natural to discuss them together. Both are based on two major
components: a lens assembly, and an imaging sensor. The lens assembly
captures a portion of the light emanating from an object, and focus it onto the
imaging sensor. The imaging sensor then transforms the pattern of light into
a video signal, either electronic or neural.

Figure 23-2 shows the operation of the lens. In this example, the image of
an ice skater is focused onto a screen. The term focus means there is a one-
to-one match of every point on the ice skater with a corresponding point on
the screen. For example, consider a 1 mm × 1 mm region on the tip of the
toe. In bright light, there are roughly 100 trillion photons of light striking
this one square mil l imeter area each second. Depending on the
characteristics of the surface, between 1 and 99 percent of these incident
light photons will be reflected in random directions. Only a small portion
of these reflected photons will pass through the lens. For example, only
about one-millionth of the reflected light will pass through a one centimeter
diameter lens located 3 meters from the object.

Chapter 23- Image Formation and Display 377

lens

projected
image

FIGURE 23-2
Focusing by a lens. A lens gathers light expanding from a point source, and force it to return to a
point at another location. This allows a lens to project an image onto a surface.

Refraction in the lens changes the direction of the individual photons,
depending on the location and angle they strike the glass/air interface. These
direction changes cause light expanding from a single point to return to a single
point on the projection screen. All of the photons that reflect from the toe and
pass through the lens are brought back together at the "toe" in the projected
image. In a similar way, a portion of the light coming from any point on the
object will pass through the lens, and be focused to a corresponding point in the
projected image.

Figures 23-3 and 23-4 illustrate the major structures in an electronic camera
and the human eye, respectively. Both are light tight enclosures with a lens
mounted at one end and an image sensor at the other. The camera is filled
with air, while the eye is filled with a transparent liquid. Each lens system has
two adjustable parameters: focus and iris diameter.

If the lens is not properly focused, each point on the object will project to
a circular region on the imaging sensor, causing the image to be blurry. In
the camera, focusing is achieved by physically moving the lens toward or
away from the imaging sensor. In comparison, the eye contains two lenses,
a bulge on the front of the eyeball called the cornea, and an adjustable lens
inside the eye. The cornea does most of the light refraction, but is fixed in
shape and location. Adjustment to the focusing is accomplished by the inner
lens, a flexible structure that can be deformed by the action of the ciliary
muscles. As these muscles contract, the lens flattens to bring the object
into a sharp focus.

In both systems, the iris is used to control how much of the lens is exposed to
light, and therefore the brightness of the image projected onto the imaging
sensor. The iris of the eye is formed from opaque muscle tissue that can be
contracted to make the pupil (the light opening) larger. The iris in a camera
is a mechanical assembly that performs the same function.

The Scientist and Engineer's Guide to Digital Signal Processing378

The parameters in optical systems interact in many unexpected ways. For
example, consider how the amount of available light and the sensitivity of
the light sensor affects the sharpness of the acquired image. This is
because the iris diameter and the exposure time are adjusted to transfer the
proper amount of light from the scene being viewed to the image sensor. If
more than enough light is available, the diameter of the iris can be reduced,
resulting in a greater depth-of-field (the range of distance from the camera
where an object remains in focus). A greater depth-of-field provides a
sharper image when objects are at various distances. In addition, an
abundance of light allows the exposure time to be reduced, resulting in less
blur from camera shaking and object motion. Optical systems are full of
these kinds of trade-offs.

An adjustable iris is necessary in both the camera and eye because the range
of light intensities in the environment is much larger than can be directly
handled by the light sensors. For example, the difference in light intensities
between sunlight and moonlight is about one-million. Adding to this that
reflectance can vary between 1% and 99%, results in a light intensity range of
almost one-hundred million.

The dynamic range of an electronic camera is typically 300 to 1000, defined
as the largest signal that can be measured, divided by the inherent noise of the
device. Put another way, the maximum signal produced is 1 volt, and the rms
noise in the dark is about 1 millivolt. Typical camera lenses have an iris that
change the area of the light opening by a factor of about 300. This results in
a typical electronic camera having a dynamic range of a few hundred thousand.
Clearly, the same camera and lens assembly used in bright sunlight will be
useless on a dark night.

In comparison, the eye operates over a dynamic range that nearly covers the
large environmental variations. Surprisingly, the iris is not the main way that
this tremendous dynamic range is achieved. From dark to light, the area of the
pupil only changes by a factor of about 20. The light detecting nerve cells
gradually adjust their sensitivity to handle the remaining dynamic range. For
instance, it takes several minutes for your eyes to adjust to the low light after
walking into a dark movie theater.

One way that DSP can improve images is by reducing the dynamic range an
observer is required to view. That is, we do not want very light and very
dark areas in the same image. A reflection image is formed from two
image signals: the two-dimensional pattern of how the scene is illuminated,
multiplied by the two-dimensional pattern of reflectance in the scene. The
pattern of reflectance has a dynamic range of less than 100, because all
ordinary materials reflect between 1% and 99% of the incident light. This
is where most of the image information is contained, such as where objects
are located in the scene and what their surface characteristics are. In
comparison, the illumination signal depends on the light sources around the
objects, but not on the objects themselves. The illumination signal can have
a dynamic range of millions, although 10 to 100 is more typical within a
single image. The illumination signal carries little interesting information,

Chapter 23- Image Formation and Display 379

lens

focusiris

CCD

serial output

FIGURE 23-3
Diagram of an electronic camera. Focusing is
achieved by moving the lens toward or away
from the imaging sensor. The amount of
light reaching the sensor is controlled by the
iris, a mechanical device that changes the
effective diameter of the lens. The most
common imaging sensor in present day
cameras is the CCD, a two-dimensional array
of light sensitive elements.

optic
nerve

lens

liquid

muscle
ciliary

iris

cornea retina

fovea

clear

sclera TO EAR

TO NOSE

(top view)
FIGURE 23-4
Diagram of the human eye. The eye is a
liquid filled sphere about 3 cm in diameter,
enclosed by a tough outer case called the
sclera. Focusing is mainly provided by the
cornea, a fixed lens on the front of the eye.
The focus is adjusted by contracting muscles
attached to a flexible lens within the eye.
The amount of light entering the eye is
controlled by the iris, formed from opaque
muscle tissue covering a portion of the lens.
The rear hemisphere of the eye contains the
retina, a layer of light sensitive nerve cells
that converts the image to a neural signal in
the optic nerve.

but can degrade the final image by increasing its dynamic range. DSP can
improve this situation by suppressing the illumination signal, allowing the
reflectance signal to dominate the image. The next chapter presents an approach
for implementing this algorithm.

The light sensitive surface that covers the rear of the eye is called the retina.
As shown in Fig. 23-5, the retina can be divided into three main layers of
specialized nerve cells: one for converting light into neural signals, one for
image processing, and one for transferring information to the optic nerve
leading to the brain. In nearly all animals, these layers are seemingly
backward. That is, the light sensitive cells are in last layer, requiring light to
pass through the other layers before being detected.

There are two types of cells that detect light: rods and cones, named for their
physical appearance under the microscope. The rods are specialized in
operating with very little light, such as under the nighttime sky. Vision appears
very noisy in near darkness, that is, the image appears to be filled with a
continually changing grainy pattern. This results from the image signal being
very weak, and is not a limitation of the eye. There is so little light entering

The Scientist and Engineer's Guide to Digital Signal Processing380

the eye, the random detection of individual photons can be seen. This is called
statistical noise, and is encountered in all low-light imaging, such as military
night vision systems. Chapter 25 will revisit this topic. Since rods cannot
detect color, low-light vision is in black and white.

The cone receptors are specialized in distinguishing color, but can only operate
when a reasonable amount of light is present. There are three types of cones
in the eye: red sensitive, green sensitive, and blue sensitive. This results from
their containing different photopigments, chemicals that absorbs different
wavelengths (colors) of light. Figure 23-6 shows the wavelengths of light that
trigger each of these three receptors. This is called RGB encoding, and is
how color information leaves the eye through the optic nerve. The human
perception of color is made more complicated by neural processing in the lower
levels of the brain. The RGB encoding is converted into another encoding
scheme, where colors are classified as: red or green, blue or yellow, and light
or dark.

RGB encoding is an important limitation of human vision; the wavelengths that
exist in the environment are lumped into only three broad categories. In
comparison, specialized cameras can separate the optical spectrum into
hundreds or thousands of individual colors. For example, these might be used
to classify cells as cancerous or healthy, understand the physics of a distant
star, or see camouflaged soldiers hiding in a forest. Why is the eye so limited
in detecting color? Apparently, all humans need for survival is to find a red
apple, among the green leaves, silhouetted against the blue sky.

Rods and cones are roughly 3 µm wide, and are closely packed over the entire
3 cm by 3 cm surface of the retina. This results in the retina being composed
of an array of roughly 10,000 × 10,000 = 100 million receptors. In
comparison, the optic nerve only has about one-million nerve fibers that
connect to these cells. On the average, each optic nerve fiber is connected to
roughly 100 light receptors through the connecting layer. In addition to
consolidating information, the connecting layer enhances the image by
sharpening edges and suppressing the illumination component of the scene.
This biological image processing will be discussed in the next chapter.

Directly in the center of the retina is a small region called the fovea (Latin for
pit), which is used for high resolution vision (see Fig. 23-4). The fovea is
different from the remainder of the retina in several respects. First, the optic
nerve and interconnecting layers are pushed to the side of the fovea, allowing
the receptors to be more directly exposed to the incoming light. This results in
the fovea appearing as a small depression in the retina. Second, only cones are
located in the fovea, and they are more tightly packed that in the remainder of
the retina. This absence of rods in the fovea explains why night vision is often
better when looking to the side of an object, rather than directly at it. Third,
each optic nerve fiber is influenced by only a few cones, proving good
localization ability. The fovea is surprisingly small. At normal reading
distance, the fovea only sees about a 1 mm diameter area, less than the size of
a single letter! The resolution is equivalent to about a 20×20 grid of pixels
within this region.

Chapter 23- Image Formation and Display 381

optic
nerve

rods and
cones

connecting
layer

optic nerve sclerato brain

light

FIGURE 23-5
The human retina. The retina contains three principle layers: (1) the rod and cone light receptors, (2) an
intermediate layer for data reduction and image processing, and (3) the optic nerve fibers that lead to the brain.
The structure of these layers is seemingly backward, requiring light to pass through the other layers before
reaching the light receptors.

FIGURE 23-6
Spectral response of the eye. The three types
of cones in the human eye respond to
different sections of the optical spectrum,
roughly corresponding to red, green, and
blue. Combinations of these three form all
colors that humans can perceive. The cones
do not have enough sensitivity to be used in
low-light environments, where the rods are
used to detect the image. This is why colors
are difficult to perceive at night.

vi
ol

et

Wavelength (nm)
300 400 500 600 700

0

1

blue cones

green cones

red cones

rods

perception of
wavelength re

d

or
an

ge
ye

llo
w

gr
ee

n

bl
ue

R
el

at
iv

e
se

ns
iti

vi
ty

Human vision overcomes the small size of the fovea by jerky eye movements
called saccades. These abrupt motions allow the high resolution fovea to
rapidly scan the field of vision for pertinent information. In addition, saccades
present the rods and cones with a continually changing pattern of light. This
is important because of the natural ability of the retina to adapt to changing
levels of light intensity. In fact, if the eye is forced to remain fixed on the
same scene, detail and color begin to fade in a few seconds.

The most common image sensor used in electronic cameras is the charge
coupled device (CCD). The CCD is an integrated circuit that replaced most
vacuum tube cameras in the 1980s, just as transistors replaced vacuum tube
amplifiers twenty years before. The heart of the CCD is a thin wafer of

The Scientist and Engineer's Guide to Digital Signal Processing382

silicon, typically about 1 cm square. As shown by the cross-sectional view in
Fig. 23-7, the backside is coated with a thin layer of metal connected to ground
potential. The topside is covered with a thin electrical insulator, and a
repetitive pattern of electrodes. The most common type of CCD is the three
phase readout, where every third electrode is connected together. The silicon
used is called p-type, meaning it has an excess of positive charge carriers
called holes. For this discussion, a hole can be thought of as a positively
charged particle that is free to move around in the silicon. Holes are
represented in this figure by the "+" symbol.

In (a), +10 volts is applied to one of the three phases, while the other two are
held at 0 volts. This causes the holes to move away from every third electrode,
since positive charges are repelled by a positive voltage. This forms a region
under these electrodes called a well, a shortened version of the physics term:
potential well.

Each well in the CCD is a very efficient light sensor. As shown in (b), a
single photon of light striking the silicon converts its energy into the formation
of two charged particles, one electron, and one hole. The hole moves away,
leaving the electron stuck in the well, held by the positive voltage on the
electrode. Electrons in this illustration are represented by the "-" symbol.
During the integration period, the pattern of light striking the CCD is
transferred into a pattern of charge within the CCD wells. Dimmer light
sources require longer integration periods. For example, the integration period
for standard television is 1/60th of a second, while astrophotography can
accumulate light for many hours.

Readout of the electronic image is quite clever; the accumulated electrons in
each well are pushed to the output amplifier. As shown in (c), a positive
voltage is placed on two of the phase lines. This results in each well expanding
to the right. As shown in (d), the next step is to remove the voltage from the
first phase, causing the original wells to collapse. This leaves the accumulated
electrons in one well to the right of where they started. By repeating this
pulsing sequence among the three phase lines, the accumulated electrons are
pushed to the right until they reach a charge sensitive amplifier. This is a
fancy name for a capacitor followed by a unity gain buffer. As the electrons
are pushed from the last well, they flow onto the capacitor where they produce
a voltage. To achieve high sensitivity, the capacitors are made extremely
small, usually less than 1 DF. This capacitor and amplifier are an integral part
of the CCD, and are made on the same piece of silicon. The signal leaving the
CCD is a sequence of voltage levels proportional to the amount of light that has
fallen on sequential wells.

Figure 23-8 shows how the two-dimensional image is read from the CCD.
After the integration period, the charge accumulated in each well is moved up
the column, one row at a time. For example, all the wells in row 15 are first
moved into row 14, then row 13, then row 12, etc. Each time the rows are
moved up, all the wells in row number 1 are transferred into the horizontal
register. This is a group of specialized CCD wells that rapidly move the
charge in a horizontal direction to the charge sensitive amplifier.

Chapter 23- Image Formation and Display 383

+ +
+
+ +

+

+

+
+
+ +

+

+
+
+

+

+ +

+
+

+
+

+
+
+

+
+

+
+ +

+
+

+
+

+
+

+
+

+ +
+

+

+

+

+

+
+

+
+
+

+
+

+

+
+ +

+ +
+
+
+

+

+
+ +

+
+
+

+ +

+

+
+

+ ++ +

+
+
+

+
+

+
+ + +

+

+

+
+
+

++
+

+

+

+

+
+
+ +
+

+
+ +

+
++

+++

N1 (0v)
N2 (0v)

N3 (10v)

+
+

+
+ +

+

+

+
+
+ +

+

+
+
+

+

+ +

+
+

+
+

+
+
+

+
+

+
++

+
+

+
++

+
+

+
+

+ +
+

+

+

+

+

+
+

+
+
+

+
+

+

+
+ +

+ +
+
+
+

+

+
+ +

+
+

+

+ +
+

+

+
+

+ ++ +

+
+
+

++
+
+ + +

+

+

+
+
+

++
+

+

+

+

+
+
+ +
+

+
+ +

+
++

+++

N1 (10v)
N2 (0v)

N3 (10v)

+ +
+
+ +

+

+

+
+
+ +

+

+
+
+

+

+ +

+
+

+
+

+
+
+

+
+

+
++

++

+
++

+
+

+
+

+ +
+

+

+

+

+

+
+

+
+
+

+
+

+

+
+ +

+ +
+
+
+

+

+
+

+
+

+

+ +
+

+

+
+

+ ++ +

+
+
+

+
+

+
+ + +

+

+

+
+
+

++
+

+

+

+

+
+
+ +
+

+
+ +

+
++

+++

N1 (10v)
N2 (0v)

N3 (0v)

+ +
+
+ +

+

+

+
+
+ +

+

+
+
+

+

+ +

+
+

+
+

+
+
+

+
+

+
++

++

+
++

+
+

+
+

+ +
+

+

+

+

+

+
+

+
+
+

+
+

+

+
+ +

+ +
+
+
+

+

+
+ +

+
+

+

+ +
+

+

+
+

+ ++ +

+
+
+

+
+

+
+ + +

+

+

+
+
+

++

+

+

+

+

+
+

+ +
+

+ + +

+
++

+++

N1 (10v)
N2 (0v)

N3 (0v)

a.

b.

c.

d.

output
amplifier

grounded back surface
p type silicon

well
electrodeinsulator

+

light photon

FIGURE 23-7
Operation of the charge coupled device (CCD). As shown in this cross-sectional view, a thin sheet of p-type silicon is
covered with an insulating layer and an array of electrodes. The electrodes are connected in groups of three, allowing
three separate voltages to be applied: N1, N2, and N3. When a positive voltage is applied to an electrode, the holes (i.e.,
the positive charge carriers indicated by the "+") are pushed away. This results in an area depleted of holes, called a well.
Incoming light generates holes and electrons, resulting in an accumulation of electrons confined to each well (indicated
by the "-"). By manipulating the three electrode voltages, the electrons in each well can be moved to the edge of the
silicon where a charge sensitive amplifier converts the charge into a voltage.

The Scientist and Engineer's Guide to Digital Signal Processing384

horizontal
register
row 1
row 2

last row

column 1
column 2 last column

serial
video
output

FIGURE 23-8
Architecture of the CCD. The imaging wells of the CCD are arranged in columns. During readout, the charge
from each well is moved up the column into a horizontal register. The horizontal register is then readout into
the charge sensitive preamplifier.

Notice that this architecture converts a two-dimensional array into a serial data
stream in a particular sequence. The first pixel to be read is at the top-left
corner of the image. The readout then proceeds from left-to-right on the first
line, and then continues from left-to-right on subsequent lines. This is called
row major order, and is almost always followed when a two-dimensional
array (image) is converted to sequential data.

Television Video Signals
Although over 50 years old, the standard television signal is still one of the
most common way to transmit an image. Figure 23-9 shows how the
television signal appears on an oscilloscope. This is called composite
video, meaning that there are vertical and horizontal synchronization (sync)
pulses mixed with the actual picture information. These pulses are used in
the television receiver to synchronize the vertical and horizontal deflection
circuits to match the video being displayed. Each second of standard video
contains 30 complete images, commonly called frames. A video engineer
would say that each frame contains 525 lines, the television jargon for what
programmers call rows. This number is a little deceptive because only 480
to 486 of these lines contain video information; the remaining 39 to 45 lines
are reserved for sync pulses to keep the television's circuits synchronized
with the video signal.

Standard television uses an interlaced format to reduce flicker in the
displayed image. This means that all the odd lines of each frame are
transmitted first, followed by the even lines. The group of odd lines is called
the odd field, and the group of even lines is called the even field. Since

Chapter 23- Image Formation and Display 385

0.25

0.50

0.75

-0.25

0.00

vertical
sync pulses line 1 line 3 line 5 line 2 line 4line 485

horizontal sync pulses

vertical
sync pulses

ODD FIELD EVEN FIELD
Si

gn
al

 le
ve

l (
vo

lts
)

FIGURE 23-9
Composite video. The NTSC video signal consists of 30 complete frames (images) per second, with each
frame containing 480 to 486 lines of video. Each frame is broken into two fields, one containing the odd lines
and the other containing the even lines. Each field starts with a group of vertical sync pulses, followed by
successive lines of video information separated by horizontal sync pulses. (The horizontal axis of this figure
is not drawn to scale).

each frame consists of two fields, the video signal transmits 60 fields per
second. Each field starts with a complex series of vertical sync pulses
lasting 1.3 milliseconds. This is followed by either the even or odd lines of
video. Each line lasts for 63.5 microseconds, including a 10.2 microsecond
horizontal sync pulse, separating one line from the next. Within each line,
the analog voltage corresponds to the grayscale of the image, with brighter
values being in the direction away from the sync pulses. This places the
sync pulses beyond the black range. In video jargon, the sync pulses are
said to be blacker than black.

The hardware used for analog-to-digital conversion of video signals is called
a frame grabber. This is usually in the form of an electronics card that plugs
into a computer, and connects to a camera through a coaxial cable. Upon
command from software, the frame grabber waits for the beginning of the next
frame, as indicated by the vertical sync pulses. During the following two
fields, each line of video is sampled many times, typically 512, 640 or 720
samples per line, at 8 bits per sample. These samples are stored in memory as
one row of the digital image.

This way of acquiring a digital image results in an important difference
between the vertical and horizontal directions. Each row in the digital
image corresponds to one line in the video signal, and therefore to one row
of wells in the CCD. Unfortunately, the columns are not so straight-
forward. In the CCD, each row contains between about 400 and 800 wells
(columns), depending on the particular device used. When a row of wells
is read from the CCD, the resulting line of video is filtered into a smooth
analog signal, such as in Fig. 23-9. In other words, the video signal does
not depend on how many columns are present in the CCD. The resolution
in the horizontal direction is limited by how rapidly the analog signal is
allowed to change. This is usually set at 3.2 MHz for color television,
resulting in a risetime of about 100 nanoseconds, i.e., about 1/500th of the
53.2 microsecond video line.

The Scientist and Engineer's Guide to Digital Signal Processing386

When the video signal is digitized in the frame grabber, it is converted back
into columns. However, these columns in the digitized image have no relation
to the columns in the CCD. The number of columns in the digital image
depends solely on how many times the frame grabber samples each line of
video. For example, a CCD might have 800 wells per row, while the digitized
image might only have 512 pixels (i.e., columns) per row.

The number of columns in the digitized image is also important for another
reason. The standard television image has an aspect ratio of 4 to 3, i.e., it
is slightly wider than it is high. Motion pictures have the wider aspect ratio
of 25 to 9. CCDs used for scientific applications often have an aspect ratio
of 1 to 1, i.e., a perfect square. In any event, the aspect ratio of a CCD is
fixed by the placement of the electrodes, and cannot be altered. However, the
aspect ratio of the digitized image depends on the number of samples per line.
This becomes a problem when the image is displayed, either on a video monitor
or in a hardcopy. If the aspect ratio isn't properly reproduced, the image looks
squashed horizontally or vertically.

The 525 line video signal described here is called NTSC (National Television
Systems Committee), a standard defined way back in 1954. This is the system
used in the United States and Japan. In Europe there are two similar standards
called PAL (Phase Alternation by Line) and SECAM (Sequential
Chrominance And Memory). The basic concepts are the same, just the numbers
are different. Both PAL and SECAM operate with 25 interlaced frames per
second, with 625 lines per frame. Just as with NTSC, some of these lines
occur during the vertical sync, resulting in about 576 lines that carry picture
information. Other more subtle differences relate to how color and sound are
added to the signal.

The most straightforward way of transmitting color television would be to have
three separate analog signals, one for each of the three colors the human eye
can detect: red, green and blue. Unfortunately, the historical development of
television did not allow such a simple scheme. The color television signal was
developed to allow existing black and white television sets to remain in use
without modification. This was done by retaining the same signal for
brightness information, but adding a separate signal for color information. In
video jargon, the brightness is called the luminance signal, while the color is
the chrominance signal. The chrominance signal is contained on a 3.58 MHz
carrier wave added to the black and white video signal. Sound is added in this
same way, on a 4.5 MHz carrier wave. The television receiver separates these
three signals, processes them individually, and recombines them in the final
display.

Other Image Acquisition and Display
Not all images are acquired an entire frame at a time. Another very common
way is by line scanning. This involves using a detector containing a one-
dimensional array of pixels, say, 2048 pixels long by 1 pixel wide. As an
object is moved past the detector, the image is acquired line-by-line. Line

Chapter 23- Image Formation and Display 387

scanning is used by fax machines and airport x-ray baggage scanners. As a
variation, the object can be kept stationary while the detector is moved. This
is very convenient when the detector is already mounted on a moving object,
such as an aircraft taking images of the ground beneath it. The advantage of
line scanning is that speed is traded for detector simplicity. For example, a fax
machine may take several seconds to scan an entire page of text, but the
resulting image contains thousands of rows and columns.

An even more simplified approach is to acquire the image point-by-point.
For example, the microwave image of Venus was acquired one pixel at a
time. Another example is the scanning probe microscope, capable of
imaging individual atoms. A small probe, often consisting of only a single
atom at its tip, is brought exceedingly close to the sample being imaged.
Quantum mechanical effects can be detected between the probe and the
sample, allowing the probe to be stopped an exact distance from the
sample's surface. The probe is then moved over the surface of the sample,
keeping a constant distance, tracing out the peaks and valleys. In the final
image, each pixel's value represents the elevation of the corresponding
location on the sample's surface.

Printed images are divided into two categories: grayscale and halftone.
Each pixel in a grayscale image is a shade of gray between black and white,
such as in a photograph. In comparison, each pixel in a halftone image is
formed from many individual dots, with each dot being completely black or
completely white. Shades of gray are produced by alternating various numbers
of these black and white dots. For example, imagine a laser printer with a
resolution of 600 dots-per-inch. To reproduce 256 levels of brightness between
black and white, each pixel would correspond to an array of 16 by 16 printable
dots. Black pixels are formed by making all of these 256 dots black.
Likewise, white pixels are formed making all of these 256 dots white. Mid-
gray has one-half of the dots white and one-half black. Since the individual
dots are too small to be seen when viewed at a normal distance, the eye is
fooled into thinking a grayscale has been formed.

Halftone images are easier for printers to handle, including photocopy
machines. The disadvantage is that the image quality is often worse than
grayscale pictures.

Brightness and Contrast Adjustments
An image must have the proper brightness and contrast for easy viewing.
Brightness refers to the overall lightness or darkness of the image. Contrast
is the difference in brightness between objects or regions. For example, a
white rabbit running across a snowy field has poor contrast, while a black
dog against the same white background has good contrast. Figure 23-10
shows four possible ways that brightness and contrast can be misadjusted.
When the brightness is too high, as in (a), the whitest pixels are saturated,
destroying the detail in these areas. The reverse is shown in (b), where the
brightness is set too low, saturating the blackest pixels. Figure (c) shows

The Scientist and Engineer's Guide to Digital Signal Processing388

b. Brightness too lowa. Brightness too high

c. Contrast too high d. Contrast too low

FIGURE 23-10
Brightness and contrast adjustments. Increasing the brightness makes every pixel in the image becomes
lighter. In comparison, increasing the contrast makes the light areas become lighter, and the dark areas become
darker. These images show the effect of misadjusting the brightness and contrast.

the contrast set to high, resulting in the blacks being too black, and the whites
being too white. Lastly, (d) has the contrast set too low; all of the pixels are
a mid-shade of gray making the objects fade into each other.

Figures 23-11 and 23-12 illustrate brightness and contrast in more detail. A
test image is displayed in Fig. 23-12, using six different brightness and
contrast levels. Figure 23-11 shows the construction of the test image, an
array of 80×32 pixels, with each pixel having a value between 0 and 255.
The backgound of the test image is filled with random noise, uniformly
distributed between 0 and 255. The three square boxes have pixel values of
75, 150 and 225, from left-to-right. Each square contains two triangles with
pixel values only slightly different from their surroundings. In other

Chapter 23- Image Formation and Display 389

146

154

71

79

221

229

75 150 225

random 0 to 255

80 pixels

32
 p

ix
el

s

FIGURE 23-11
Brightness and contrast test image. This
is the structure of the digital image used
in Fig. 23-12. The three squares form
dark, medium, and bright objects, each
containing two low contrast triangles.
This figure indicates the digital numbers
(DN) of the pixels in each region.

words, there is a dark region in the image with faint detail, this is a medium
region in the image with faint detail, and there is a bright region in the image
with faint detail.

Figure 23-12 shows how adjustment of the contrast and brightness allows
different features in the image to be visualized. In (a), the brightness and
contrast are set at the normal level, as indicated by the B and C slide bars
at the left side of the image. Now turn your attention to the graph shown with
each image, called an output transform, an output look-up table, or a
gamma curve. This controls the hardware that displays the image. The value
of each pixel in the stored image, a number between 0 and 255, is passed
through this look-up table to produces another number between 0 and 255.
This new digital number drives the video intensity circuit, with 0 through 255
being transformed into black through white, respectively. That is, the look-up
table maps the stored numbers into the displayed brightness.

Figure (a) shows how the image appears when the output transform is set to do
nothing, i.e., the digital output is identical to the digital input. Each pixel in
the noisy background is a random shade of gray, equally distributed between
black and white. The three boxes are displayed as dark, medium and light,
clearly distinct from each other. The problem is, the triangles inside each
square cannot be easily seen; the contrast is too low for the eye to distinguished
these regions from their surroundings.

Figures (b) & (c) shows the effect of changing the brightness. Increasing
the brightness shifts the output transform to the left, while decreasing the
brightness shifts it to the right. Increasing the brightness makes every
pixel in the image appear lighter. Conversely, decreasing the brightness
makes every pixel in the image appear darker. These changes can improve
the viewability of excessively dark or light areas in the image, but will
saturate the image if taken too far. For example, all of the pixels in the far
right square in (b) are displayed with full intensity, i.e., 255. The opposite
effect is shown in (c), where all of the pixels in the far left square are
displayed as blackest black, or digital number 0. Since all the pixels in
these regions have the same value, the triangles are completely wiped out.
 Also notice that none of the triangles in (b) and (c) are easier to see than
in (a). Changing the brightness provides little (if any) help in distinguishing
low contrast objects from their surroundings.

The Scientist and Engineer's Guide to Digital Signal Processing390

Figure (d) shows the display optimized to view pixel values around digital
number 75. This is done by turning up the contrast, resulting in the output
transform increasing in slope. For example, the stored pixel values of 71 and
75 become 100 and 116 in the display, making the contrast a factor of four
greater. Pixel values between 46 and 109 are displayed as the blackest black,
to the whitest white. The price for this increased contrast is that pixel values
0 to 45 are saturated at black, and pixel values 110 to 255 are saturated at
white. As shown in (d), the increased contrast allows the triangles in the left
square to be seen, at the cost of saturating the middle and right squares.

Figure (e) shows the effect of increasing the contrast even further, resulting in
only 16 of the possible 256 stored levels being displayed as nonsaturated. The
brightness has also been decreased so that the 16 usable levels are centered on
digital number 150. The details in the center square are now very visible;
however, almost everything else in the image is saturated. For example, look
at the noise around the border of the image. There are very few pixels with an
intermediate gray shade; almost every pixel is either pure black or pure white.
This technique of using high contrast to view only a few levels is sometimes
called a grayscale stretch.

The contrast adjustment is a way of zooming in on a smaller range of pixel
values. The brightness control centers the zoomed section on the pixel values
of interest. Most digital imaging systems allow the brightness and contrast to
be adjusted in just this manner, and often provide a graphical display of the
output transform (as in Fig. 23-12). In comparison, the brightness and contrast
controls on television and video monitors are analog circuits, and may operate
differently. For example, the contrast control of a monitor may adjust the gain
of the analog signal, while the brightness might add or subtract a DC offset.
The moral is, don't be surprised if these analog controls don't respond in the
way you think they should.

Grayscale Transforms
The last image, Fig. 23-12f, is different from the rest. Rather than having a
slope in the curve over one range of input values, it has a slope in the curve
over two ranges. This allows the display to simultaneously show the triangles
in both the left and the right squares. Of course, this results in saturation of
the pixel values that are not near these digital numbers. Notice that the slide
bars for contrast and brightness are not shown in (f); this display is beyond
what brightness and contrast adjustments can provide.

Taking this approach further results in a powerful technique for improving the
appearance of images: the grayscale transform. The idea is to increase the
contrast at pixel values of interest, at the expense of the pixel values we don't
care about. This is done by defining the relative importance of each of the 0
to 255 possible pixel values. The more important the value, the greater its
contrast is made in the displayed image. An example will show a systematic
way of implementing this procedure.

Chapter 23- Image Formation and Display 391

Input value
0 50 100 150 200 250

0

50

100

150

200

250

B
C

a. Normal

B
C

b. Increased brightness

B
C

c. Decreased brightness

B
C

d. Slightly increased
contrast at DN 75

B
C

e. Greatly increased
contrast at DN 150

FIGURE 23-12

f. Increased contrast at
both DN 75 and 225

B
C

Input value
0 50 100 150 200 250

0

50

100

150

200

250

Input value
0 50 100 150 200 250

0

50

100

150

200

250

Input value
0 50 100 150 200 250

0

50

100

150

200

250

Input value
0 50 100 150 200 250

0

50

100

150

200

250

Input value
0 50 100 150 200 250

0

50

100

150

200

250

O
ut

pu
t v

al
ue

O
ut

pu
t v

al
ue

O
ut

pu
t v

al
ue

O
ut

pu
t v

al
ue

O
ut

pu
t v

al
ue

O
ut

pu
t v

al
ue

The Scientist and Engineer's Guide to Digital Signal Processing392

FIGURE 23-13
Grayscale processing. Image (a) was acquired with an infrared camera in total darkness. Brightness in the
image is related to the temperature, accounting for the appearance of the warm human body and the hot truck
grill. Image (b) was processed with the manual grayscale transform shown in Fig. 23-14c.

a. Original IR image b. With grayscale transform

The image in Fig. 23-13a was acquired in total darkness by using a CCD
camera that is sensitive in the far infrared. The parameter being imaged is
temperature: the hotter the object, the more infrared energy it emits and the
brighter it appears in the image. This accounts for the background being very
black (cold), the body being gray (warm), and the truck grill being white (hot).
These systems are great for the military and police; you can see the other guy
when he can't even see himself! The image in (a) is difficult to view because
of the uneven distribution of pixel values. Most of the image is so dark that
details cannot be seen in the scene. On the other end, the grill is near white
saturation.

The histogram of this image is displayed in Fig. 23-14a, showing that the
background, human, and grill have reasonably separate values. In this
example, we will increase the contrast in the background and the grill, at the
expense of everything else, including the human body. Figure (b) represents
this strategy. We declare that the lowest pixel values, the background, will
have a relative contrast of twelve. Likewise, the highest pixel values, the grill,
will have a relative contrast of six. The body will have a relative contrast of
one, with a staircase transition between the regions. All these values are
determined by trial and error.

The grayscale transform resulting from this strategy is shown in (c), labeled
manual. It is found by taking the running sum (i.e., the discrete integral) of the
curve in (b), and then normalizing so that it has a value of 255 at the

Chapter 23- Image Formation and Display 393

Value of pixel
0 50 100 150 200 250

0

200

400

600

800

1000

1200

1400

1600

a. Histogram

human body

background

grill

Value of pixel
0 50 100 150 200 250

0

2

4

6

8

10

12

14

16

b. Desired contrast

Input value
0 50 100 150 200 250

0

50

100

150

200

250

manual

from histogram

c. Output transform

D
is

pl
ay

 v
al

ue
D

es
ire

d
co

nt
ra

st

N
um

be
r o

f p
ix

el
s

FIGURE 23-14
Developing a grayscale transform. Figure (a) is
the histogram of the raw image in Fig. 23-13a. In
(b), a curve is manually generated indicating the
desired contrast at each pixel value. The LUT for
the output transform is then found by integration
and normalization of (b), resulting in the curve
labeled manual in (c). In histogram equalization,
the histogram of the raw image, shown in (a), is
integrated and normalized to find the LUT,
shown in (c).

right side. Why take the integral to find the required curve? Think of it this
way: The contrast at a particular pixel value is equal to the slope of the output
transform. That is, we want (b) to be the derivative (slope) of (c). This means
that (c) must be the integral of (b).

Passing the image in Fig. 23-13a through this manually determined grayscale
transform produces the image in (b). The background has been made lighter,
the grill has been made darker, and both have better contrast. These
improvements are at the expense of the body's contrast, producing a less
detailed image of the intruder (although it can't get much worse than in the
original image).

Grayscale transforms can significantly improve the viewability of an image.
The problem is, they can require a great deal of trial and error. Histogram
equalization is a way to automate the procedure. Notice that the histogram
in (a) and the contrast weighting curve in (b) have the same general shape.
Histogram equalization blindly uses the histogram as the contrast weighing
curve, eliminating the need for human judgement. That is, the output transform
is found by integration and normalization of the histogram, rather than a
manually generated curve. This results in the greatest contrast being given to
those values that have the greatest number of pixels.

The Scientist and Engineer's Guide to Digital Signal Processing394

Histogram equalization is an interesting mathematical procedure because it
maximizes the entropy of the image, a measure of how much information is
transmitted by a fixed number of bits. The fault with histogram equalization
is that it mistakes the shear number of pixels at a certain value with the
importance of the pixels at that value. For example, the truck grill and human
intruder are the most prominent features in Fig. 23-13. In spite of this,
histogram equalization would almost completely ignore these objects because
they contain relatively few pixels. Histogram equalization is quick and easy.
Just remember, if it doesn't work well, a manually generated curve will
probably do much better.

Warping
One of the problems in photographing a planet's surface is the distortion
from the curvature of the spherical shape. For example, suppose you use a
telescope to photograph a square region near the center of a planet, as
illustrated in Fig. 23-15a. After a few hours, the planet will have rotated
on its axis, appearing as in (b). The previously photographed region
appears highly distorted because it is curved near the horizon of the planet.
 Each of the two images contain complete information about the region, just
from a different perspective. It is quite common to acquire a photograph
such as (a), but really want the image to look like (b), or vice versa. For
example, a satellite mapping the surface of a planet may take thousands of
images from straight above, as in (a). To make a natural looking picture of
the entire planet, such as the image of Venus in Fig. 23-1, each image must
be distorted and placed in the proper position. On the other hand, consider
a weather satellite looking at a hurricane that is not directly below it.
There is no choice but to acquire the image obliquely, as in (b). The image
is then converted into how it would appear from above, as in (a).

These spatial transformations are called warping. Space photography is the
most common use for warping, but there are others. For example, many
vacuum tube imaging detectors have various amounts of spatial distortion. This
includes night vision cameras used by the military and x-ray detectors used in
the medical field. Digital warping (or dewarping if you prefer) can be used to
correct the inherent distortion in these devices. Special effects artists for
motion pictures love to warp images. For example, a technique called
morphing gradually warps one object into another over a series of frames.
This can produces illusions such as a child turning into an adult, or a man
turning into a werewolf.

Warping takes the original image (a two-dimensional array) and generates
a warped image (another two-dimensional array). This is done by looping
through each pixel in the warped image and asking: What is the proper
pixel value that should be placed here? Given the particular row and
column being calculated in the warped image, there is a corresponding row
and column in the original image. The pixel value from the original image
is transferred to the warped image to carry out the algorithm. In the jargon
of image processing, the row and column that the pixel comes from in the

Chapter 23- Image Formation and Display 395

N

S

N

S

a. Normal View

b. Oblique View

FIGURE 23-15
Image warping. As shown in (a), a normal view of a small section of a planet appears relatively distortion free.
In comparison, an oblique view presents significant spatial distortion. Warping is the technique of changing
one of these images into the other.

original image is called the comes-from address. Transferring each pixel
from the original to the warped image is the easy part. The hard part is
calculating the comes-from address associated with each pixel in the warped
image. This is usually a pure math problem, and can become quite involved.
Simply stretching the image in the horizontal or vertical direction is easier,
involving only a multiplication of the row and/or column number to find the
comes-from address.

One of the techniques used in warping is subpixel interpolation. For
example, suppose you have developed a set of equations that turns a row and
column address in the warped image into the comes-from address in the original

The Scientist and Engineer's Guide to Digital Signal Processing396

91

210

95

162

row

col

column
14 15

14.5

91 210

95162

150.5

128.5

139.5

FIGURE 23-16
Subpixel interpolation. Subpixel interpolation for image warping is usually accomplished with bilinear
interpolation. As shown in (a), two intermediate values are calculated by linear interpolation in the horizontal
direction. The final value is then found by using linear interpolation in the vertical direction between the
intermediate values. As shown by the three-dimensional illustration in (b), this procedure uniquely defines all
values between the four known pixels at each of the corners.

a. b.

va
lu

e

ro
w 20

.2
20

21

image. Consider what might happen when you try to find the value of the pixel
at row 10 and column 20 in the warped image. You pass the information: row
= 10, column = 20, into your equations, and out pops: comes-from row =
20.2, comes-from column = 14.5. The point being, your calculations will
likely use floating point, and therefore the comes-from addresses will not be
integers. The easiest method to use is the nearest neighbor algorithm, that
is, simply round the addresses to the nearest integer. This is simple, but can
produce a very grainy appearance at the edges of objects where pixels may
appear to be slightly misplaced.

Bilinear interpolation requires a little more effort, but provides significantly
better images. Figure 23-16 shows how it works. You know the value of the
four pixels around the fractional address, i.e., the value of the pixels at row 20
& 21, and column 14 and 15. In this example we will assume the pixels values
are 91, 210, 162 and 95. The problem is to interpolate between these four
values. This is done in two steps. First, interpolate in the horizontal direction
between column 14 and 15. This produces two intermediate values, 150.5 on
line 20, and 128.5 on line 21. Second, interpolate between these intermediate
values in the vertical direction. This produces the bilinear interpolated pixel
value of 139.5, which is then transferred to the warped image. Why interpolate
in the horizontal direction and then the vertical direction instead of the reverse?
It doesn't matter; the final answer is the same regardless of which order is
used.

397

CHAPTER

24 Linear Image Processing

Linear image processing is based on the same two techniques as conventional DSP: convolution
and Fourier analysis. Convolution is the more important of these two, since images have their
information encoded in the spatial domain rather than the frequency domain. Linear filtering can
improve images in many ways: sharpening the edges of objects, reducing random noise, correcting
for unequal illumination, deconvolution to correct for blur and motion, etc. These procedures are
carried out by convolving the original image with an appropriate filter kernel, producing the
filtered image. A serious problem with image convolution is the enormous number of calculations
that need to be performed, often resulting in unacceptably long execution times. This chapter
presents strategies for designing filter kernels for various image processing tasks. Two important
techniques for reducing the execution time are also described: convolution by separability and
FFT convolution.

Convolution
Image convolution works in the same way as one-dimensional convolution. For
instance, images can be viewed as a summation of impulses, i.e., scaled and
shifted delta functions. Likewise, linear systems are characterized by how they
respond to impulses; that is, by their impulse responses. As you should expect,
the output image from a system is equal to the input image convolved with the
system's impulse response.

The two-dimensional delta function is an image composed of all zeros, except
for a single pixel at: row = 0, column = 0, which has a value of one. For now,
assume that the row and column indexes can have both positive and negative
values, such that the one is centered in a vast sea of zeros. When the delta
function is passed through a linear system, the single nonzero point will be
changed into some other two-dimensional pattern. Since the only thing that can
happen to a point is that it spreads out, the impulse response is often called the
point spread function (PSF) in image processing jargon.

The Scientist and Engineer's Guide to Digital Signal Processing398

a. Image at first layer b. Image at third layer

FIGURE 24-1
The PSF of the eye. The middle layer of the retina changes an impulse, shown in (a), into an impulse
surrounded by a dark area, shown in (b). This point spread function enhances the edges of objects.

The human eye provides an excellent example of these concepts. As described
in the last chapter, the first layer of the retina transforms an image represented
as a pattern of light into an image represented as a pattern of nerve impulses.
The second layer of the retina processes this neural image and passes it to the
third layer, the fibers forming the optic nerve. Imagine that the image being
projected onto the retina is a very small spot of light in the center of a dark
background. That is, an impulse is fed into the eye. Assuming that the system
is linear, the image processing taking place in the retina can be determined by
inspecting the image appearing at the optic nerve. In other words, we want to
find the point spread function of the processing. We will revisit the
assumption about linearity of the eye later in this chapter.

Figure 24-1 outlines this experiment. Figure (a) illustrates the impulse striking
the retina while (b) shows the image appearing at the optic nerve. The middle
layer of the eye passes the bright spike, but produces a circular region of
increased darkness. The eye accomplishes this by a process known as lateral
inhibition. If a nerve cell in the middle layer is activated, it decreases the
ability of its nearby neighbors to become active. When a complete image is
viewed by the eye, each point in the image contributes a scaled and shifted
version of this impulse response to the image appearing at the optic nerve. In
other words, the visual image is convolved with this PSF to produce the neural
image transmitted to the brain. The obvious question is: how does convolving
a viewed image with this PSF improve the ability of the eye to understand the
world?

Chapter 24- Linear Image Processing 399

a. True brightness

b. Perceived brightness

FIGURE 24-2
Mach bands. Image processing in the
retina results in a slowly changing edge,
as in (a), being sharpened, as in (b). This
makes it easier to separate objects in the
image, but produces an optical illusion
called Mach bands. Near the edge, the
overshoot makes the dark region look
darker, and the light region look lighter.
This produces dark and light bands that
run parallel to the edge.

Humans and other animals use vision to identify nearby objects, such as
enemies, food, and mates. This is done by distinguishing one region in the
image from another, based on differences in brightness and color. In other
words, the first step in recognizing an object is to identify its edges, the
discontinuity that separates an object from its background. The middle layer
of the retina helps this task by sharpening the edges in the viewed image. As
an illustration of how this works, Fig. 24-2 shows an image that slowly
changes from dark to light, producing a blurry and poorly defined edge. Figure
(a) shows the intensity profile of this image, the pattern of brightness entering
the eye. Figure (b) shows the brightness profile appearing on the optic nerve,
the image transmitted to the brain. The processing in the retina makes the edge
between the light and dark areas appear more abrupt, reinforcing that the two
regions are different.

The overshoot in the edge response creates an interesting optical illusion. Next
to the edge, the dark region appears to be unusually dark, and the light region
appears to be unusually light. The resulting light and dark strips are called
Mach bands, after Ernst Mach (1838-1916), an Austrian physicist who first
described them.

As with one-dimensional signals, image convolution can be viewed in two
ways: from the input, and from the output. From the input side, each pixel in

The Scientist and Engineer's Guide to Digital Signal Processing400

the input image contributes a scaled and shifted version of the point spread
function to the output image. As viewed from the output side, each pixel in
the output image is influenced by a group of pixels from the input signal. For
one-dimensional signals, this region of influence is the impulse response flipped
left-for-right. For image signals, it is the PSF flipped left-for-right and top-
for-bottom. Since most of the PSFs used in DSP are symmetrical around the
vertical and horizonal axes, these flips do nothing and can be ignored. Later
in this chapter we will look at nonsymmetrical PSFs that must have the flips
taken into account.

Figure 24-3 shows several common PSFs. In (a), the pillbox has a circular top
and straight sides. For example, if the lens of a camera is not properly focused,
each point in the image will be projected to a circular spot on the image sensor
(look back at Fig. 23-2 and consider the effect of moving the projection screen
toward or away from the lens). In other words, the pillbox is the point spread
function of an out-of-focus lens.

The Gaussian, shown in (b), is the PSF of imaging systems limited by random
imperfections. For instance, the image from a telescope is blurred by
atmospheric turbulence, causing each point of light to become a Gaussian in the
final image. Image sensors, such as the CCD and retina, are often limited by
the scattering of light and/or electrons. The Central Limit Theorem dictates
that a Gaussian blur results from these types of random processes.

The pillbox and Gaussian are used in image processing the same as the moving
average filter is used with one-dimensional signals. An image convolved with
these PSFs will appear blurry and have less defined edges, but will be lower
in random noise. These are called smoothing filters, for their action in the
time domain, or low-pass filters, for how they treat the frequency domain.
The square PSF, shown in (c), can also be used as a smoothing filter, but it
is not circularly symmetric. This results in the blurring being different in the
diagonal directions compared to the vertical and horizontal. This may or may
not be important, depending on the use.

The opposite of a smoothing filter is an edge enhancement or high-pass
filter. The spectral inversion technique, discussed in Chapter 14, is used to
change between the two. As illustrated in (d), an edge enhancement filter
kernel is formed by taking the negative of a smoothing filter, and adding a
delta function in the center. The image processing which occurs in the retina
is an example of this type of filter.

Figure (e) shows the two-dimensional sinc function. One-dimensional signal
processing uses the windowed-sinc to separate frequency bands. Since images
do not have their information encoded in the frequency domain, the sinc
function is seldom used as an imaging filter kernel, although it does find use
in some theoretical problems. The sinc function can be hard to use because its
tails decrease very slowly in amplitude (), meaning it must be treated as1/x
infinitely wide. In comparison, the Gaussian's tails decrease very rapidly
() and can eventually be truncated with no ill effect.e &x 2

Chapter 24- Linear Image Processing 401

c. Square

-8
-6

-4
-2

0
2

4
6

8

-2
-4

-6
-8

4

3

2

1

0

8
6

4
2

0
colrow

a. Pillbox

-8
-6

-4
-2

0
2

4
6

8

-2
-4

-6
-8

4

3

2

1

0

8
6

4
2

0
colrow

b. Gaussian

-8
-6

-4
-2

0
2

4
6

8

-2
-4

-6
-8

4

3

2

1

0

8
6

4
2

0
colrow

d. Edge enhancement

-8
-6

-4
-2

0
2

4
6

8

-2
-4

-6
-8

4

3

2

1

0

8
6

4
2

0
colrow

e. Sinc

-8
-6

-4
-2

0
2

4
6

8

-2
-4

-6
-8

4

3

2

1

0

8
6

4
2

0
colrow

FIGURE 24-3
Common point spread functions. The pillbox,
Gaussian, and square, shown in (a), (b), & (c),
are common smoothing (low-pass) filters. Edge
enhancement (high-pass) filters are formed by
subtracting a low-pass kernel from an impulse,
as shown in (d). The sinc function, (e), is used
very little in image processing because images
have their information encoded in the spatial
domain, not the frequency domain.

va
lu

e
va

lu
e

va
lu

e
va

lu
e

va
lu

e

All these filter kernels use negative indexes in the rows and columns, allowing
the PSF to be centered at row = 0 and column = 0. Negative indexes are often
eliminated in one-dimensional DSP by shifting the filter kernel to the right until
all the nonzero samples have a positive index. This shift moves the output
signal by an equal amount, which is usually of no concern. In comparison, a
shift between the input and output images is generally not acceptable.
Correspondingly, negative indexes are the norm for filter kernels in image
processing.

The Scientist and Engineer's Guide to Digital Signal Processing402

A problem with image convolution is that a large number of calculations are
involved. For instance, when a 512 by 512 pixel image is convolved with a 64
by 64 pixel PSF, more than a billion multiplications and additions are needed
(i.e.,). The long execution times can make the techniques64×64×512×512
impractical. Three approaches are used to speed things up.

The first strategy is to use a very small PSF, often only 3×3 pixels. This is
carried out by looping through each sample in the output image, using
optimized code to multiply and accumulate the corresponding nine pixels from
the input image. A surprising amount of processing can be achieved with a
mere 3×3 PSF, because it is large enough to affect the edges in an image.

The second strategy is used when a large PSF is needed, but its shape isn't
critical. This calls for a filter kernel that is separable, a property that allows
the image convolution to be carried out as a series of one-dimensional
operations. This can improve the execution speed by hundreds of times.

The third strategy is FFT convolution, used when the filter kernel is large and
has a specific shape. Even with the speed improvements provided by the
highly efficient FFT, the execution time will be hideous. Let's take a closer
look at the details of these three strategies, and examples of how they are used
in image processing.

3×3 Edge Modification
Figure 24-4 shows several 3×3 operations. Figure (a) is an image acquired by
an airport x-ray baggage scanner. When this image is convolved with a 3×3
delta function (a one surrounded by 8 zeros), the image remains unchanged.
While this is not interesting by itself, it forms the baseline for the other filter
kernels.

Figure (b) shows the image convolved with a 3×3 kernel consisting of a one,
a negative one, and 7 zeros. This is called the shift and subtract operation,
because a shifted version of the image (corresponding to the -1) is subtracted
from the original image (corresponding to the 1). This processing produces the
optical illusion that some objects are closer or farther away than the
background, making a 3D or embossed effect. The brain interprets images as
if the lighting is from above, the normal way the world presents itself. If the
edges of an object are bright on the top and dark on the bottom, the object is
perceived to be poking out from the background. To see another interesting
effect, turn the picture upside down, and the objects will be pushed into the
background.

Figure (c) shows an edge detection PSF, and the resulting image. Every
edge in the original image is transformed into narrow dark and light bands
that run parallel to the original edge. Thresholding this image can isolate
either the dark or light band, providing a simple algorithm for detecting the
edges in an image.

Chapter 24- Linear Image Processing 403

FIGURE 24-4
3×3 edge modification. The original image, (a), was acquired on an airport x-ray baggage scanner. The shift and subtract
operation, shown in (b), results in a pseudo three-dimensional effect. The edge detection operator in (c) removes all
contrast, leaving only the edge information. The edge enhancement filter, (d), adds various ratios of images (a) and (c),
determined by the parameter, k. A value of k = 2 was used to create this image.

-k/8-k/8

-k/8

-k/8 -k/8 -k/8

-k/8

k+1

00

0

0 0 0

0

0

1

-1/8-1/8

-1/8

-1/8 -1/8 -1/8

-1/8

-1/8

1

00

0

0 0 -1

0

0

1

-k/8

a. Delta function b. Shift and subtract

c. Edge detection d. Edge enhancement

A common image processing technique is shown in (d): edge enhancement.
This is sometimes called a sharpening operation. In (a), the objects have good
contrast (an appropriate level of darkness and lightness) but very blurry edges.
In (c), the objects have absolutely no contrast, but very sharp edges. The

The Scientist and Engineer's Guide to Digital Signal Processing404

EQUATION 24-1
Image separation. An image is referred to
as separable if it can be decomposed into
horizontal and vertical projections.

x[r,c] ' vert [r] × horz [c]

strategy is to multiply the image with good edges by a constant, k, and add it
to the image with good contrast. This is equivalent to convolving the original
image with the 3×3 PSF shown in (d). If k is set to 0, the PSF becomes a delta
function, and the image is left unchanged. As k is made larger, the image
shows better edge definition. For the image in (d), a value of k = 2 was used:
two parts of image (c) to one part of image (a). This operation mimics the
eye's ability to sharpen edges, allowing objects to be more easily separated
from the background.

Convolution with any of these PSFs can result in negative pixel values
appearing in the final image. Even if the program can handle negative values
for pixels, the image display cannot. The most common way around this is to
add an offset to each of the calculated pixels, as is done in these images. An
alternative is to truncate out-of-range values.

Convolution by Separability
This is a technique for fast convolution, as long as the PSF is separable. A
PSF is said to be separable if it can be broken into two one-dimensional
signals: a vertical and a horizontal projection. Figure 24-5 shows an example
of a separable image, the square PSF. Specifically, the value of each pixel in
the image is equal to the corresponding point in the horizontal projection
multiplied by the corresponding point in the vertical projection. In
mathematical form:

where is the two-dimensional image, and & are the one-x[r,c] vert[r] horz[c]
dimensional projections. Obviously, most images do not satisfy this
requirement. For example, the pillbox is not separable. There are, however,
an infinite number of separable images. This can be understood by generating
arbitrary horizontal and vertical projections, and finding the image that
corresponds to them. For example, Fig. 24-6 illustrates this with profiles that
are double-sided exponentials. The image that corresponds to these profiles is
then found from Eq. 24-1. When displayed, the image appears as a diamond
shape that exponentially decays to zero as the distance from the origin
increases.

In most image processing tasks, the ideal PSF is circularly symmetric, such
as the pillbox. Even though digitized images are usually stored and
processed in the rectangular format of rows and columns, it is desired to
modify the image the same in all directions. This raises the question: is
there a PSF that is circularly symmetric and separable? The answer is, yes,

Chapter 24- Linear Image Processing 405

0

0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0 0 0 0 0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 0 0 0

0

0

1

1

1

1

1

1

1

0

0

0

FIGURE 24-5
Separation of the rectangular PSF. A
PSF is said to be separable if it can be
decomposed into horizontal and vertical
profiles. Separable PSFs are important
because they can be rapidly convolved.

0.0

0.5

1.0

1.5

horz[c]

ve
rt[

r]
1.

0

1.
5

0.
5

0.
0

-32
-24

-16
-8

0
8

16
24

32 -32
-24

-16
-8

0
8

16
24

32

4

3

2

1

0

row col

horz[c]

FIGURE 24-6
Creation of a separable PSF. An infinite number of separable PSFs can be generated by defining arbitrary
projections, and then calculating the two-dimensional function that corresponds to them. In this example, the
profiles are chosen to be double-sided exponentials, resulting in a diamond shaped PSF.

va
lu

e

ve
rt[

r]

The Scientist and Engineer's Guide to Digital Signal Processing406

0.04 0.25 1.11 3.56 8.20 13.5 16.0 13.5 8.20 3.56 1.11 0.25 0.04

 0 0 0 0 0 1 1 1 0 0 0 0 0

 0 0 0 1 2 3 4 3 2 1 0 0 0

 0 0 1 4 9 15 18 15 9 4 1 0 0

 0 2 9 29 67 111 131 111 67 29 9 2 0

 1 3 15 48 111 183 216 183 111 48 15 3 1

 1 4 18 57 131 216 255 216 131 57 18 4 1

 1 3 15 48 111 183 216 183 111 48 15 3 1

 0 2 9 29 67 111 131 111 67 29 9 2 0

 0 0 1 4 9 15 18 15 9 4 1 0 0

 0 0 0 1 2 3 4 3 2 1 0 0 0

 0 0 0 0 0 1 1 1 0 0 0 0 0

0.04

0.25

1.11

3.56

8.20

13.5

16.0

13.5

8.20

3.56

1.11

0.25

0.04

 0 1 4 13 29 48 57 48 29 13 4 1 0

 0 1 4 13 29 48 57 48 29 13 4 1 0

FIGURE 24-7
Separation of the Gaussian. The Gaussian is
the only PSF that is circularly symmetric
and separable. This makes it a common
filter kernel in image processing. 0

5

10

15

20

horz[c]

ve
rt[

r]
1520 10 05

but there is only one, the Gaussian. As is shown in Fig. 24-7, a two-dimensional
Gaussian image has projections that are also Gaussians. The image and
projection Gaussians have the same standard deviation.

To convolve an image with a separable filter kernel, convolve each row in the
image with the horizontal projection, resulting in an intermediate image. Next,
convolve each column of this intermediate image with the vertical projection
of the PSF. The resulting image is identical to the direct convolution of the
original image and the filter kernel. If you like, convolve the columns first and
then the rows; the result is the same.

The convolution of an image with an filter kernel requires a timeN×N M×M
proportional to . In other words, each pixel in the output image dependsN 2M 2

on all the pixels in the filter kernel. In comparison, convolution by separability
only requires a time proportional to . For filter kernels that are hundredsN 2M
of pixels wide, this technique will reduce the execution time by a factor of
hundreds.

Things can get even better. If you are willing to use a rectangular PSF (Fig.
24-5) or a double-sided exponential PSF (Fig. 24-6), the calculations are even
more efficient. This is because the one-dimensional convolutions are the
moving average filter (Chapter 15) and the bidirectional single pole filter

Chapter 24- Linear Image Processing 407

(Chapter 19), respectively. Both of these one-dimensional filters can be
rapidly carried out by recursion. This results in an image convolution time
proportional to only , completely independent of the size of the PSF. InN 2

other words, an image can be convolved with as large a PSF as needed, with
only a few integer operations per pixel. For example, the convolution of a
512×512 image requires only a few hundred milliseconds on a personal
computer. That's fast! Don't like the shape of these two filter kernels?
Convolve the image with one of them several times to approximate a Gaussian
PSF (guaranteed by the Central Limit Theorem, Chapter 7). These are great
algorithms, capable of snatching success from the jaws of failure. They are
well worth remembering.

Example of a Large PSF: Illumination Flattening
A common application requiring a large PSF is the enhancement of images
with unequal illumination. Convolution by separability is an ideal
algorithm to carry out this processing. With only a few exceptions, the
images seen by the eye are formed from reflected light. This means that a
viewed image is equal to the reflectance of the objects multiplied by the
ambient illumination. Figure 24-8 shows how this works. Figure (a)
represents the reflectance of a scene being viewed, in this case, a series of
light and dark bands. Figure (b) illustrates an example illumination signal,
the pattern of light falling on (a). As in the real world, the illumination
slowly varies over the imaging area. Figure (c) is the image seen by the
eye, equal to the reflectance image, (a), multiplied by the illumination
image, (b). The regions of poor illumination are difficult to view in (c) for
two reasons: they are too dark and their contrast is too low (the difference
between the peaks and the valleys).

To understand how this relates to the problem of everyday vision, imagine you
are looking at two identically dressed men. One of them is standing in the
bright sunlight, while the other is standing in the shade of a nearby tree. The
percent of the incident light reflected from both men is the same. For instance,
their faces might reflect 80% of the incident light, their gray shirts 40% and
their dark pants 5%. The problem is, the illumination of the two might be, say,
ten times different. This makes the image of the man in the shade ten times
darker than the person in the sunlight, and the contrast (between the face, shirt,
and pants) ten times less.

The goal of the image processing is to flatten the illumination component
in the acquired image. In other words, we want the final image to be
representative of the objects' reflectance, not the lighting conditions. In
terms of Fig. 24-8, given (c), find (a). This is a nonlinear filtering problem,
since the component images were combined by multiplication, not addition.
While this separation cannot be performed perfectly, the improvement can
be dramatic.

To start, we will convolve image (c) with a large PSF, one-fifth the size of the
entire image. The goal is to eliminate the sharp features in (c), resulting

The Scientist and Engineer's Guide to Digital Signal Processing408

Column number
0 40 80 120 160 200

0

1

Column number
0 40 80 120 160 200

0

1

Column number
0 40 80 120 160 200

0

1

a. Reflectance b. Illumination c. Viewed image

FIGURE 24-8
Model of image formation. A viewed image, (c), results from the multiplication of an illumination
pattern, (b), by a reflectance pattern, (a). The goal of the image processing is to modify (c) to make it
look more like (a). This is performed in Figs. (d), (e) and (f) on the opposite page.

R
ef

le
ct

an
ce

B
rig

ht
ne

ss

Ill
um

in
at

io
n

in an approximation to the original illumination signal, (b). This is where
convolution by separability is used. The exact shape of the PSF is not
important, only that it is much wider than the features in the reflectance image.
Figure (d) is the result, using a Gaussian filter kernel.

Since a smoothing filter provides an estimate of the illumination image, we will
use an edge enhancement filter to find the reflectance image. That is, image
(c) will be convolved with a filter kernel consisting of a delta function minus
a Gaussian. To reduce execution time, this is done by subtracting the smoothed
image in (d) from the original image in (c). Figure (e) shows the result. It
doesn't work! While the dark areas have been properly lightened, the contrast
in these areas is still terrible.

Linear filtering performs poorly in this application because the reflectance and
illumination signals were original combined by multiplication, not addition.
Linear filtering cannot correctly separate signals combined by a nonlinear
operation. To separate these signals, they must be unmultiplied. In other
words, the original image should be divided by the smoothed image, as is
shown in (f). This corrects the brightness and restores the contrast to the
proper level.

This procedure of dividing the images is closely related to homomorphic
processing, previously described in Chapter 22. Homomorphic processing is
a way of handling signals combined through a nonlinear operation. The
strategy is to change the nonlinear problem into a linear one, through an
appropriate mathematical operation. When two signals are combined by

Chapter 24- Linear Image Processing 409

Column number
0 40 80 120 160 200

0

1

Column number
0 40 80 120 160 200

0

1

Column number
0 40 80 120 160 200

0

1

d. Smoothed e. (c) - (d) f. (c)÷(d)

0.5

-0.5

B
rig

ht
ne

ss

B
rig

ht
ne

ss

B
rig

ht
ne

ss

FIGURE 24-8 (continued)
Figure (d) is a smoothed version of (c), used as an approximation to the illumination signal. Figure (e)
shows an approximation to the reflectance image, created by subtracting the smoothed image from the
viewed image. A better approximation is shown in (f), obtained by the nonlinear process of dividing the
two images.

multiplication, homomorphic processing starts by taking the logarithm of the
acquired signal. With the identity: , the problem oflog(a×b) ' log(a) % log(b)
separating multiplied signals is converted into the problem of separating added
signals. For example, after taking the logarithm of the image in (c), a linear
high-pass filter can be used to isolate the logarithm of the reflectance image.
As before, the quickest way to carry out the high-pass filter is to subtract a
smoothed version of the image. The antilogarithm (exponent) is then used to
undo the logarithm, resulting in the desired approximation to the reflectance
image.

Which is better, dividing or going along the homomorphic path? They are
nearly the same, since taking the logarithm and subtracting is equal to dividing.
The only difference is the approximation used for the illumination image. One
method uses a smoothed version of the acquired image, while the other uses a
smoothed version of the logarithm of the acquired image.

This technique of flattening the illumination signal is so useful it has been
incorporated into the neural structure of the eye. The processing in the
middle layer of the retina was previously described as an edge enhancement
or high-pass filter. While this is true, it doesn't tell the whole story. The
first layer of the eye is nonlinear, approximately taking the logarithm of the
incoming image. This makes the eye a homomorphic processor. Just as
described above, the logarithm followed by a linear edge enhancement filter
flattens the illumination component, allowing the eye to see under poor
lighting conditions. Another interesting use of homomorphic processing

The Scientist and Engineer's Guide to Digital Signal Processing410

occurs in photography. The density (darkness) of a negative is equal to the
logarithm of the brightness in the final photograph. This means that any
manipulation of the negative during the development stage is a type of
homomorphic processing.

Before leaving this example, there is a nuisance that needs to be mentioned.
As discussed in Chapter 6, when an N point signal is convolved with an M
point filter kernel, the resulting signal is points long. Likewise, whenN%M&1
an image is convolved with an filter kernel, the result isM×M N×N
an image. The problem is, it is often difficult to manage(M%N&1) × (M%N&1)
a changing image size. For instance, the allocated memory must change, the
video display must be adjusted, the array indexing may need altering, etc. The
common way around this is to ignore it; if we start with a image, we512×512
want to end up with a image. The pixels that do not fit within the512×512
original boundaries are discarded.

While this keeps the image size the same, it doesn't solve the whole problem;
these is still the boundary condition for convolution. For example, imagine
trying to calculate the pixel at the upper-right corner of (d). This is done by
centering the Gaussian PSF on the upper-right corner of (c). Each pixel in (c)
is then multiplied by the corresponding pixel in the overlaying PSF, and the
products are added. The problem is, three-quarters of the PSF lies outside the
defined image. The easiest approach is to assign the undefined pixels a value
of zero. This is how (d) was created, accounting for the dark band around the
perimeter of the image. That is, the brightness smoothly decreases to the pixel
value of zero, exterior to the defined image.

Fortunately, this dark region around the boarder can be corrected (although it
hasn't been in this example). This is done by dividing each pixel in (d) by a
correction factor. The correction factor is the fraction of the PSF that was
immersed in the input image when the pixel was calculated. That is, to correct
an individual pixel in (d), imagine that the PSF is centered on the
corresponding pixel in (c). For example, the upper-right pixel in (c) results
from only 25% of the PSF overlapping the input image. Therefore, correct this
pixel in (d) by dividing it by a factor of 0.25. This means that the pixels in the
center of (d) will not be changed, but the dark pixels around the perimeter will
be brightened. To find the correction factors, imagine convolving the filter
kernel with an image having all the pixel values equal to one. The pixels in
the resulting image are the correction factors needed to eliminate the edge
effect.

Fourier Image Analysis
Fourier analysis is used in image processing in much the same way as with
one-dimensional signals. However, images do not have their information
encoded in the frequency domain, making the techniques much less useful. For
example, when the Fourier transform is taken of an audio signal, the confusing
time domain waveform is converted into an easy to understand frequency

Chapter 24- Linear Image Processing 411

spectrum. In comparison, taking the Fourier transform of an image converts
the straightforward information in the spatial domain into a scrambled form in
the frequency domain. In short, don't expect the Fourier transform to help you
understand the information encoded in images.

Likewise, don't look to the frequency domain for filter design. The basic
feature in images is the edge, the line separating one object or region from
another object or region. Since an edge is composed of a wide range of
frequency components, trying to modify an image by manipulating the
frequency spectrum is generally not productive. Image filters are normally
designed in the spatial domain, where the information is encoded in its simplest
form. Think in terms of smoothing and edge enhancement operations (the
spatial domain) rather than high-pass and low-pass filters (the frequency
domain).

In spite of this, Fourier image analysis does have several useful properties. For
instance, convolution in the spatial domain corresponds to multiplication in the
frequency domain. This is important because multiplication is a simpler
mathematical operation than convolution. As with one-dimensional signals, this
property enables FFT convolution and various deconvolution techniques.
Another useful property of the frequency domain is the Fourier Slice Theorem,
the relationship between an image and its projections (the image viewed from
its sides). This is the basis of computed tomography, an x-ray imaging
technique widely used medicine and industry.

The frequency spectrum of an image can be calculated in several ways, but the
FFT method presented here is the only one that is practical. The original image
must be composed of N rows by N columns, where N is a power of two, i.e.,
256, 512, 1024, etc. If the size of the original image is not a power of two,
pixels with a value of zero are added to make it the correct size. We will call
the two-dimensional array that holds the image the real array. In addition,
another array of the same size is needed, which we will call the imaginary
array.

The recipe for calculating the Fourier transform of an image is quite simple:
take the one-dimensional FFT of each of the rows, followed by the one-
dimensional FFT of each of the columns. Specifically, start by taking the FFT
of the N pixel values in row 0 of the real array. The real part of the FFT's
output is placed back into row 0 of the real array, while the imaginary part of
the FFT's output is placed into row 0 of the imaginary array. After repeating
this procedure on rows 1 through , both the real and imaginary arraysN&1
contain an intermediate image. Next, the procedure is repeated on each of the
columns of the intermediate data. Take the N pixel values from column 0 of
the real array, and the N pixel values from column 0 of the imaginary array,
and calculate the FFT. The real part of the FFT's output is placed back into
column 0 of the real array, while the imaginary part of the FFT's output is
placed back into column 0 of the imaginary array. After this is repeated on
columns 1 through , both arrays have been overwritten with the image'sN&1
frequency spectrum.

The Scientist and Engineer's Guide to Digital Signal Processing412

Since the vertical and horizontal directions are equivalent in an image, this
algorithm can also be carried out by transforming the columns first and then
transforming the rows. Regardless of the order used, the result is the same.
From the way that the FFT keeps track of the data, the amplitudes of the low
frequency components end up being at the corners of the two-dimensional
spectrum, while the high frequencies are at the center. The inverse Fourier
transform of an image is calculated by taking the inverse FFT of each row,
followed by the inverse FFT of each column (or vice versa).

Figure 24-9 shows an example Fourier transform of an image. Figure (a) is the
original image, a microscopic view of the input stage of a 741 op amp
integrated circuit. Figure (b) shows the real and imaginary parts of the
frequency spectrum of this image. Since the frequency domain can contain
negative pixel values, the grayscale values of these images are offset such that
negative values are dark, zero is gray, and positive values are light. The low-
frequency components in an image are normally much larger in amplitude than
the high-frequency components. This accounts for the very bright and dark
pixels at the four corners of (b). Other than this, the spectra of typical images
have no discernable order, appearing random. Of course, images can be
contrived to have any spectrum you desire.

As shown in (c), the polar form of an image spectrum is only slightly easier to
understand. The low-frequencies in the magnitude have large positive values
(the white corners), while the high-frequencies have small positive values (the
black center). The phase looks the same at low and high-frequencies,
appearing to run randomly between -B and B radians.

Figure (d) shows an alternative way of displaying an image spectrum. Since
the spatial domain contains a discrete signal, the frequency domain is
periodic. In other words, the frequency domain arrays are duplicated an
infinite number of times to the left, right, top and bottom. For instance,
imagine a tile wall, with each tile being the magnitude shown in (c).N×N
Figure (d) is also an section of this tile wall, but it straddles four tiles;N×N
the center of the image being where the four tiles touch. In other words, (c)
is the same image as (d), except it has been shifted pixels horizontallyN/2
(either left or right) and pixels vertically (either up or down) in theN/2
periodic frequency spectrum. This brings the bright pixels at the four
corners of (c) together in the center of (d).

Figure 24-10 illustrates how the two-dimensional frequency domain is
organized (with the low-frequencies placed at the corners). Row andN/2
column break the frequency spectrum into four quadrants. For the realN/2
part and the magnitude, the upper-right quadrant is a mirror image of the
lower-left, while the upper-left is a mirror image of the lower-right. This
symmetry also holds for the imaginary part and the phase, except that the
values of the mirrored pixels are opposite in sign. In other words, every
point in the frequency spectrum has a matching point placed symmetrically
on the other side of the center of the image (row and column). OneN/2 N/2
of the points is the positive frequency, while the other is the matching

Chapter 24- Linear Image Processing 413

FIGURE 24-9
Frequency spectrum of an image. The example image,
shown in (a), is a microscopic photograph of the silicon
surface of an integrated circuit. The frequency spectrum
can be displayed as the real and imaginary parts, shown in
(b), or as the magnitude and phase, shown in (c). Figures
(b) & (c) are displayed with the low-frequencies at the
corners and the high-frequencies at the center. Since the
frequency domain is periodic, the display can be rearranged
to reverse these positions. This is shown in (d), where the
magnitude and phase are displayed with the low-frequencies
located at the center and the high-frequencies at the corners.

Real Imaginary

Magnitude Phase

Magnitude Phase

c. Frequency spectrum displayed
in polar form (as the magnitude
and phase).

d. Frequency spectrum displayed
in polar form, with the spectrum
shifted to place zero frequency at
the center.

b. Frequency spectrum displayed
in rectangular form (as the real
and imaginary parts).

a. Image

The Scientist and Engineer's Guide to Digital Signal Processing414

Re X [r,c] ' Re X [N& r,N& c]

Im X [r,c] ' & Im X [N& r,N& c]

EQUATION 24-2
Symmetry of the two-dimensional frequency
domain. These equations can be used in both
formats, when the low-frequencies are
displayed at the corners, or when shifting
places them at the center. In polar form, the
magnitude has the same symmetry as the real
part, while the phase has the same symmetry
as the imaginary part.

negative frequency, as discussed in Chapter 10 for one-dimensional signals. In
equation form, this symmetry is expressed as:

These equations take into account that the frequency spectrum is periodic,
repeating itself every N samples with indexes running from 0 to . In otherN&1
words, should be interpreted as , as , andX [r,N] X [r,0] X [N,c] X [0,c]

 as . This symmetry makes four points in the spectrum matchX [N,N] X [0,0]
with themselves. These points are located at: , , and[0,0] [0,N/2] [N/2,0]

.[N/2,N/2]

Each pair of points in the frequency domain corresponds to a sinusoid in the
spatial domain. As shown in (a), the value at corresponds to the zero[0,0]
frequency sinusoid in the spatial domain, i.e., the DC component of the image.
There is only one point shown in this figure, because this is one of the points
that is its own match. As shown in (b), (c), and (d), other pairs of points
correspond to two-dimensional sinusoids that look like waves on the ocean.
One-dimensional sinusoids have a frequency, phase, and amplitude. Two
dimensional sinusoids also have a direction.

The frequency and direction of each sinusoid is determined by the location of
the pair of points in the frequency domain. As shown, draw a line from each
point to the zero frequency location at the outside corner of the quadrant that
the point is in, i.e., (as indicated by the[0,0], [0,N/2], [N/2,0], or [N/2,N/2]
circles in this figure). The direction of this line determines the direction of the
spatial sinusoid, while its length is proportional to the frequency of the wave.
This results in the low frequencies being positioned near the corners, and the
high frequencies near the center.

When the spectrum is displayed with zero frequency at the center (Fig. 24-9d),
the line from each pair of points is drawn to the DC value at the center of the
image, i.e., [,]. This organization is simpler to understand and workN/2 N/2
with, since all the lines are drawn to the same point. Another advantage of
placing zero at the center is that it matches the frequency spectra of continuous
images. When the spatial domain is continuous, the frequency domain is
aperiodic. This places zero frequency at the center, with the frequency
becoming higher in all directions out to infinity. In general, the frequency
spectra of discrete images are displayed with zero frequency at the center
whenever people will view the data, in textbooks, journal articles, and
algorithm documentation. However, most calculations are carried out with the
computer arrays storing data in the other format (low-frequencies at the
corners). This is because the FFT has this format.

Chapter 24- Linear Image Processing 415

a.

b.

c.

d.

N-1

N/2

0

N-1

N/2

0

N-1

N/2

0

N-1

N/2

0

N-1

0

N-1

0

N-1

0

N-1

0

column
0 N-1N/2

column
0 N-1

column
0 N-1

column
0 N-1

column
0 N-1

column
0 N-1N/2

column
0 N-1N/2

column
0 N-1N/2

Spatial Domain Frequency Domain

FIGURE 24-10
Two-dimensional sinusoids.
Image sine and cosine waves
have both a frequency and a
direction. Four examples are
shown here. These spectra
are displayed with the low-
frequencies at the corners.
The circles in these spectra
show the location of zero
frequency.

ro
w

ro
w

ro
w

ro
w

ro
w

ro
w

ro
w

ro
w

The Scientist and Engineer's Guide to Digital Signal Processing416

Even with the FFT, the time required to calculate the Fourier transform is
a tremendous bottleneck in image processing. For example, the Fourier
transform of a 512×512 image requires several minutes on a personal
computer. This is roughly 10,000 times slower than needed for real time
image processing, 30 frames per second. This long execution time results
from the massive amount of information contained in images. For
comparison, there are about the same number of pixels in a typical image,
as there are words in this book. Image processing via the frequency domain
will become more popular as computers become faster. This is a twenty-
first century technology; watch it emerge!

FFT Convolution
Even though the Fourier transform is slow, it is still the fastest way to
convolve an image with a large filter kernel. For example, convolving a
512×512 image with a 50×50 PSF is about 20 times faster using the FFT
compared with conventional convolution. Chapter 18 discusses how FFT
convolution works for one-dimensional signals. The two-dimensional version
is a simple extension.

We will demonstrate FFT convolution with an example, an algorithm to locate
a predetermined pattern in an image. Suppose we build a system for inspecting
one-dollar bills, such as might be used for printing quality control,
counterfeiting detection, or payment verification in a vending machine. As
shown in Fig. 24-11, a 100×100 pixel image is acquired of the bill, centered
on the portrait of George Washington. The goal is to search this image for a
known pattern, in this example, the 29×29 pixel image of the face. The
problem is this: given an acquired image and a known pattern, what is the most
effective way to locate where (or if) the pattern appears in the image? If you
paid attention in Chapter 6, you know that the solution to this problem is
correlation (a matched filter) and that it can be implemented by using
convolution.

Before performing the actual convolution, there are two modifications that need
to be made to turn the target image into a PSF. These are illustrated in Fig.
24-12. Figure (a) shows the target signal, the pattern we are trying to detect.
In (b), the image has been rotated by 180E, the same as being flipped left-for-
right and then flipped top-for-bottom. As discussed in Chapter 7, when
performing correlation by using convolution, the target signal needs to be
reversed to counteract the reversal that occurs during convolution. We will
return to this issue shortly.

The second modification is a trick for improving the effectiveness of the
algorithm. Rather than trying to detect the face in the original image, it is
more effective to detect the edges of the face in the edges of the original
image. This is because the edges are sharper than the original features,
making the correlation have a sharper peak. This step isn't required, but it
makes the results significantly better. In the simplest form, a 3×3 edge
detection filter is applied to both the original image and the target signal

Chapter 24- Linear Image Processing 417

FIGURE 24-11
Target detection example. The problem is to search the 100×100 pixel image of George Washington,
(a), for the target pattern, (b), the 29×29 pixel face. The optimal solution is correlation, which can be
carried out by convolution.

a. Image to be searched

b. Target

100 pixels

29 pixels

10
0

pi
xe

ls

29
 p

ix
el

s

a. Original b. Rotated c. Edge detection

FIGURE 24-12
Development of a correlation filter kernel. The target signal is shown in (a). In (b) it is rotated by 180E
to undo the rotation inherent in convolution, allowing correlation to be performed. Applying an edge
detection filter results in (c), the filter kernel used for this example.

before the correlation is performed. From the associative property of
convolution, this is the same as applying the edge detection filter to the target
signal twice, and leaving the original image alone. In actual practice, applying
the edge detection 3×3 kernel only once is generally sufficient. This is how (b)
is changed into (c) in Fig. 24-12. This makes (c) the PSF to be used in the
convolution

Figure 24-13 illustrates the details of FFT convolution. In this example, we
will convolve image (a) with image (b) to produce image (c). The fact that
these images have been chosen and preprocessed to implement correlation
is irrelevant; this is a flow diagram of convolution. The first step is to pad
both signals being convolved with enough zeros to make them a power
of two in size, and big enough to hold the final image. For instance, when
images of 100×100 and 29×29 pixels are convolved, the resulting image
will be 128×128 pixels. Therefore, enough zeros must be added to (a) and
(b) to make them each 128×128 pixels in size. If this isn't done, circular

The Scientist and Engineer's Guide to Digital Signal Processing418

convolution takes place and the final image will be distorted. If you are having
trouble understanding these concepts, go back and review Chapter 18, where
the one-dimensional case is discussed in more detail.

The FFT algorithm is used to transform (a) and (b) into the frequency
domain. This results in four 128×128 arrays, the real and imaginary parts
of the two images being convolved. Multiplying the real and imaginary
parts of (a) with the real and imaginary parts of (b), generates the real and
imaginary parts of (c). (If you need to be reminded how this is done, see
Eq. 9-1). Taking the Inverse FFT completes the algorithm by producing the
final convolved image.

The value of each pixel in a correlation image is a measure of how well the
target image matches the searched image at that point. In this particular
example, the correlation image in (c) is composed of noise plus a single bright
peak, indicating a good match to the target signal. Simply locating the
brightest pixel in this image would specify the detected coordinates of the face.
If we had not used the edge detection modification on the target signal, the peak
would still be present, but much less distinct.

While correlation is a powerful tool in image processing, it suffers from a
significant limitation: the target image must be exactly the same size and
rotational orientation as the corresponding area in the searched image. Noise
and other variations in the amplitude of each pixel are relatively unimportant,
but an exact spatial match is critical. For example, this makes the method
almost useless for finding enemy tanks in military reconnaissance photos,
tumors in medical images, and handguns in airport baggage scans. One
approach is to correlate the image multiple times with a variety of shapes and
rotations of the target image. This works in principle, but the execution time
will make you loose interest in a hurry.

A Closer Look at Image Convolution
Let's use this last example to explore two-dimensional convolution in more
detail. Just as with one dimensional signals, image convolution can be
viewed from either the input side or the output side. As you recall from
Chapter 6, the input viewpoint is the best description of how convolution
works, while the output viewpoint is how most of the mathematics and
algorithms are written. You need to become comfortable with both these
ways of looking at the operation.

Figure 24-14 shows the input side description of image convolution. Every
pixel in the input image results in a scaled and shifted PSF being added to
the output image. The output image is then calculated as the sum of all the
contributing PSFs. This illustration show the contribution to the output
image from the point at location [r,c] in the input image. The PSF is
shifted such that pixel [0,0] in the PSF aligns with pixel [r,c] in the output
image. If the PSF is defined with only positive indexes, such as in this
example, the shifted PSF will be entirely to the lower-right of [r,c]. Don't

Chapter 24- Linear Image Processing 419

FIGURE 24-13
Flow diagram of FFT image convolution. The images in (a) and (b) are transformed into the frequency domain
by using the FFT. These two frequency spectra are multiplied, and the Inverse FFT is used to move back into
the spatial domain. In this example, the original images have been chosen and preprocessed to implement
correlation through the action of convolution.

a. Kernel, h[r,c]

b. Image, x[r,c]

c. Correlation, y[r,c]

H[r,c]

X[r,c]

Y[r,c]

Re Im

Re

Re

Im

Im

Spatial Domain Frequency Domain

DFT

DFT

IDFT

×

=

The Scientist and Engineer's Guide to Digital Signal Processing420

0 N-1 0 N-1cc
 column column

Input image Output image

0

r

N-1

0

r

N-1

FIGURE 24-14
Image convolution viewed from the input side. Each pixel in the input image contributes a scaled
and shifted PSF to the output image. The output image is the sum of these contributions. The face
is inverted in this illustration because this is the PSF we are using.

ro
w

ro
w

y[r,c] ' j
M&1

k'0
j
M&1

j'0
h [k, j] x [r&k, c&j]

EQUATION 24-3
Image convolution. The images andx[,]

 are convolved to produce image, .h[,] y[,]
The size of is M×M pixels, with theh[,]
indexes running from 0 to . In thisM&1
equation, an individual pixel in the output
image, , is calculated according to they[r,c]
output side view. The indexes j and k are used
to loop through the rows and columns of h[,]
to calculate the sum-of-products.

be confused by the face appearing upside down in this figure; this upside down
face is the PSF we are using in this example (Fig. 24-13a). In the input side
view, there is no rotation of the PSF, it is simply shifted.

Image convolution viewed from the output is illustrated in Fig. 24-15. Each
pixel in the output image, such as shown by the sample at [r,c], receives a
contribution from many pixels in the input image. The PSF is rotated by 180E
around pixel [0,0], and then shifted such that pixel [0,0] in the PSF is aligned
with pixel [r,c] in the input image. If the PSF only uses positive indexes, it
will be to the upper-left of pixel [r,c] in the input image. The value of the
pixel at [r,c] in the output image is found by multiplying the pixels in the
rotated PSF with the corresponding pixels in the input image, and summing the
products. This procedure is given by Eq. 24-3, and in the program of Table
24-1.

Notice that the PSF rotation resulting from the convolution has undone the
rotation made in the design of the PSF. This makes the face appear upright
in Fig. 24-15, allowing it to be in the same orientation as the pattern being
detected in the input image. That is, we have successfully used convolution
to implement correlation. Compare Fig. 24-13c with Fig. 24-15 to see how
the bright spot in the correlation image signifies that the target has been
detected.

Chapter 24- Linear Image Processing 421

Input image Output image

0 N-1 0 N-1cc
 column column

0

r

N-1

0

r

N-1

FIGURE 24-15
Image convolution viewed from the output side. Each pixel in the output signal is equal to the sum
of the pixels in the rotated PSF multiplied by the corresponding pixels in the input image.

ro
w

ro
w

100 CONVENTIONAL IMAGE CONVOLUTION
110 '
120 DIM X[99,99] 'holds the input image, 100×100 pixels
130 DIM H[28,28] 'holds the filter kernel, 29×29 pixels
140 DIM Y[127,127] 'holds the output image, 128×128 pixels
150 '
160 FOR R% = 0 TO 127 'loop through each row and column in the output
170 FOR C% = 0 TO 127 'image calculating the pixel value via Eq. 24-3
180 '
190 Y[R%,C%] = 0 'zero the pixel so it can be used as an accumulator
200 '
210 FOR J% = 0 TO 28 'multiply each pixel in the kernel by the corresponding
220 FOR K% = 0 TO 28 'pixel in the input image, and add to the accumulator
230 Y[R%,C%] = Y[R%,C%] + H[J%,K%] * X[R%-J%,C%-J%]
240 NEXT K%
250 NEXT J%
260 '
270 NEXT C%
280 NEXT R%
290 '
300 END

 TABLE 24-1

FFT convolution provides the same output image as the conventional
convolution program of Table 24-1. Is the reduced execution time provided by
FFT convolution really worth the additional program complexity? Let's take
a closer look. Figure 24-16 shows an execution time comparison between
conventional convolution using floating point (labeled FP), conventional
convolution using integers (labeled INT), and FFT convolution using floating
point (labeled FFT). Data for two different image sizes are presented,
512×512 and 128×128.

First, notice that the execution time required for FFT convolution does not
depend on the size of the kernel, resulting in flat lines in this graph. On a 100
MHz Pentium personal computer, a 128×128 image can be convolved

The Scientist and Engineer's Guide to Digital Signal Processing422

Kernel width (pixels)

0 10 20 30 40 50

0

1

2

3

4

5

512 × 512

128 × 128

FFT

FFT
INT

FP

FP INT

FIGURE 24-16
Execution time for image convolution. This
graph shows the execution time on a 100 MHz
Pentium processor for three image convolution
methods: conventional convolution carried out
with floating point math (FP), conventional
convolution using integers (INT), and FFT
convolution using floating point (FFT). The
two sets of curves are for input image sizes of
512×512 and 128×128 pixels. Using FFT
convolution, the time depends only on the
image size, and not the size of the kernel. In
contrast, conventional convolution depends on
both the image and the kernel size.

Ex
ec

ut
io

n
tim

e
(m

in
ut

es
)

in about 15 seconds using FFT convolution, while a 512×512 image requires
more than 4 minutes. Adding up the number of calculations shows that the
execution time for FFT convolution is proportional to , for an N×NN 2Log2(N)
image. That is, a 512×512 image requires about 20 times as long as a
128×128 image.

Conventional convolution has an execution time proportional to for anN 2M 2

N×N image convolved with an M×M kernel. This can be understood by
examining the program in Table 24-1. In other words, the execution time for
conventional convolution depends very strongly on the size of the kernel used.
As shown in the graph, FFT convolution is faster than conventional convolution
using floating point if the kernel is larger than about 10×10 pixels. In most
cases, integers can be used for conventional convolution, increasing the break-
even point to about 30×30 pixels. These break-even points depend slightly on
the size of the image being convolved, as shown in the graph. The concept to
remember is that FFT convolution is only useful for large filter kernels.

423

CHAPTER

25 Special Imaging Techniques

This chapter presents four specific aspects of image processing. First, ways to characterize the
spatial resolution are discussed. This describes the minimum size an object must be to be seen
in an image. Second, the signal-to-noise ratio is examined, explaining how faint an object can
be and still be detected. Third, morphological techniques are introduced. These are nonlinear
operations used to manipulate binary images (where each pixel is either black or white). Fourth,
the remarkable technique of computed tomography is described. This has revolutionized medical
diagnosis by providing detailed images of the interior of the human body.

Spatial Resolution
Suppose we want to compare two imaging systems, with the goal of
determining which has the best spatial resolution. In other words, we want to
know which system can detect the smallest object. To simplify things, we
would like the answer to be a single number for each system. This allows a
direct comparison upon which to base design decisions. Unfortunately, a single
parameter is not always sufficient to characterize all the subtle aspects of
imaging. This is complicated by the fact that spatial resolution is limited by
two distinct but interrelated effects: sample spacing and sampling aperture
size. This section contains two main topics: (1) how a single parameter can
best be used to characterize spatial resolution, and (2) the relationship between
sample spacing and sampling aperture size.

Figure 25-1a shows profiles from three circularly symmetric PSFs: the
pillbox, the Gaussian, and the exponential. These are representative of the
PSFs commonly found in imaging systems. As described in the last chapter,
the pillbox can result from an improperly focused lens system. Likewise,
the Gaussian is formed when random errors are combined, such as viewing
stars through a turbulent atmosphere. An exponential PSF is generated
when electrons or x-rays strike a phosphor layer and are converted into

The Scientist and Engineer's Guide to Digital Signal Processing424

Distance
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.00

0.25

0.50

0.75

1.00

1.25

P

E
G

a. PSF

Spatial frequency (lp per unit distance)
0 0.5 1 1.5 2

0.00

0.25

0.50

0.75

1.00

1.25

PGE

b. MTF

FIGURE 25-1
FWHM versus MTF. Figure (a) shows profiles of three PSFs commonly found in imaging systems: (P) pillbox,
(G) Gaussian, and (E) exponential. Each of these has a FWHM of one unit. The corresponding MTFs are
shown in (b). Unfortunately, similar values of FWHM do not correspond to similar MTF curves.

A
m

pl
itu

de

A
m

pl
itu

de

light. This is used in radiation detectors, night vision light amplifiers, and CRT
displays. The exact shape of these three PSFs is not important for this
discussion, only that they broadly represent the PSFs seen in real world
applications.

The PSF contains complete information about the spatial resolution. To express
the spatial resolution by a single number, we can ignore the shape of the PSF
and simply measure its width. The most common way to specify this is by the
Full-Width-at-Half-Maximum (FWHM) value. For example, all the PSFs in
(a) have an FWHM of 1 unit.

Unfortunately, this method has two significant drawbacks. First, it does not
match other measures of spatial resolution, including the subjective judgement
of observers viewing the images. Second, it is usually very difficult to directly
measure the PSF. Imagine feeding an impulse into an imaging system; that is,
taking an image of a very small white dot on a black background. By
definition, the acquired image will be the PSF of the system. The problem is,
the measured PSF will only contain a few pixels, and its contrast will be low.
Unless you are very careful, random noise will swamp the measurement. For
instance, imagine that the impulse image is a 512×512 array of all zeros except
for a single pixel having a value of 255. Now compare this to a normal image
where all of the 512×512 pixels have an average value of about 128. In loose
terms, the signal in the impulse image is about 100,000 times weaker than a
normal image. No wonder the signal-to-noise ratio will be bad; there's hardly
any signal!

A basic theme throughout this book is that signals should be understood in the
domain where the information is encoded. For instance, audio signals should
be dealt with in the frequency domain, while image signals should be handled
in the spatial domain. In spite of this, one way to measure image resolution is
by looking at the frequency response. This goes against the fundamental

Chapter 25- Special Imaging Techniques 425

Pixel number
0 60 120 180 240

0

50

100

150

200

250

Pixel number
0 60 120 180 240

0

50

100

150

200

250
a. Example profile at 12 lp/mm

b. Example profile at 3 lp/mm

40
20

10

5

2

15

30

7

4

3

FIGURE 25-2
Line pair gauge. The line pair gauge is
a tool used to measure the resolution of
imaging systems. A series of black and
white ribs move together, creating a
continuum of spatial frequencies. The
resolution of a system is taken as the
frequency where the eye can no longer
distinguish the individual ribs. This
example line pair gauge is shown
several times larger than the calibrated
scale indicates.

lin
e

pa
irs

 /
m

m

Pi
xe

l v
al

ue
Pi

xe
l v

al
ue

philosophy of this book; however, it is a common method and you need to
become familiar with it.

Taking the two-dimensional Fourier transform of the PSF provides the two-
dimensional frequency response. If the PSF is circularly symmetric, its
frequency response will also be circularly symmetric. In this case, complete
information about the frequency response is contained in its profile. That is,
after calculating the frequency domain via the FFT method, columns 0 to N/2
in row 0 are all that is needed. In imaging jargon, this display of the frequency
response is called the Modulation Transfer Function (MTF). Figure 25-1b
shows the MTFs for the three PSFs in (a). In cases where the PSF is not
circularly symmetric, the entire two-dimensional frequency response contains
information. However, it is usually sufficient to know the MTF curves in the
vertical and horizontal directions (i.e., columns 0 to N/2 in row 0, and rows 0
to N/2 in column 0). Take note: this procedure of extracting a row or column
from the two-dimensional frequency spectrum is not equivalent to taking the
one-dimensional FFT of the profiles shown in (a). We will come back to this
issue shortly. As shown in Fig. 25-1, similar values of FWHM do not
correspond to similar MTF curves.

Figure 25-2 shows a line pair gauge, a device used to measure image
resolution via the MTF. Line pair gauges come in different forms depending
on the particular application. For example, the black and white pattern shown
in this figure could be directly used to test video cameras. For an x-ray
imaging system, the ribs might be made from lead, with an x-ray transparent
material between. The key feature is that the black and white lines have a
closer spacing toward one end. When an image is taken of a line pair gauge,
the lines at the closely spaced end will be blurred together, while at the other
end they will be distinct. Somewhere in the middle the lines will be just barely
separable. An observer looks at the image, identifies this location, and reads
the corresponding resolution on the calibrated scale.

The Scientist and Engineer's Guide to Digital Signal Processing426

The way that the ribs blur together is important in understanding the
limitations of this measurement. Imagine acquiring an image of the line
pair gauge in Fig. 25-2. Figures (a) and (b) show examples of the profiles
at low and high spatial frequencies. At the low frequency, shown in (b),
the curve is flat on the top and bottom, but the edges are blurred, At the
higher spatial frequency, (a), the amplitude of the modulation has been
reduced. This is exactly what the MTF curve in Fig. 25-1b describes:
higher spatial frequencies are reduced in amplitude. The individual ribs
will be distinguishable in the image as long as the amplitude is greater than
about 3% to 10% of the original height. This is related to the eye's ability
to distinguish the low contrast difference between the peaks and valleys in
the presence of image noise.

A strong advantage of the line pair gauge measurement is that it is simple and
fast. The strongest disadvantage is that it relies on the human eye, and
therefore has a certain subjective component. Even if the entire MTF curve is
measured, the most common way to express the system resolution is to quote
the frequency where the MTF is reduced to either 3%, 5% or 10%.
Unfortunately, you will not always be told which of these values is being used;
product data sheets frequently use vague terms such as "limiting resolution."
Since manufacturers like their specifications to be as good as possible
(regardless of what the device actually does), be safe and interpret these
ambiguous terms to mean 3% on the MTF curve.

A subtle point to notice is that the MTF is defined in terms of sine waves,
while the line pair gauge uses square waves. That is, the ribs are uniformly
dark regions separated by uniformly light regions. This is done for
manufacturing convenience; it is very difficult to make lines that have a
sinusoidally varying darkness. What are the consequences of using a square
wave to measure the MTF? At high spatial frequencies, all frequency
components but the fundamental of the square wave have been removed. This
causes the modulation to appear sinusoidal, such as is shown in Fig. 25-2a. At
low frequencies, such as shown in Fig. 25-2b, the wave appears square. The
fundamental sine wave contained in a square wave has an amplitude of 4/B '

1.27 times the amplitude of the square wave (see Table 13-10). The result: the
line pair gauge provides a slight overestimate of the true resolution of the
system, by starting with an effective amplitude of more than pure black to pure
white. Interesting, but almost always ignored.

Since square waves and sine waves are used interchangeably to measure the
MTF, a special terminology has arisen. Instead of the word "cycle," those in
imaging use the term line pair (a dark line next to a light line). For example,
a spatial frequency would be referred to as 25 line pairs per millimeter,
instead of 25 cycles per millimeter.

The width of the PSF doesn't track well with human perception and is
difficult to measure. The MTF methods are in the wrong domain for
understanding how resolution affects the encoded information. Is there a
more favorable alternative? The answer is yes, the line spread function
(LSF) and the edge response. As shown in Fig. 25-3, the line spread

Chapter 25- Special Imaging Techniques 427

a. Line Spread Function (LSF) b. Edge Response

90%

50%

Full Width at
Half Maximum
(FWHM)

10% to 90%
Edge response

10%

FIGURE 25-3
Line spread function and edge response. The line spread function (LSF) is the derivative of the edge response.
The width of the LSF is usually expressed as the Full-Width-at-Half-Maximum (FWHM). The width of the
edge response is usually quoted by the 10% to 90% distance.

function is the response of the system to a thin line across the image.
Similarly, the edge response is how the system responds to a sharp straight
discontinuity (an edge). Since a line is the derivative (or first difference) of an
edge, the LSF is the derivative (or first difference) of the edge response. The
single parameter measurement used here is the distance required for the edge
response to rise from 10% to 90%.

There are many advantages to using the edge response for measuring resolution.
First, the measurement is in the same form as the image information is encoded.
In fact, the main reason for wanting to know the resolution of a system is to
understand how the edges in an image are blurred. The second advantage is
that the edge response is simple to measure because edges are easy to generate
in images. If needed, the LSF can easily be found by taking the first difference
of the edge response.

The third advantage is that all common edges responses have a similar shape,
even though they may originate from drastically different PSFs. This is shown
in Fig. 25-4a, where the edge responses of the pillbox, Gaussian, and
exponential PSFs are displayed. Since the shapes are similar, the 10%-90%
distance is an excellent single parameter measure of resolution. The fourth
advantage is that the MTF can be directly found by taking the one-dimensional
FFT of the LSF (unlike the PSF to MTF calculation that must use a two-
dimensional Fourier transform). Figure 25-4b shows the MTFs corresponding
to the edge responses of (a). In other words, the curves in (a) are converted
into the curves in (b) by taking the first difference (to find the LSF), and then
taking the FFT.

The Scientist and Engineer's Guide to Digital Signal Processing428

Distance
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.00

0.25

0.50

0.75

1.00

1.25

G

P

E

a. Edge response

10% to 90%
distance

Spatial frequency (lp per unit distance)
0 0.5 1 1.5 2

0.00

0.25

0.50

0.75

1.00

1.25

GP

E

b. MTF

Limiting resolution
-10% -3%-5%

FIGURE 25-4
Edge response and MTF. Figure (a) shows the edge responses of three PSFs: (P) pillbox, (G) Gaussian, and
(E) exponential. Each edge response has a 10% to 90% rise distance of 1 unit. Figure (b) shows the
corresponding MTF curves, which are similar above the 10% level. Limiting resolution is a vague term
indicating the frequency where the MTF has an amplitude of 3% to 10%.

A
m

pl
itu

de

A
m

pl
itu

de

The fifth advantage is that similar edge responses have similar MTF curves, as
shown in Figs. 25-4 (a) and (b). This allows us to easily convert between the
two measurements. In particular, a system that has a 10%-90% edge response
of x distance, has a limiting resolution (10% contrast) of about 1 line pair per
x distance. The units of the "distance" will depend on the type of system being
dealt with. For example, consider three different imaging systems that have
10%-90% edge responses of 0.05 mm, 0.2 milliradian and 3.3 pixels. The
10% contrast level on the corresponding MTF curves will occur at about: 20
lp/mm, 5 lp/milliradian and 0.33 lp/pixel, respectively.

Figure 25-5 illustrates the mathematical relationship between the PSF and the
LSF. Figure (a) shows a pillbox PSF, a circular area of value 1, displayed as
white, surrounded by a region of all zeros, displayed as gray. A profile of the
PSF (i.e., the pixel values along a line drawn across the center of the image)
will be a rectangular pulse. Figure (b) shows the corresponding LSF. As
shown, the LSF is mathematically equal to the integrated profile of the PSF.
This is found by sweeping across the image in some direction, as illustrated by
the rays (arrows). Each value in the integrated profile is the sum of the pixel
values along the corresponding ray.

In this example where the rays are vertical, each point in the integrated profile
is found by adding all the pixel values in each column. This corresponds to the
LSF of a line that is vertical in the image. The LSF of a line that is horizontal
in the image is found by summing all of the pixel values in each row. For
continuous images these concepts are the same, but the summations are
replaced by integrals.

As shown in this example, the LSF can be directly calculated from the PSF.
However, the PSF cannot always be calculated from the LSF. This is because
the PSF contains information about the spatial resolution in all directions,
while the LSF is limited to only one specific direction. A system

Chapter 25- Special Imaging Techniques 429

a. Point Spread Function

b. "Integrated" profile of
the PSF (the LSF)

FIGURE 25-5
Relationship between the PSF and LSF. A
pillbox PSF is shown in (a). Any row or
column through the white center will be a
rectangular pulse. Figure (b) shows the
corresponding LSF, equivalent to an
integrated profile of the PSF. That is, the
LSF is found by sweeping across the
image in some direction and adding
(integrating) the pixel values along each
ray. In the direction shown, this is done
by adding all the pixels in each column.

has only one PSF, but an infinite number of LSFs, one for each angle. For
example, imagine a system that has an oblong PSF. This makes the spatial
resolution different in the vertical and horizontal directions, resulting in the
LSF being different in these directions. Measuring the LSF at a single
angle does not provide enough information to calculate the complete PSF
except in the special instance where the PSF is circularly symmetric.
Multiple LSF measurements at various angles make it possible to calculate
a non-circular PSF; however, the mathematics is quite involved and usually
not worth the effort. In fact, the problem of calculating the PSF from a
number of LSF measurements is exactly the same problem faced in
computed tomography, discussed later in this chapter.

As a practical matter, the LSF and the PSF are not dramatically different for
most imaging systems, and it is very common to see one used as an
approximation for the other. This is even more justifiable considering that
there are two common cases where they are identical: the rectangular PSF has
a rectangular LSF (with the same widths), and the Gaussian PSF has a
Gaussian LSF (with the same standard deviations).

These concepts can be summarized into two skills: how to evaluate a
resolution specification presented to you, and how to measure a resolution
specification of your own. Suppose you come across an advertisement
stating: "This system will resolve 40 line pairs per millimeter." You
should interpret this to mean: "A sinusoid of 40 lp/mm will have its
amplitude reduced to 3%-10% of its true value, and will be just barely
visible in the image." You should also do the mental calculation that 40
lp/mm @ 10% contrast is equal to a 10%-90% edge response of 1/(40
lp/mm) = 0.025 mm. If the MTF specification is for a 3% contrast level,
the edge response will be about 1.5 to 2 times wider.

When you measure the spatial resolution of an imaging system, the steps are
carried out in reverse. Place a sharp edge in the image, and measure the

The Scientist and Engineer's Guide to Digital Signal Processing430

resulting edge response. The 10%-90% distance of this curve is the best single
parameter measurement of the system's resolution. To keep your boss and the
marketing people happy, take the first difference of the edge response to find
the LSF, and then use the FFT to find the MTF.

Sample Spacing and Sampling Aperture

Figure 25-6 shows two extreme examples of sampling, which we will call a
perfect detector and a blurry detector. Imagine (a) being the surface of
an imaging detector, such as a CCD. Light striking anywhere inside one of the
square pixels will contribute only to that pixel value, and no others. This is
shown in the figure by the black sampling aperture exactly filling one of the
square pixels. This is an optimal situation for an image detector, because all
of the light is detected, and there is no overlap or crosstalk between adjacent
pixels. In other words, the sampling aperture is exactly equal to the sample
spacing.

The alternative example is portrayed in (e). The sampling aperture is
considerably larger than the sample spacing, and it follows a Gaussian
distribution. In other words, each pixel in the detector receives a contribution
from light striking the detector in a region around the pixel. This should sound
familiar, because it is the output side viewpoint of convolution. From the
corresponding input side viewpoint, a narrow beam of light striking the detector
would contribute to the value of several neighboring pixels, also according to
the Gaussian distribution.

Now turn your attention to the edge responses of the two examples. The
markers in each graph indicate the actual pixel values you would find in an
image, while the connecting lines show the underlying curve that is being
sampled. An important concept is that the shape of this underlying curve is
determined only by the sampling aperture. This means that the resolution in
the final image can be limited in two ways. First, the underlying curve may
have poor resolution, resulting from the sampling aperture being too large.
Second, the sample spacing may be too large, resulting in small details being
lost between the samples. Two edge response curves are presented for each
example, illustrating that the actual samples can fall anywhere along the
underlying curve. In other words, the edge being imaged may be sitting exactly
upon a pixel, or be straddling two pixels. Notice that the perfect detector has
zero or one sample on the rising part of the edge. Likewise, the blurry detector
has three to four samples on the rising part of the edge.

What is limiting the resolution in these two systems? The answer is
provided by the sampling theorem. As discussed in Chapter 3, sampling
captures all frequency components below one-half of the sampling rate,
while higher frequencies are lost due to aliasing. Now look at the MTF
curve in (h). The sampling aperture of the blurry detector has removed all
frequencies greater than one-half the sampling rate; therefore, nothing is
lost during sampling. This means that the resolution of this system is

Chapter 25- Special Imaging Techniques 431

0 1 2 3 4 5 6 7 98

0

1

2

3

4

5

6

7

8

9

Column

a. Sampling grid with
square aperture

Pixel number
0 1 2 3 4 5 6 7 8 9 10 11 12

0

25

50

75

100

b. Edge response

Pixel number
0 1 2 3 4 5 6 7 8 9 10 11 12

0

25

50

75

100

c. Edge response

Spatial Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

1.0
d. MTF

0 1 2 3 4 5 6 7 98

0

1

2

3

4

5

6

7

8

9

Column

e. Sampling grid with
Gaussian aperture

Spatial Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

1.0
h. MTF

Pixel number
0 1 2 3 4 5 6 7 8 9 10 11 12

0

25

50

75

100

f. Edge response

Pixel number
0 1 2 3 4 5 6 7 8 9 10 11 12

0

25

50

75

100

g. Edge response

FIGURE 25-6

Example 1: Perfect detector Example 2: Blurry detector

R
ow

R
ow

Pi
xe

l v
al

ue

Pi
xe

l v
al

ue

Pi
xe

l v
al

ue

Pi
xe

l v
al

ue

A
m

pl
itu

de

A
m

pl
itu

de

The Scientist and Engineer's Guide to Digital Signal Processing432

50% 40% 30% 20% 10% 8% 5% 3% 1%

Contrast

FIGURE 25-7
Contrast detection. The human eye can detect a minimum contrast of about 0.5 to 5%, depending on the
observation conditions. 100% contrast is the difference between pure black and pure white.

completely limited by the sampling aperture, and not the sample spacing. Put
another way, the sampling aperture has acted as an antialias filter, allowing
lossless sampling to take place.

In comparison, the MTF curve in (d) shows that both processes are limiting the
resolution of this system. The high-frequency fall-off of the MTF curve
represents information lost due to the sampling aperture. Since the MTF
curve has not dropped to zero before a frequency of 0.5, there is also
information lost during sampling, a result of the finite sample spacing. Which
is limiting the resolution more? It is difficult to answer this question with a
number, since they degrade the image in different ways. Suffice it to say that
the resolution in the perfect detector (example 1) is mostly limited by the
sample spacing.

While these concepts may seem difficult, they reduce to a very simple rule for
practical usage. Consider a system with some 10%-90% edge response
distance, for example 1 mm. If the sample spacing is greater than 1 mm (there
is less than one sample along the edge), the system will be limited by the
sample spacing. If the sample spacing is less than 0.33 mm (there are more
than 3 samples along the edge), the resolution will be limited by the sampling
aperture. When a system has 1-3 samples per edge, it will be limited by both
factors.

Signal-to-Noise Ratio
An object is visible in an image because it has a different brightness than its
surroundings. That is, the contrast of the object (i.e., the signal) must
overcome the image noise. This can be broken into two classes: limitations of
the eye, and limitations of the data.

Figure 25-7 illustrates an experiment to measure the eye's ability to detect
weak signals. Depending on the observation conditions, the human eye can
detect a minimum contrast of 0.5% to 5%. In other words, humans can
distinguish about 20 to 200 shades of gray between the blackest black and the
whitest white. The exact number depends on a variety of factors, such

Chapter 25- Special Imaging Techniques 433

Column number

Column number

Column number

0.5

1.0

2.0

SNR

FIGURE 25-8
Minimum detectable SNR. An object is visible in an image only if its contrast is large enough to overcome the
random image noise. In this example, the three squares have SNRs of 2.0, 1.0 and 0.5 (where the SNR is
defined as the contrast of the object divided by the standard deviation of the noise).

Pi
xe

l v
al

ue
Pi

xe
l v

al
ue

Pi
xe

l v
al

ue

as the brightness of the ambient lightning, the distance between the two regions
being compared, and how the grayscale image is formed (video monitor,
photograph, halftone, etc.).

The grayscale transform of Chapter 23 can be used to boost the contrast of a
selected range of pixel values, providing a valuable tool in overcoming the
limitations of the human eye. The contrast at one brightness level is increased,
at the cost of reducing the contrast at another brightness level. However, this
only works when the contrast of the object is not lost in random image noise.
This is a more serious situation; the signal does not contain enough information
to reveal the object, regardless of the performance of the eye.

Figure 25-8 shows an image with three squares having contrasts of 5%, 10%,
and 20%. The background contains normally distributed random noise with a
standard deviation of about 10% contrast. The SNR is defined as the contrast
divided by the standard deviation of the noise, resulting in the three squares
having SNRs of 0.5, 1.0 and 2.0. In general, trouble begins when the SNR
falls below about 1.0.

The Scientist and Engineer's Guide to Digital Signal Processing434

The exact value for the minimum detectable SNR depends on the size of the
object; the larger the object, the easier it is to detect. To understand this,
imagine smoothing the image in Fig. 25-8 with a 3×3 square filter kernel. This
leaves the contrast the same, but reduces the noise by a factor of three (i.e., the
square root of the number of pixels in the kernel). Since the SNR is tripled,
lower contrast objects can be seen. To see fainter objects, the filter kernel can
be made even larger. For example, a 5×5 kernel improves the SNR by a factor
of . This strategy can be continued until the filter kernel is equal to the25 ' 5
size of the object being detected. This means the ability to detect an object is
proportional to the square-root of its area. If an object's diameter is doubled,
it can be detected in twice as much noise.

Visual processing in the brain behaves in much the same way, smoothing the
viewed image with various size filter kernels in an attempt to recognize low
contrast objects. The three profiles in Fig. 25-8 illustrate just how good
humans are at detecting objects in noisy environments. Even though the objects
can hardly be identified in the profiles, they are obvious in the image. To
really appreciate the capabilities of the human visual system, try writing
algorithms that operate in this low SNR environment. You'll be humbled by
what your brain can do, but your code can't!

Random image noise comes in two common forms. The first type, shown in
Fig. 25-9a, has a constant amplitude. In other words, dark and light regions in
the image are equally noisy. In comparison, (b) illustrates noise that increases
with the signal level, resulting in the bright areas being more noisy than the
dark ones. Both sources of noise are present in most images, but one or the
other is usually dominant. For example, it is common for the noise to decrease
as the signal level is decreased, until a plateau of constant amplitude noise is
reached.

A common source of constant amplitude noise is the video preamplifier. All
analog electronic circuits produce noise. However, it does the most harm
where the signal being amplified is at its smallest, right at the CCD or other
imaging sensor. Preamplifier noise originates from the random motion of
electrons in the transistors. This makes the noise level depend on how the
electronics are designed, but not on the level of the signal being amplified. For
example, a typical CCD camera will have an SNR of about 300 to 1000 (40
to 60 dB), defined as the full scale signal level divided by the standard
deviation of the constant amplitude noise.

Noise that increases with the signal level results when the image has been
represented by a small number of individual particles. For example, this
might be the x-rays passing through a patient, the light photons entering a
camera, or the electrons in the well of a CCD. The mathematics governing
these variations are called counting statistics or Poisson statistics.
Suppose that the face of a CCD is uniformly illuminated such that an average
of 10,000 electrons are generated in each well. By sheer chance, some wells
will have more electrons, while some will have less. To be more exact, the
number of electrons will be normally distributed with a mean of 10,000, with
some standard deviation that describes how much variation there is from

Chapter 25- Special Imaging Techniques 435

Column number

Column number

a. Constant amplitude noise

b. Noise dependent on signal level

FIGURE 25-9
Image noise. Random noise in images takes two general forms. In (a), the amplitude of the noise remains constant
as the signal level changes. This is typical of electronic noise. In (b), the amplitude of the noise increases as the
square-root of the signal level. This type of noise originates from the detection of a small number of particles, such
as light photons, electrons, or x-rays.

Pi
xe

l v
al

ue
Pi

xe
l v

al
ue

F ' N

SNR ' N

EQUATION 25-1
Poisson statistics. In a Poisson distributed
signal, the mean, µ, is the average number
of individual particles, N. The standard
deviation, F, is equal to the square-root of
the average number of individual particles.
The signal-to-noise ratio (SNR) is the mean
divided by the standard deviation.

µ ' N

well-to-well. A key feature of Poisson statistics is that the standard deviation
is equal to the square-root of the number of individual particles. That is, if
there are N particles in each pixel, the mean is equal to N and the standard
deviation is equal to . This makes the signal-to-noise ratio equal to ,N N/ N
or simply, . In equation form:N

In the CCD example, the standard deviation is . Likewise the10,000 ' 100
signal-to-noise ratio is also . If the average number of electrons10,000 ' 100
per well is increased to one million, both the standard deviation and the SNR
increase to 1,000. That is, the noise becomes larger as the signal becomes

The Scientist and Engineer's Guide to Digital Signal Processing436

larger, as shown in Fig. 25-9b. However, the signal is becoming larger
faster than the noise, resulting in an overall improvement in the SNR.
Don't be confused into thinking that a lower signal will provide less noise
and therefore better information. Remember, your goal is not to reduce the
noise, but to extract a signal from the noise. This makes the SNR the key
parameter.

Many imaging systems operate by converting one particle type to another. For
example, consider what happens in a medical x-ray imaging system. Within an
x-ray tube, electrons strike a metal target, producing x-rays. After passing
through the patient, the x-rays strike a vacuum tube detector known as an
image intensifier. Here the x-rays are subsequently converted into light
photons, then electrons, and then back to light photons. These light photons
enter the camera where they are converted into electrons in the well of a CCD.
In each of these intermediate forms, the image is represented by a finite number
of particles, resulting in added noise as dictated by Eq. 25-1. The final SNR
reflects the combined noise of all stages; however, one stage is usually
dominant. This is the stage with the worst SNR because it has the fewest
particles. This limiting stage is called the quantum sink.

In night vision systems, the quantum sink is the number of light photons that
can be captured by the camera. The darker the night, the noisier the final
image. Medical x-ray imaging is a similar example; the quantum sink is the
number of x-rays striking the detector. Higher radiation levels provide less
noisy images at the expense of more radiation to the patient.

When is the noise from Poisson statistics the primary noise in an image? It is
dominant whenever the noise resulting from the quantum sink is greater than
the other sources of noise in the system, such as from the electronics. For
example, consider a typical CCD camera with an SNR of 300. That is, the
noise from the CCD preamplifier is 1/300th of the full scale signal. An
equivalent noise would be produced if the quantum sink of the system contains
90,000 particles per pixel. If the quantum sink has a smaller number of
particles, Poisson noise will dominate the system. If the quantum sink has a
larger number of particles, the preamplifier noise will be predominant.
Accordingly, most CCD's are designed with a full well capacity of 100,000 to
1,000,000 electrons, minimizing the Poisson noise.

Morphological Image Processing
The identification of objects within an image can be a very difficult task.
One way to simplify the problem is to change the grayscale image into a
binary image, in which each pixel is restricted to a value of either 0 or 1.
The techniques used on these binary images go by such names as: blob
analysis, connectivity analysis, and morphological image processing
(from the Greek word morphe, meaning shape or form). The foundation of
morphological processing is in the mathematically rigorous field of set
theory; however, this level of sophistication is seldom needed. Most
morphological algorithms are simple logic operations and very ad hoc. In

Chapter 25- Special Imaging Techniques 437

a. Original b. Erosion c. Dilation

d. Opening e. Closing
FIGURE 25-10
Morphological operations. Four basic
morphological operations are used in the
processing of binary images: erosion,
dilation, opening, and closing. Figure (a)
shows an example binary image. Figures
(b) to (e) show the result of applying
these operations to the image in (a).

other words, each application requires a custom solution developed by trial-
and-error. This is usually more of an art than a science. A bag of tricks is
used rather than standard algorithms and formal mathematical properties. Here
are some examples.

Figure 25-10a shows an example binary image. This might represent an enemy
tank in an infrared image, an asteroid in a space photograph, or a suspected
tumor in a medical x-ray. Each pixel in the background is displayed as white,
while each pixel in the object is displayed as black. Frequently, binary images
are formed by thresholding a grayscale image; pixels with a value greater than
a threshold are set to 1, while pixels with a value below the threshold are set
to 0. It is common for the grayscale image to be processed with linear
techniques before the thresholding. For instance, illumination flattening
(described in Chapter 24) can often improve the quality of the initial binary
image.

Figures (b) and (c) show how the image is changed by the two most common
morphological operations, erosion and dilation. In erosion, every object pixel
that is touching a background pixel is changed into a background pixel. In
dilation, every background pixel that is touching an object pixel is changed into
an object pixel. Erosion makes the objects smaller, and can break a single
object into multiple objects. Dilation makes the objects larger, and can merge
multiple objects into one.

As shown in (d), opening is defined as an erosion followed by a dilation.
Figure (e) shows the opposite operation of closing, defined as a dilation
followed by an erosion. As illustrated by these examples, opening removes
small islands and thin filaments of object pixels. Likewise, closing removes

The Scientist and Engineer's Guide to Digital Signal Processing438

FIGURE 25-11
Binary skeletonization. The binary image of a fingerprint, (a), contains ridges that are many pixels
wide. The skeletonized version, (b), contains ridges only a single pixel wide.

a. Original fingerprint b. Skeletonized fingerprint

islands and thin filaments of background pixels. These techniques are useful
for handling noisy images where some pixels have the wrong binary value. For
instance, it might be known that an object cannot contain a "hole", or that the
object's border must be smooth.

Figure 25-11 shows an example of morphological processing. Figure (a) is the
binary image of a fingerprint. Algorithms have been developed to analyze
these patterns, allowing individual fingerprints to be matched with those in a
database. A common step in these algorithms is shown in (b), an operation
called skeletonization. This simplifies the image by removing redundant
pixels; that is, changing appropriate pixels from black to white. This results
in each ridge being turned into a line only a single pixel wide.

Tables 25-1 and 25-2 show the skeletonization program. Even though the
fingerprint image is binary, it is held in an array where each pixel can run from
0 to 255. A black pixel is denoted by 0, while a white pixel is denoted by 255.
As shown in Table 25-1, the algorithm is composed of 6 iterations that
gradually erode the ridges into a thin line. The number of iterations is chosen
by trial and error. An alternative would be to stop when an iteration makes no
changes.

During an iteration, each pixel in the image is evaluated for being removable;
the pixel meets a set of criteria for being changed from black to white. Lines
200-240 loop through each pixel in the image, while the subroutine in Table
25-2 makes the evaluation. If the pixel under consideration is not removable,
the subroutine does nothing. If the pixel is removable, the subroutine changes its
value from 0 to 1. This indicates that the pixel is still black, but will be changed
to white at the end of the iteration. After all the pixels have been evaluated,
lines 260-300 change the value of the marked pixels from 1 to 255. This two-stage
process results in the thick ridges being eroded equally from all directions,
rather than a pattern based on how the rows and columns are scanned.

Chapter 25- Special Imaging Techniques 439

100 'SKELETONIZATION PROGRAM
110 'Object pixels have a value of 0 (displayed as black)
120 'Background pixels have a value of 255 (displayed as white)
130 '
140 DIM X%[149,149] 'X%[,] holds the image being processed
150 '
160 GOSUB XXXX 'Mythical subroutine to load X%[,]
170 '
180 FOR ITER% = 0 TO 5 'Run through six iteration loops
190 '
200 FOR R% = 1 TO 148 'Loop through each pixel in the image.
210 FOR C% = 1 TO 148 'Subroutine 5000 (Table 25-2) indicates which
220 GOSUB 5000 'pixels can be changed from black to white,
230 NEXT C% 'by marking the pixels with a value of 1.
240 NEXT R%
250 '
260 FOR R% = 0 TO 149 'Loop through each pixel in the image changing
270 FOR C% = 0 TO 149 'the marked pixels from black to white.
280 IF X%(R%,C%) = 1 THEN X%(R%,C%) = 255
290 NEXT C%
300 NEXT R%
310 '
320 NEXT ITER%
330 '
340 END

 TABLE 25-1

The decision to remove a pixel is based on four rules, as contained in the
subroutine shown in Table 25-2. All of these rules must be satisfied for a pixel
to be changed from black to white. The first three rules are rather simple,
while the fourth is quite complicated. As shown in Fig. 25-12a, a pixel at
location [R,C] has eight neighbors. The four neighbors in the horizontal and
vertical directions (labeled 2,4,6,8) are frequently called the close neighbors.
The diagonal pixels (labeled 1,3,5,7) are correspondingly called the distant
neighbors. The four rules are as follows:

Rule one: The pixel under consideration must presently be black. If the pixel
is already white, no action needs to be taken.

Rule two: At least one of the pixel's close neighbors must be white. This
insures that the erosion of the thick ridges takes place from the outside. In
other words, if a pixel is black, and it is completely surrounded by black pixels,
it is to be left alone on this iteration. Why use only the close neighbors,
rather than all of the neighbors? The answer is simple: running the algorithm
both ways shows that it works better. Remember, this is very common in
morphological image processing; trial and error is used to find if one technique
performs better than another.

Rule three: The pixel must have more than one black neighbor. If it has only
one, it must be the end of a line, and therefore shouldn't be removed.

Rule four: A pixel cannot be removed if it results in its neighbors being
disconnected. This is so each ridge is changed into a continuous line, not a
group of interrupted segments. As shown by the examples in Fig. 25-12,

The Scientist and Engineer's Guide to Digital Signal Processing440

C!1 C C+1
Column

C!1 C C+1
Column

C!1 C C+1
Column

C!1 C C+1
Column

C!1 C C+1
Column

C!1 C C+1
Column

b. Connected neighbors

c. Unconnected neighbors

*

*

*

*

* **

*

*

C!1 C C+1
Column

a. Pixel numbering

1 2 3

4

567

8

*

R!1

R

R+1

R!1

R

R+1

R!1

R

R+1

R!1

R

R+1

R!1

R

R+1

R!1

R

R+1

R!1

R

R+1

FIGURE 25-12
Neighboring pixels. A pixel at row and column
[R,C] has eight neighbors, referred to by the
numbers in (a). Figures (b) and (c) show
examples where the neighboring pixels are
connected and unconnected, respectively. This
definition is used by rule number four of the
skeletonization algorithm.

R
ow

R
ow

R
ow

R
ow

R
ow

R
ow

R
ow

connected means that all of the black neighbors touch each other. Likewise,
unconnected means that the black neighbors form two or more groups.

The algorithm for determining if the neighbors are connected or unconnected
is based on counting the black-to-white transitions between adjacent
neighboring pixels, in a clockwise direction. For example, if pixel 1 is black
and pixel 2 is white, it is considered a black-to-white transition. Likewise, if
pixel 2 is black and both pixel 3 and 4 are white, this is also a black-to-white
transition. In total, there are eight locations where a black-to-white transition
may occur. To illustrate this definition further, the examples in (b) and (c)
have an asterisk placed by each black-to-white transition. The key to this
algorithm is that there will be zero or one black-to-white transition if the
neighbors are connected. More than one such transition indicates that the
neighbors are unconnected.

As additional examples of binary image processing, consider the types of
algorithms that might be useful after the fingerprint is skeletonized. A
disadvantage of this particular skeletonization algorithm is that it leaves a
considerable amount of fuzz, short offshoots that stick out from the sides of
longer segments. There are several different approaches for eliminating
these artifacts. For example, a program might loop through the image
removing the pixel at the end of every line. These pixels are identified

Chapter 25- Special Imaging Techniques 441

5000 ' Subroutine to determine if the pixel at X%[R%,C%] can be removed.
5010 ' If all four of the rules are satisfied, then X%(R%,C%], is set to a value of 1,
5020 ' indicating it should be removed at the end of the iteration.
5030 '
5040 'RULE #1: Do nothing if the pixel already white
5050 IF X%(R%,C%) = 255 THEN RETURN
5060 '
5070 '
5080 'RULE #2: Do nothing if all of the close neighbors are black
5090 IF X%[R% -1,C%] <> 255 AND X%[R% ,C%+1] <> 255 AND

X%[R%+1,C%] <> 255 AND X%[R% ,C% -1] <> 255 THEN RETURN
5100 '
5110 '
5120 'RULE #3: Do nothing if only a single neighbor pixel is black
5130 COUNT% = 0
5140 IF X%[R% -1,C% -1] = 0 THEN COUNT% = COUNT% + 1
5150 IF X%[R% -1,C%] = 0 THEN COUNT% = COUNT% + 1
5160 IF X%[R% -1,C%+1] = 0 THEN COUNT% = COUNT% + 1
5170 IF X%[R% ,C%+1] = 0 THEN COUNT% = COUNT% + 1
5180 IF X%[R%+1,C%+1] = 0 THEN COUNT% = COUNT% + 1
5190 IF X%[R%+1,C%] = 0 THEN COUNT% = COUNT% + 1
5200 IF X%[R%+1,C% -1] = 0 THEN COUNT% = COUNT% + 1
5210 IF X%[R% ,C% -1] = 0 THEN COUNT% = COUNT% + 1
5220 IF COUNT% = 1 THEN RETURN
5230 '
5240 '
5250 'RULE 4: Do nothing if the neighbors are unconnected.
5260 'Determine this by counting the black-to-white transitions
5270 'while moving clockwise through the 8 neighboring pixels.
5280 COUNT% = 0
5290 IF X%[R% -1,C% -1] = 0 AND X%[R% -1,C%] > 0 THEN COUNT% = COUNT% + 1
5300 IF X%[R% -1,C%] = 0 AND X%[R% -1,C%+1] > 0 AND X%[R% ,C%+1] > 0

THEN COUNT% = COUNT% + 1
5310 IF X%[R% -1,C%+1] = 0 AND X%[R% ,C%+1] > 0 THEN COUNT% = COUNT% + 1
5320 IF X%[R% ,C%+1] = 0 AND X%[R%+1,C%+1] > 0 AND X%[R%+1,C%] > 0

THEN COUNT% = COUNT% + 1
5330 IF X%[R%+1,C%+1] = 0 AND X%[R%+1,C%] > 0 THEN COUNT% = COUNT% + 1
5340 IF X%[R%+1,C%] = 0 AND X%[R%+1,C% -1] > 0 AND X%[R% ,C%-1] > 0

THEN COUNT% = COUNT% + 1
5350 IF X%[R%+1,C% -1] = 0 AND X%[R% ,C% -1] > 0 THEN COUNT% = COUNT% + 1
5360 IF X%[R% ,C% -1] = 0 AND X%[R% -1,C% -1] > 0 AND X%[R%-1,C%] > 0

THEN COUNT% = COUNT% + 1
5370 IF COUNT% > 1 THEN RETURN
5380 '
5390 '
5400 'If all rules are satisfied, mark the pixel to be set to white at the end of the iteration
5410 X%(R%,C%) = 1
5420 '
5430 RETURN

 TABLE 25-2

by having only one black neighbor. Do this several times and the fuzz is
removed at the expense of making each of the correct lines shorter. A better
method would loop through the image identifying branch pixels (pixels that
have more than two neighbors). Starting with each branch pixel, count the
number of pixels in each offshoot. If the number of pixels in an offshoot is less
than some value (say, 5), declare it to be fuzz, and change the pixels in the
branch from black to white.

The Scientist and Engineer's Guide to Digital Signal Processing442

Another algorithm might change the data from a bitmap to a vector mapped
format. This involves creating a list of the ridges contained in the image and
the pixels contained in each ridge. In the vector mapped form, each ridge in
the fingerprint has an individual identity, as opposed to an image composed of
many unrelated pixels. This can be accomplished by looping through the image
looking for the endpoints of each line, the pixels that have only one black
neighbor. Starting from the endpoint, each line is traced from pixel to
connecting pixel. After the opposite end of the line is reached, all the traced
pixels are declared to be a single object, and treated accordingly in future
algorithms.

Computed Tomography
A basic problem in imaging with x-rays (or other penetrating radiation) is
that a two-dimensional image is obtained of a three-dimensional object.
This means that structures can overlap in the final image, even though they
are completely separate in the object. This is particularly troublesome in
medical diagnosis where there are many anatomic structures that can
interfere with what the physician is trying to see. During the 1930's, this
problem was attacked by moving the x-ray source and detector in a
coordinated motion during image formation. From the geometry of this
motion, a single plane within the patient remains in focus, while structures
outside this plane become blurred. This is analogous to a camera being
focused on an object at 5 feet, while objects at a distance of 1 and 50 feet
are blurry. These related techniques based on motion blurring are now
collectively called classical tomography. The word tomography means "a
picture of a plane."

In spite of being well developed for more than 50 years, classical tomography
is rarely used. This is because it has a significant limitation: the interfering
objects are not removed from the image, only blurred. The resulting image
quality is usually too poor to be of practical use. The long sought solution was
a system that could create an image representing a 2D slice through a 3D
object with no interference from other structures in the 3D object.

This problem was solved in the early 1970s with the introduction of a
technique called computed tomography (CT). CT revolutionized the
medical x-ray field with its unprecedented ability to visualize the anatomic
structure of the body. Figure 25-13 shows a typical medical CT image.
Computed tomography was originally introduced to the marketplace under
the names Computed Axial Tomography and CAT scanner. These terms are
now frowned upon in the medical field, although you hear them used
frequently by the general public.

Figure 25-14 illustrates a simple geometry for acquiring a CT slice through
the center of the head. A narrow pencil beam of x-rays is passed from the
x-ray source to the x-ray detector. This means that the measured value at
the detector is related to the total amount of material placed anywhere

Chapter 25- Special Imaging Techniques 443

K S C

L

A

LEFT RIGHT

FIGURE 25-13
Computed tomography image. This CT slice is
of a human abdomen, at the level of the navel.
Many organs are visible, such as the (L) Liver,
(K) Kidney, (A) Aorta, (S) Spine, and (C) Cyst
covering the right kidney. CT can visualize
internal anatomy far better than conventional
medical x-rays.

F
R

O
N

T
R

E
A

R

radiation

detector

radiation

source

FIGURE 25-14
CT data acquisition. A simple CT system
passes a narrow beam of x-rays through the
body from source to detector. The source
and detector are then translated to obtain a
complete view. The remaining views are
obtained by rotating the source and detector
in about 1E increments, and repeating the
translation process.

along the beam's path. Materials such as bone and teeth block more of the x-
rays, resulting in a lower signal compared to soft tissue and fat. As shown in
the illustration, the source and detector assemblies are translated to acquire a
view (CT jargon) at this particular angle. While this figure shows only a
single view being acquired, a complete CT scan requires 300 to 1000 views
taken at rotational increments of about 0.3E to 1.0E. This is accomplished by
mounting the x-ray source and detector on a rotating gantry that surrounds the
patient. A key feature of CT data acquisition is that x-rays pass only through
the slice of the body being examined. This is unlike classical tomography
where x-rays are passing through structures that you try to suppress in the final
image. Computed tomography doesn't allow information from irrelevant
locations to even enter the acquired data.

The Scientist and Engineer's Guide to Digital Signal Processing444

Several preprocessing steps are usually needed before the image reconstruction
can take place. For instance, the logarithm must be taken of each x-ray
measurement. This is because x-rays decrease in intensity exponentially as
they pass through material. Taking the logarithm provides a signal that is
linearly related to the characteristics of the material being measured. Other
preprocessing steps are used to compensate for the use of polychromatic (more
than one energy) x-rays, and multielement detectors (as opposed to the single
element shown in Fig. 25-14). While these are a key step in the overall
technique, they are not related to the reconstruction algorithms and we won't
discuss them further.

Figure 25-15 illustrates the relationship between the measured views and the
corresponding image. Each sample acquired in a CT system is equal to the sum
of the image values along a ray pointing to that sample. For example, view 1
is found by adding all the pixels in each row. Likewise, view 3 is found by
adding all the pixels in each column. The other views, such as view 2, sum the
pixels along rays that are at an angle.

There are four main approaches to calculating the slice image given the set of
its views. These are called CT reconstruction algorithms. The first method
is totally impractical, but provides a better understanding of the problem. It is
based on solving many simultaneous linear equations. One equation can be
written for each measurement. That is, a particular sample in a particular
profile is the sum of a particular group of pixels in the image. To calculate N 2

unknown variables (i.e., the image pixel values), there must be N 2

independent equations, and therefore measurements. Most CT scannersN 2

acquire about 50% more samples than rigidly required by this analysis. For
example, to reconstruct a 512×512 image, a system might take 700 views with
600 samples in each view. By making the problem overdetermined in this
manner, the final image has reduced noise and artifacts. The problem with this
first method of CT reconstruction is computation time. Solving several hundred
thousand simultaneous linear equations is an daunting task.

The second method of CT reconstruction uses iterative techniques to calculate
the final image in small steps. There are several variations of this method: the
Algebraic Reconstruction Technique (ART), Simultaneous Iterative
Reconstruction Technique (SIRT), and Iterative Least Squares Technique
(ILST). The difference between these methods is how the successive
corrections are made: ray-by-ray, pixel-by-pixel, or simultaneously correcting
the entire data set, respectively. As an example of these techniques, we will
look at ART.

To start the ART algorithm, all the pixels in the image array are set to some
arbitrary value. An iterative procedure is then used to gradually change
the image array to correspond to the profiles. An iteration cycle consists
of looping through each of the measured data points. For each measured
value, the following question is asked: how can the pixel values in the
array be changed to make them consis tent wi th th is par t icular
measurement? In other words, the measured sample is compared with the

Chapter 25- Special Imaging Techniques 445

-1

0

1

2

3

FIGURE 25-15
CT views. Computed tomography acquires a set of views and then reconstructs the corresponding
image. Each sample in a view is equal to the sum of the image values along the ray that points to that
sample. In this example, the image is a small pillbox surrounded by zeros. While only three views
are shown here, a typical CT scan uses hundreds of views at slightly different angles.

view 1

view 2

view 3

sum of the image pixels along the ray pointing to the sample. If the ray sum
is lower than the measured sample, all the pixels along the ray are increased
in value. Likewise, if the ray sum is higher than the measured sample, all of
the pixel values along the ray are decreased. After the first complete iteration
cycle, there will still be an error between the ray sums and the measured
values. This is because the changes made for any one measurement disrupts all
the previous corrections made. The idea is that the errors become smaller with
repeated iterations until the image converges to the proper solution.

Iterative techniques are generally slow, but they are useful when better
algorithms are not available. In fact, ART was used in the first commercial
medical CT scanner released in 1972, the EMI Mark I. We will revisit
iterative techniques in the next chapter on neural networks. Development of
the third and forth methods have almost entirely replaced iterative techniques
in commercial CT products.

The last two reconstruction algorithms are based on formal mathematical
solutions to the problem. These are elegant examples of DSP. The third
method is called filtered backprojection. It is a modification of an older

The Scientist and Engineer's Guide to Digital Signal Processing446

-1

0

1

2

3

a. Using 3 views b. Using many views

FIGURE 25-16
Backprojection. Backprojection reconstructs an image by taking each view and smearing it along
the path it was originally acquired. The resulting image is a blurry version of the correct image.

view 1

view 2

view 3

technique, called backprojection or simple backprojection. Figure 25-16
shows that simple backprojection is a common sense approach, but very
unsophisticated. An individual sample is backprojected by setting all the
image pixels along the ray pointing to the sample to the same value. In less
technical terms, a backprojection is formed by smearing each view back
through the image in the direction it was originally acquired. The final
backprojected image is then taken as the sum of all the backprojected views.

While backprojection is conceptually simple, it does not correctly solve the
problem. As shown in (b), a backprojected image is very blurry. A single
point in the true image is reconstructed as a circular region that decreases in
intensity away from the center. In more formal terms, the point spread
function of backprojection is circularly symmetric, and decreases as the
reciprocal of its radius.

Filtered backprojection is a technique to correct the blurring encountered in
simple backprojection. As illustrated in Fig. 25-17, each view is filtered
before the backprojection to counteract the blurring PSF. That is, each of the
one-dimensional views is convolved with a one-dimensional filter kernel to
create a set of filtered views. These filtered views are then backprojected to
provide the reconstructed image, a close approximation to the "correct" image.
In fact, the image produced by filtered backprojection is identical

Chapter 25- Special Imaging Techniques 447

-2
-1
0
1
2
3

a. Using 3 views b. Using many views

FIGURE 25-17
Filtered backprojection. Filtered backprojection reconstructs an image by filtering each view before
backprojection. This removes the blurring seen in simple backprojection, and results in a
mathematically exact reconstruction of the image. Filtered backprojection is the most commonly
used algorithm for computed tomography systems.

filtered view 1

filtered
view 3

filtered
view 2

to the "correct" image when there are an infinite number of views and an
infinite number of points per view.

The filter kernel used in this technique will be discussed shortly. For now,
notice how the profiles have been changed by the filter. The image in this
example is a uniform white circle surrounded by a black background (a
pillbox). Each of the acquired views has a flat background with a rounded
region representing the white circle. Filtering changes the views in two
significant ways. First, the top of the pulse is made flat, resulting in the final
backprojection creating a uniform signal level within the circle. Second,
negative spikes have been introduced at the sides of the pulse. When
backprojected, these negative regions counteract the blur.

The fourth method is called Fourier reconstruction. In the spatial domain,
CT reconstruction involves the relationship between a two-dimensional image
and its set of one-dimensional views. By taking the two-dimensional Fourier
transform of the image and the one-dimensional Fourier transform of each of
its views, the problem can be examined in the frequency domain. As it turns
out, the relationship between an image and its views is far simpler in the
frequency domain than in the spatial domain. The frequency domain analysis

The Scientist and Engineer's Guide to Digital Signal Processing448

FIGURE 25-18
The Fourier Slice Theorem. The Fourier Slice Theorem describes the relationship between an image and
its views in the frequency domain. In the spatial domain, each view is found by integrating the image along
rays at a particular angle. In the frequency domain, the spectrum of each view is a one-dimensional "slice"
of the two-dimensional image spectrum.

-1

0

1

2

3

image

Spatial Domain Frequency Domain

Column0 N-1

spectrum
of view 2

spectrum
of view 3

spectrum
of view 1

spectrum
of the image
(the grid)

R
ow

N
-1

0

view 1

view
2

vi
ew

 3
of this problem is a milestone in CT technology called the Fourier slice
theorem.

Figure 25-18 shows how the problem looks in both the spatial and the
frequency domains. In the spatial domain, each view is found by integrating
the image along rays at a particular angle. In the frequency domain, the
image spectrum is represented in this illustration by a two-dimensional grid.
The spectrum of each view (a one-dimensional signal) is represented by a
dark line superimposed on the grid. As shown by the positioning of the
lines on the grid, the Fourier slice theorem states that the spectrum of a
view is identical to the values along a line (slice) through the image
spectrum. For instance, the spectrum of view 1 is the same as the center
column of the image spectrum, and the spectrum of view 3 is the same as
the center row of the image spectrum. Notice that the spectrum of each
view is positioned on the grid at the same angle that the view was originally
acquired. All these frequency spectra include the negative frequencies and
are displayed with zero frequency at the center.

Fourier reconstruction of a CT image requires three steps. First, the one-
dimensional FFT is taken of each view. Second, these view spectra are used
to calculate the two-dimensional frequency spectrum of the image, as outlined
by the Fourier slice theorem. Since the view spectra are arranged radially, and
the correct image spectrum is arranged rectangularly, an interpolation routine
is needed to make the conversion. Third, the inverse FFT is taken of the image
spectrum to obtain the reconstructed image.

Chapter 25- Special Imaging Techniques 449

A
m

pl
itu

de

A
m

pl
itu

de

Sample number
-20 -15 -10 -5 0 5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

1.5

b. Filter kernel

Spatial Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

a. Frequency response

FIGURE 25-19
Backprojection filter. The frequency response of the backprojection filter is shown in (a), and the
corresponding filter kernel is shown in (b). Equation 25-2 provides the values for the filter kernel.

A
m

pl
itu

de

A
m

pl
itu

de

h [0] ' 1

h [k] ' 0

h [k] '
-4 /B

2

k 2

EQUATION 25-2
The filter kernel for filtered
backprojection. Figure 25-19b
shows a graph of this kernel.

for even values of k

for odd values of k

This "radial to rectangular" conversion is also the key for understanding filtered
backprojection. The radial arrangement is the spectrum of the backprojected
image, while the rectangular grid is the spectrum of the correct image. If we
compare one small region of the radial spectrum with the corresponding region
of the rectangular grid, we find that the sample values are identical. However,
they have a different sample density. The correct spectrum has uniformly
spaced points throughout, as shown by the even spacing of the rectangular grid.
In comparison, the backprojected spectrum has a higher sample density near the
center because of its radial arrangement. In other words, the spokes of a wheel
are closer together near the hub. This issue does not affect Fourier
reconstruction because the interpolation is from the values of the nearest
neighbors, not their density.

The filter in filtered backprojection cancels this unequal sample density. In
particular, the frequency response of the filter must be the inverse of the
sample density. Since the backprojected spectrum has a density of 1/f, the
appropriate filter has a frequency response of . This frequencyH [f] ' f
response is shown in Fig. 25-19a. The filter kernel is then found by taking the
inverse Fourier transform, as shown in (b). Mathematically, the filter kernel
is given by:

The Scientist and Engineer's Guide to Digital Signal Processing450

Before leaving the topic of computed tomography, it should be mentioned
that there are several similar imaging techniques in the medical field. All
use extensive amounts of DSP. Positron emission tomography (PET)
involves injecting the patient with a mildly radioactive compound that emits
positrons. Immediately after emission, the positron annihilates with an
electron, creating two gamma rays that exit the body in exactly opposite
directions. Radiation detectors placed around the patient look for these
back-to-back gamma rays, identifying the location of the line that the
gamma rays traveled along. Since the point where the gamma rays were
created must be somewhere along this line, a reconstruction algorithm
similar to computed tomography can be used. This results in an image that
looks similar to CT, except that brightness is related to the amount of the
radioactive material present at each location. A unique advantage of PET
is that the radioactive compounds can be attached to various substances
used by the body in some manner, such as glucose. The reconstructed image
is then related to the concentration of this biological substance. This allows
the imaging of the body's physiology rather than simple anatomy. For
example, images can be produced showing which portions of the human
brain are involved in various mental tasks.

A more direct competitor to computed tomography is magnetic resonance
imaging (MRI), which is now found in most major hospitals. This
technique was originally developed under the name nuclear magnetic
resonance (NMR). The name change was for public relations when local
governments protested the use of anything nuclear in their communities. It
was often an impossible task to educate the public that the term nuclear
simply referred to the fact that all atoms contain a nucleus. An MRI scan
is conducted by placing the patient in the center of a powerful magnet.
Radio waves in conjunction with the magnetic field cause selected nuclei in
the body to resonate, resulting in the emission of secondary radio waves.
These secondary radio waves are digitized and form the data set used in the
MRI reconstruction algorithms. The result is a set of images that appear
very similar to computed tomography. The advantages of MRI are
numerous: good soft tissue discrimination, flexible slice selection, and not
using potentially dangerous x-ray radiation. On the negative side, MRI is
a more expensive technique than CT, and poor for imaging bones and other
hard tissues. CT and MRI will be the mainstays of medical imaging for
many years to come.

451

CHAPTER

26 Neural Networks (and more!)

Traditional DSP is based on algorithms, changing data from one form to another through step-by-
step procedures. Most of these techniques also need parameters to operate. For example:
recursive filters use recursion coefficients, feature detection can be implemented by correlation
and thresholds, an image display depends on the brightness and contrast settings, etc.
Algorithms describe what is to be done, while parameters provide a benchmark to judge the data.
The proper selection of parameters is often more important than the algorithm itself. Neural
networks take this idea to the extreme by using very simple algorithms, but many highly
optimized parameters. This is a revolutionary departure from the traditional mainstays of science
and engineering: mathematical logic and theorizing followed by experimentation. Neural networks
replace these problem solving strategies with trial & error, pragmatic solutions, and a "this works
better than that" methodology. This chapter presents a variety of issues regarding parameter
selection in both neural networks and more traditional DSP algorithms.

Target Detection
Scientists and engineers often need to know if a particular object or condition
is present. For instance, geophysicists explore the earth for oil, physicians
examine patients for disease, astronomers search the universe for extra-
terrestrial intelligence, etc. These problems usually involve comparing the
acquired data against a threshold. If the threshold is exceeded, the target (the
object or condition being sought) is deemed present.

For example, suppose you invent a device for detecting cancer in humans. The
apparatus is waved over a patient, and a number between 0 and 30 pops up on
the video screen. Low numbers correspond to healthy subjects, while high
numbers indicate that cancerous tissue is present. You find that the device
works quite well, but isn't perfect and occasionally makes an error. The
question is: how do you use this system to the benefit of the patient being
examined?

The Scientist and Engineer's Guide to Digital Signal Processing452

Figure 26-1 illustrates a systematic way of analyzing this situation. Suppose
the device is tested on two groups: several hundred volunteers known to be
healthy (nontarget), and several hundred volunteers known to have cancer
(target). Figures (a) & (b) show these test results displayed as histograms.
The healthy subjects generally produce a lower number than those that have
cancer (good), but there is some overlap between the two distributions (bad).

As discussed in Chapter 2, the histogram can be used as an estimate of the
probability distribution function (pdf), as shown in (c). For instance,
imagine that the device is used on a randomly chosen healthy subject. From (c),
there is about an 8% chance that the test result will be 3, about a 1% chance
that it will be 18, etc. (This example does not specify if the output is a real
number, requiring a pdf, or an integer, requiring a pmf. Don't worry about it
here; it isn't important).

Now, think about what happens when the device is used on a patient of
unknown health. For example, if a person we have never seen before receives
a value of 15, what can we conclude? Do they have cancer or not? We know
that the probability of a healthy person generating a 15 is 2.1%. Likewise,
there is a 0.7% chance that a person with cancer will produce a 15. If no other
information is available, we would conclude that the subject is three times as
likely not to have cancer, as to have cancer. That is, the test result of 15
implies a 25% probability that the subject is from the target group. This method
can be generalized to form the curve in (d), the probability of the subject
having cancer based only on the number produced by the device
[mathematically,].pdft /(pdft % pdfnt)

If we stopped the analysis at this point, we would be making one of the most
common (and serious) errors in target detection. Another source of information
must usually be taken into account to make the curve in (d) meaningful. This
is the relative number of targets versus nontargets in the population to be
tested. For instance, we may find that only one in one-thousand people have
the cancer we are trying to detect. To include this in the analysis, the
amplitude of the nontarget pdf in (c) is adjusted so that the area under the curve
is 0.999. Likewise, the amplitude of the target pdf is adjusted to make the area
under the curve be 0.001. Figure (d) is then calculated as before to give the
probability that a patient has cancer.

Neglecting this information is a serious error because it greatly affects how the
test results are interpreted. In other words, the curve in figure (d) is drastically
altered when the prevalence information is included. For instance, if the
fraction of the population having cancer is 0.001, a test result of 15
corresponds to only a 0.025% probability that this patient has cancer. This is
very different from the 25% probability found by relying on the output of the
machine alone.

This method of converting the output value into a probability can be useful
for understanding the problem, but it is not the main way that target
detection is accomplished. Most applications require a yes/no decision on

Chapter 26- Neural Networks (and more!) 453

Parameter value
0 5 10 15 20 25 30

0.00

0.20

0.40

0.60

0.80

1.00

d. Separation

Parameter value
0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

80

90

100

a. Nontarget histogram

Parameter value
0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

80

90

100

b. Target histogram

FIGURE 26-1
Probability of target detection. Figures (a) and (b) shows histograms of target and nontarget groups with respect
to some parameter value. From these histograms, the probability distribution functions of the two groups can be
estimated, as shown in (c). Using only this information, the curve in (d) can be calculated, giving the probability
that a target has been found, based on a specific value of the parameter.

Parameter value
0 5 10 15 20 25 30

0.00

0.04

0.08

0.12

0.16

0.20

non-
target

target

c. pdfs

pr
ob

ab
ili

ty
 o

f b
ei

ng
 ta

rg
et

pd
f

N
um

be
r o

f o
cc

ur
en

ce
s

N
um

be
r o

f o
cc

ur
en

ce
s

the presence of a target, since yes will result in one action and no will result
in another. This is done by comparing the output value of the test to a
threshold. If the output is above the threshold, the test is said to be positive,
indicating that the target is present. If the output is below the threshold, the
test is said to be negative, indicating that the target is not present. In our
cancer example, a negative test result means that the patient is told they are
healthy, and sent home. When the test result is positive, additional tests will
be performed, such as obtaining a sample of the tissue by insertion of a biopsy
needle.

Since the target and nontarget distributions overlap, some test results will
not be correct. That is, some patients sent home will actually have cancer,
and some patients sent for additional tests will be healthy. In the jargon of
target detection, a correct classification is called true, while an incorrect
classification is called false. For example, if a patient has cancer, and the
test properly detects the condition, it is said to be a true-positive.
Likewise, if a patient does not have cancer, and the test indicates that

The Scientist and Engineer's Guide to Digital Signal Processing454

cancer is not present, it is said to be a true-negative. A false-positive
occurs when the patient does not have cancer, but the test erroneously
indicates that they do. This results in needless worry, and the pain and
expense of additional tests. An even worse scenario occurs with the false-
negative, where cancer is present, but the test indicates the patient is
healthy. As we all know, untreated cancer can cause many health problems,
including premature death.

The human suffering resulting from these two types of errors makes the
threshold selection a delicate balancing act. How many false-positives can
be tolerated to reduce the number of false-negatives? Figure 26-2 shows
a graphical way of evaluating this problem, the ROC curve (short for
Receiver Operating Characteristic). The ROC curve plots the percent of
target signals reported as positive (higher is better), against the percent of
nontarget signals erroneously reported as positive (lower is better), for
various values of the threshold. In other words, each point on the ROC
curve represents one possible tradeoff of true-positive and false-positive
performance.

Figures (a) through (d) show four settings of the threshold in our cancer
detection example. For instance, look at (b) where the threshold is set at 17.
Remember, every test that produces an output value greater than the threshold
is reported as a positive result. About 13% of the area of the nontarget
distribution is greater than the threshold (i.e., to the right of the threshold). Of
all the patients that do not have cancer, 87% will be reported as negative (i.e.,
a true-negative), while 13% will be reported as positive (i.e., a false-positive).
In comparison, about 80% of the area of the target distribution is greater than
the threshold. This means that 80% of those that have cancer will generate a
positive test result (i.e., a true-positive). The other 20% that have cancer will
be incorrectly reported as a negative (i.e., a false-negative). As shown in the
ROC curve in (b), this threshold results in a point on the curve at: %
nontargets positive = 13%, and % targets positive = 80%.

The more efficient the detection process, the more the ROC curve will bend
toward the upper-left corner of the graph. Pure guessing results in a straight
line at a 45E diagonal. Setting the threshold relatively low, as shown in (a),
results in nearly all the target signals being detected. This comes at the price
of many false alarms (false-positives). As illustrated in (d), setting the
threshold relatively high provides the reverse situation: few false alarms, but
many missed targets.

These analysis techniques are useful in understanding the consequences of
threshold selection, but the final decision is based on what some human will
accept. Suppose you initially set the threshold of the cancer detection
apparatus to some value you feel is appropriate. After many patients have
been screened with the system, you speak with a dozen or so patients that
have been subjected to false-positives. Hearing how your system has
unnecessarily disrupted the lives of these people affects you deeply,
motivating you to increase the threshold. Eventually you encounter a

Chapter 26- Neural Networks (and more!) 455

Parameter value
0 5 10 15 20 25 30

0.00

0.04

0.08

0.12

0.16

0.20

threshold

target

target
non-

Parameter value
0 5 10 15 20 25 30

0.00

0.04

0.08

0.12

0.16

0.20

threshold

target

target
non-

Parameter value
0 5 10 15 20 25 30

0.00

0.04

0.08

0.12

0.16

0.20

threshold

target

target
non-

Parameter value
0 5 10 15 20 25 30

0.00

0.04

0.08

0.12

0.16

0.20

threshold

target

target
non-

Threshold on pdf Point on ROC

a.

b.

c.

d.

% nontargets positive
0 20 40 60 80 100

0

20

40

60

80

100

worse

better

% nontargets positive
0 20 40 60 80 100

0

20

40

60

80

100

% nontargets positive
0 20 40 60 80 100

0

20

40

60

80

100

% nontargets positive
0 20 40 60 80 100

0

20

40

60

80

100

positivenegative

guessing

pd
f

FIGURE 26-2
Relationship between ROC curves and pdfs.

%
 ta

rg
et

s p
os

iti
ve

pd
f

%
 ta

rg
et

s p
os

iti
ve

pd
f

%
 ta

rg
et

s p
os

iti
ve

%
 ta

rg
et

s p
os

iti
ve

pd
f

The Scientist and Engineer's Guide to Digital Signal Processing456

parameter 2

pdf

target
nontarget

FIGURE 26-3
Example of a two-parameter space. The
target (Î) and nontarget (~) groups are
completely separate in two-dimensions;
however, they overlap in each individual
parameter. This overlap is shown by the
one-dimensional pdfs along each of the
parameter axes.

pa
ra

m
et

er
 1

situation that makes you feel even worse: you speak with a patient who is
terminally ill with a cancer that your system failed to detect. You respond to
this difficult experience by greatly lowering the threshold. As time goes on
and these events are repeated many times, the threshold gradually moves to an
equilibrium value. That is, the false-positive rate multiplied by a significance
factor (lowering the threshold) is balanced by the false-negative rate multiplied
by another significance factor (raising the threshold).

This analysis can be extended to devices that provide more than one output.
For example, suppose that a cancer detection system operates by taking an x-
ray image of the subject, followed by automated image analysis algorithms to
identify tumors. The algorithms identify suspicious regions, and then measure
key characteristics to aid in the evaluation. For instance, suppose we measure
the diameter of the suspect region (parameter 1) and its brightness in the image
(parameter 2). Further suppose that our research indicates that tumors are
generally larger and brighter than normal tissue. As a first try, we could go
through the previously presented ROC analysis for each parameter, and find an
acceptable threshold for each. We could then classify a test as positive only
if it met both criteria: parameter 1 greater than some threshold and parameter
2 greater than another threshold.

This technique of thresholding the parameters separately and then invoking
logic functions (AND, OR, etc.) is very common. Nevertheless, it is very
inefficient, and much better methods are available. Figure 26-3 shows why
this is the case. In this figure, each triangle represents a single occurrence of
a target (a patient with cancer), plotted at a location that corresponds to the
value of its two parameters. Likewise, each square represents a single
occurrence of a nontarget (a patient without cancer). As shown in the pdf

Chapter 26- Neural Networks (and more!) 457

target
nontarget

parameter 2 parameter 3

FIGURE 26-4
Example of a three-parameter space.
Just as a two-parameter space forms a
plane surface, a three parameter space
can be graphically represented using
the conventional x, y, and z axes.
Separation of a three-parameter space
into regions requires a dividing plane,
or a curved surface.

pa
ra

m
et

er
 3

graph on the side of each axis, both parameters have a large overlap between
the target and nontarget distributions. In other words, each parameter, taken
individually, is a poor predictor of cancer. Combining the two parameters with
simple logic functions would only provide a small improvement. This is
especially interesting since the two parameters contain information to perfectly
separate the targets from the nontargets. This is done by drawing a diagonal
line between the two groups, as shown in the figure.

In the jargon of the field, this type of coordinate system is called a
parameter space. For example, the two-dimensional plane in this example
could be called a diameter-brightness space. The idea is that targets will
occupy one region of the parameter space, while nontargets will occupy
another. Separation between the two regions may be as simple as a straight
line, or as complicated as closed regions with irregular borders. Figure 26-
4 shows the next level of complexity, a three-parameter space being
represented on the x, y and z axes. For example, this might correspond to
a cancer detection system that measures diameter, brightness, and some
third parameter, say, edge sharpness. Just as in the two-dimensional case,
the important idea is that the members of the target and nontarget groups
will (hopefully) occupy different regions of the space, allowing the two to
be separated. In three dimensions, regions are separated by planes and
curved surfaces. The term hyperspace (over, above, or beyond normal
space) is often used to describe parameter spaces with more than three
dimensions. Mathematically, hyperspaces are no different from one, two
and three-dimensional spaces; however, they have the practical problem of
not being able to be displayed in a graphical form in our three-dimensional
universe.

The threshold selected for a single parameter problem cannot (usually) be
classified as right or wrong. This is because each threshold value results in
a unique combination of false-positives and false-negatives, i.e., some point
along the ROC curve. This is trading one goal for another, and has no
absolutely correct answer. On the other hand, parameter spaces with two or

The Scientist and Engineer's Guide to Digital Signal Processing458

more parameters can definitely have wrong divisions between regions. For
instance, imagine increasing the number of data points in Fig. 26-3, revealing
a small overlap between the target and nontarget groups. It would be possible
to move the threshold line between the groups to trade the number of false-
positives against the number of false-negatives. That is, the diagonal line
would be moved toward the top-right, or the bottom-left. However, it would be
wrong to rotate the line, because it would increase both types of errors.

As suggested by these examples, the conventional approach to target
detection (sometimes called pattern recognition) is a two step process. The
first step is called feature extraction. This uses algorithms to reduce the
raw data to a few parameters, such as diameter, brightness, edge sharpness,
etc. These parameters are often called features or classifiers. Feature
extraction is needed to reduce the amount of data. For example, a medical
x-ray image may contain more than a million pixels. The goal of feature
extraction is to distill the information into a more concentrated and
manageable form. This type of algorithm development is more of an art
than a science. It takes a great deal of experience and skill to look at a
problem and say: "These are the classifiers that best capture the
information." Trial-and-error plays a significant role.

In the second step, an evaluation is made of the classifiers to determine if
the target is present or not. In other words, some method is used to divide
the parameter space into a region that corresponds to the targets, and a
region that corresponds to the nontargets. This is quite straightforward for
one and two-parameter spaces; the known data points are plotted on a graph
(such as Fig. 26-3), and the regions separated by eye. The division is then
written into a computer program as an equation, or some other way of
defining one region from another. In principle, this same technique can be
applied to a three-dimensional parameter space. The problem is, three-
dimensional graphs are very difficult for humans to understand and
visualize (such as Fig. 26-4). Caution: Don't try this in hyperspace; your
brain will explode!

In short, we need a machine that can carry out a multi-parameter space
division, according to examples of target and nontarget signals. This ideal
target detection system is remarkably close to the main topic of this chapter, the
neural network.

Neural Network Architecture
Humans and other animals process information with neural networks. These
are formed from trillions of neurons (nerve cells) exchanging brief electrical
pulses called action potentials. Computer algorithms that mimic these
biological structures are formally called artificial neural networks to
distinguish them from the squishy things inside of animals. However, most
scientists and engineers are not this formal and use the term neural network to
include both biological and nonbiological systems.

Chapter 26- Neural Networks (and more!) 459

input layer

hidden layer

output layer

(passive nodes)

(active nodes)

(active nodes)

X12

X11

X13

X14

X15

X16

X17

X18

X19

X110

X111

X112

X113

X114

X115

X21

X22

X23

X24

X31

X32

Information Flow

FIGURE 26-5
Neural network architecture. This is the
most common structure for neural
networks: three layers with full inter-
connection. The input layer nodes are
passive, doing nothing but relaying the
values from their single input to their
multiple outputs. In comparison, the
nodes of the hidden and output layers
are active, modifying the signals in
accordance with Fig. 26-6. The action
of this neural network is determined by
the weights applied in the hidden and
output nodes.

Neural network research is motivated by two desires: to obtain a better
understanding of the human brain, and to develop computers that can deal with
abstract and poorly defined problems. For example, conventional computers
have trouble understanding speech and recognizing people's faces. In
comparison, humans do extremely well at these tasks.

Many different neural network structures have been tried, some based on
imitating what a biologist sees under the microscope, some based on a more
mathematical analysis of the problem. The most commonly used structure is
shown in Fig. 26-5. This neural network is formed in three layers, called the
input layer, hidden layer, and output layer. Each layer consists of one or
more nodes, represented in this diagram by the small circles. The lines
between the nodes indicate the flow of information from one node to the next.
In this particular type of neural network, the information flows only from the
input to the output (that is, from left-to-right). Other types of neural networks
have more intricate connections, such as feedback paths.

The nodes of the input layer are passive, meaning they do not modify the
data. They receive a single value on their input, and duplicate the value to

The Scientist and Engineer's Guide to Digital Signal Processing460

their multiple outputs. In comparison, the nodes of the hidden and output layer
are active. This means they modify the data as shown in Fig. 26-6. The
variables: hold the data to be evaluated (see Fig. 26-5). ForX11, X12 ˛X115
example, they may be pixel values from an image, samples from an audio
signal, stock market prices on successive days, etc. They may also be the
output of some other algorithm, such as the classifiers in our cancer detection
example: diameter, brightness, edge sharpness, etc.

Each value from the input layer is duplicated and sent to all of the hidden
nodes. This is called a fully interconnected structure. As shown in Fig. 26-
6, the values entering a hidden node are multiplied by weights, a set of
predetermined numbers stored in the program. The weighted inputs are then
added to produce a single number. This is shown in the diagram by the
symbol, E. Before leaving the node, this number is passed through a nonlinear
mathematical function called a sigmoid. This is an "s" shaped curve that limits
the node's output. That is, the input to the sigmoid is a value between

, while its output can only be between 0 and 1. &4 and %4

The outputs from the hidden layer are represented in the flow diagram (Fig 26-
5) by the variables: . Just as before, each of these valuesX21, X22, X23 and X24
is duplicated and applied to the next layer. The active nodes of the output
layer combine and modify the data to produce the two output values of this
network, and .X31 X32

Neural networks can have any number of layers, and any number of nodes per
layer. Most applications use the three layer structure with a maximum of a few
hundred input nodes. The hidden layer is usually about 10% the size of the
input layer. In the case of target detection, the output layer only needs a single
node. The output of this node is thresholded to provide a positive or negative
indication of the target's presence or absence in the input data.

Table 26-1 is a program to carry out the flow diagram of Fig. 26-5. The key
point is that this architecture is very simple and very generalized. This same
flow diagram can be used for many problems, regardless of their particular
quirks. The ability of the neural network to provide useful data manipulation
lies in the proper selection of the weights. This is a dramatic departure from
conventional information processing where solutions are described in step-by-
step procedures.

As an example, imagine a neural network for recognizing objects in a sonar
signal. Suppose that 1000 samples from the signal are stored in a computer.
How does the computer determine if these data represent a submarine,
whale, undersea mountain, or nothing at all? Conventional DSP would
approach this problem with mathematics and algorithms, such as correlation
and frequency spectrum analysis. With a neural network, the 1000 samples
are simply fed into the input layer, resulting in values popping from the
output layer. By selecting the proper weights, the output can be configured
to report a wide range of information. For instance, there might be outputs
for: submarine (yes/no), whale (yes/no), undersea mountain (yes/no), etc.

Chapter 26- Neural Networks (and more!) 461

E

x1

x2

x3

x4

x5

x6

x7

SUM SIGMOID

WEIGHT

w1

w3
w2

w4

w5
w6

w7

FIGURE 26-6
Neural network active node. This is a
flow diagram of the active nodes used in
the hidden and output layers of the neural
network. Each input is multiplied by a
weight (the wN values), and then summed.
This produces a single value that is passed
through an "s" shaped nonlinear function
called a sigmoid. The sigmoid function is
shown in more detail in Fig. 26-7.

100 'NEURAL NETWORK (FOR THE FLOW DIAGRAM IN FIG. 26-5)
110 '
120 DIM X1[15] 'holds the input values
130 DIM X2[4] 'holds the values exiting the hidden layer
140 DIM X3[2] 'holds the values exiting the output layer
150 DIM WH[4,15] 'holds the hidden layer weights
160 DIM WO[2,4] 'holds the output layer weights
170 '
180 GOSUB XXXX 'mythical subroutine to load X1[] with the input data
190 GOSUB XXXX 'mythical subroutine to load the weights, WH[,] & W0[,]
200 '
210 ' 'FIND THE HIDDEN NODE VALUES, X2[]
220 FOR J% = 1 TO 4 'loop for each hidden layer node
230 ACC = 0 'clear the accumulator variable, ACC
240 FOR I% = 1 TO 15 'weight and sum each input node
250 ACC = ACC + X1[I%] * WH[J%,I%]
260 NEXT I%
270 X2[J%] = 1 / (1 + EXP(-ACC)) 'pass summed value through the sigmoid
280 NEXT J%
290 '
300 ' 'FIND THE OUTPUT NODE VALUES, X3[]
310 FOR J% = 1 TO 2 'loop for each output layer node
320 ACC = 0 'clear the accumulator variable, ACC
330 FOR I% = 1 TO 4 'weight and sum each hidden node
340 ACC = ACC + X2[I%] * WO[J%,I%]
350 NEXT I%
360 X3[J%] = 1 / (1 + EXP(-ACC)) 'pass summed value through the sigmoid
370 NEXT J%
380 '
390 END

 TABLE 26-1

With other weights, the outputs might classify the objects as: metal or non-
metal, biological or nonbiological, enemy or ally, etc. No algorithms, no
rules, no procedures; only a relationship between the input and output dictated
by the values of the weights selected.

The Scientist and Engineer's Guide to Digital Signal Processing462

x
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

a. Sigmoid function

x
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

b. First derivative

s`
(x

)

s(
x)

FIGURE 26-7
The sigmoid function and its derivative. Equations 26-1 and 26-2 generate these curves.

EQUATION 26-1
The sigmoid function. This is used in
neural networks as a smooth threshold.
This function is graphed in Fig. 26-7a.

s (x) '
1

1% e &x

EQUATION 26-2
First derivative of the sigmoid function.
This is calculated by using the value of
the sigmoid function itself.

sN(x) ' s (x) [1 & s (x)]

Figure 26-7a shows a closer look at the sigmoid function, mathematically
described by the equation:

The exact shape of the sigmoid is not important, only that it is a smooth
threshold. For comparison, a simple threshold produces a value of one
when , and a value of zero when . The sigmoid performs this samex > 0 x < 0
basic thresholding function, but is also differentiable, as shown in Fig. 26-7b.
While the derivative is not used in the flow diagram (Fig. 25-5), it is a critical
part of finding the proper weights to use. More about this shortly. An
advantage of the sigmoid is that there is a shortcut to calculating the value of
its derivative:

For example, if , then (by Eq. 26-1), and the first derivativex ' 0 s (x) ' 0.5
is calculated: . This isn't a critical concept, just as N(x) ' 0.5(1 & 0.5) ' 0.25
trick to make the algebra shorter.

Wouldn't the neural network be more flexible if the sigmoid could be adjusted
left-or-right, making it centered on some other value than ? The answerx ' 0
is yes, and most neural networks allow for this. It is very simple to implement;
an additional node is added to the input layer, with its input always having a

Chapter 26- Neural Networks (and more!) 463

value of one. When this is multiplied by the weights of the hidden layer,
it provides a bias (DC offset) to each sigmoid. This addition is called a
bias node. It is treated the same as the other nodes, except for the constant
input.

Can neural networks be made without a sigmoid or similar nonlinearity? To
answer this, look at the three-layer network of Fig. 26-5. If the sigmoids were
not present, the three layers would collapse into only two layers. In other
words, the summations and weights of the hidden and output layers could be
combined into a single layer, resulting in only a two-layer network.

Why Does It Work?
The weights required to make a neural network carry out a particular task are
found by a learning algorithm, together with examples of how the system
should operate. For instance, the examples in the sonar problem would be a
database of several hundred (or more) of the 1000 sample segments. Some of
the example segments would correspond to submarines, others to whales, others
to random noise, etc. The learning algorithm uses these examples to calculate
a set of weights appropriate for the task at hand. The term learning is widely
used in the neural network field to describe this process; however, a better
description might be: determining an optimized set of weights based on the
statistics of the examples. Regardless of what the method is called, the
resulting weights are virtually impossible for humans to understand. Patterns
may be observable in some rare cases, but generally they appear to be random
numbers. A neural network using these weights can be observed to have the
proper input/output relationship, but why these particular weights work is quite
baffling. This mystic quality of neural networks has caused many scientists
and engineers to shy away from them. Remember all those science fiction
movies of renegade computers taking over the earth?

In spite of this, it is common to hear neural network advocates make statements
such as: "neural networks are well understood." To explore this claim, we
will first show that it is possible to pick neural network weights through
traditional DSP methods. Next, we will demonstrate that the learning
algorithms provide better solutions than the traditional techniques. While this
doesn't explain why a particular set of weights works, it does provide
confidence in the method.

In the most sophisticated view, the neural network is a method of labeling the
various regions in parameter space. For example, consider the sonar system
neural network with 1000 inputs and a single output. With proper weight
selection, the output will be near one if the input signal is an echo from a
submarine, and near zero if the input is only noise. This forms a parameter
hyperspace of 1000 dimensions. The neural network is a method of assigning
a value to each location in this hyperspace. That is, the 1000 input values
define a location in the hyperspace, while the output of the neural network
provides the value at that location. A look-up table could perform this task
perfectly, having an output value stored for each possible input address. The

The Scientist and Engineer's Guide to Digital Signal Processing464

difference is that the neural network calculates the value at each location
(address), rather than the impossibly large task of storing each value. In fact,
neural network architectures are often evaluated by how well they separate the
hyperspace for a given number of weights.

This approach also provides a clue to the number of nodes required in the
hidden layer. A parameter space of N dimensions requires N numbers to
specify a location. Identifying a region in the hyperspace requires 2N values
(i.e., a minimum and maximum value along each axis defines a hyperspace
rectangular solid). For instance, these simple calculations would indicate that
a neural network with 1000 inputs needs 2000 weights to identify one region
of the hyperspace from another. In a fully interconnected network, this would
require two hidden nodes. The number of regions needed depends on the
particular problem, but can be expected to be far less than the number of
dimensions in the parameter space. While this is only a crude approximation,
it generally explains why most neural networks can operate with a hidden layer
of 2% to 30% the size of the input layer.

A completely different way of understanding neural networks uses the DSP
concept of correlation. As discussed in Chapter 7, correlation is the
optimal way of detecting if a known pattern is contained within a signal.
It is carried out by multiplying the signal with the pattern being looked for,
and adding the products. The higher the sum, the more the signal resembles
the pattern. Now, examine Fig. 26-5 and think of each hidden node as
looking for a specific pattern in the input data. That is, each of the hidden
nodes correlates the input data with the set of weights associated with that
hidden node. If the pattern is present, the sum passed to the sigmoid will
be large, otherwise it will be small.

The action of the sigmoid is quite interesting in this viewpoint. Look back at
Fig. 26-1d and notice that the probability curve separating two bell shaped
distributions resembles a sigmoid. If we were manually designing a neural
network, we could make the output of each hidden node be the fractional
probability that a specific pattern is present in the input data. The output layer
repeats this operation, making the entire three-layer structure a correlation of
correlations, a network that looks for patterns of patterns.

Conventional DSP is based on two techniques, convolution and Fourier
analysis. It is reassuring that neural networks can carry out both these
operations, plus much more. Imagine an N sample signal being filtered to
produce another N sample signal. According to the output side view of
convolution, each sample in the output signal is a weighted sum of samples
from the input. Now, imagine a two-layer neural network with N nodes in each
layer. The value produced by each output layer node is also a weighted sum
of the input values. If each output layer node uses the same weights as all the
other output nodes, the network will implement linear convolution. Likewise,
the DFT can be calculated with a two layer neural network with N nodes in
each layer. Each output layer node finds the amplitude of one frequency
component. This is done by making the weights of each output layer node the
same as the sinusoid being looked for. The resulting network correlates the

Chapter 26- Neural Networks (and more!) 465

input signal with each of the basis function sinusoids, thus calculating the DFT.
Of course, a two-layer neural network is much less powerful than the standard
three layer architecture. This means neural networks can carry out nonlinear
as well as linear processing.

Suppose that one of these conventional DSP strategies is used to design the
weights of a neural network. Can it be claimed that the network is optimal?
Traditional DSP algorithms are usually based on assumptions about the
characteristics of the input signal. For instance, Wiener filtering is optimal for
maximizing the signal-to-noise ratio assuming the signal and noise spectra are
both known; correlation is optimal for detecting targets assuming the noise is
white; deconvolution counteracts an undesired convolution assuming the
deconvolution kernel is the inverse of the original convolution kernel, etc. The
problem is, scientist and engineer's seldom have a perfect knowledge of the
input signals that will be encountered. While the underlying mathematics may
be elegant, the overall performance is limited by how well the data are
understood.

For instance, imagine testing a traditional DSP algorithm with actual input
signals. Next, repeat the test with the algorithm changed slightly, say, by
increasing one of the parameters by one percent. If the second test result is
better than the first, the original algorithm is not optimized for the task at hand.
Nearly all conventional DSP algorithms can be significantly improved by a
trial-and-error evaluation of small changes to the algorithm's parameters and
procedures. This is the strategy of the neural network.

Training the Neural Network
Neural network design can best be explained with an example. Figure 26-8
shows the problem we will attack, identifying individual letters in an image of
text. This pattern recognition task has received much attention. It is easy
enough that many approaches achieve partial success, but difficult enough that
there are no perfect solutions. Many successful commercial products have been
based on this problem, such as: reading the addresses on letters for postal
routing, document entry into word processors, etc.

The first step in developing a neural network is to create a database of
examples. For the text recognition problem, this is accomplished by
printing the 26 capital letters: A,B,C,D ˛ Y,Z, 50 times on a sheet of paper.
Next, these 1300 letters are converted into a digital image by using one of
the many scanning devices available for personal computers. This large
digital image is then divided into small images of 10×10 pixels, each
containing a single letter. This information is stored as a 1.3 Megabyte
database: 1300 images; 100 pixels per image; 8 bits per pixel. We will use
the first 260 images in this database to train the neural network (i.e.,
determine the weights), and the remainder to test its performance. The
database must also contain a way of identifying the letter contained in each
image. For instance, an additional byte could be added to each 10×10
image, containing the letter's ASCII code. In another scheme, the position

The Scientist and Engineer's Guide to Digital Signal Processing466

FIGURE 26-8
Example image of text. Identifying letters in
images of text is one of the classic pattern
recognition problems. In this example, each
letter is contained in a 10×10 pixel image,
with 256 gray levels per pixel. The database
used to train and test the example neural
network consists of 50 sets of the 26 capital
letters, for a total of 1300 images. The images
shown here are a portion of this database.

of each 10×10 image in the database could indicate what the letter is. For
example, images 0 to 49 might all be an "A", images 50-99 might all be a
"B", etc.

For this demonstration, the neural network will be designed for an arbitrary
task: determine which of the 10×10 images contains a vowel, i.e., A, E, I, O,
or U. This may not have any practical application, but it does illustrate the
ability of the neural network to learn very abstract pattern recognition
problems. By including ten examples of each letter in the training set, the
network will (hopefully) learn the key features that distinguish the target from
the nontarget images.

The neural network used in this example is the traditional three-layer, fully
interconnected architecture, as shown in Figs. 26-5 and 26-6. There are 101
nodes in the input layer (100 pixel values plus a bias node), 10 nodes in the
hidden layer, and 1 node in the output layer. When a 100 pixel image is
applied to the input of the network, we want the output value to be close to one
if a vowel is present, and near zero if a vowel is not present. Don't be worried
that the input signal was acquired as a two-dimensional array (10×10), while
the input to the neural network is a one-dimensional array. This is your
understanding of how the pixel values are interrelated; the neural network will
find relationships of its own.

Table 26-2 shows the main program for calculating the neural network
weights, with Table 26-3 containing three subroutines called from the main
program. The array elements: X1[1] through X1[100], hold the input layer
values. In addition, X1[101] always holds a value of 1, providing the input
to the bias node. The output values from the hidden nodes are contained

Chapter 26- Neural Networks (and more!) 467

100 'NEURAL NETWORK TRAINING (Determination of weights)
110 '
120 'INITIALIZE
130 MU = .000005 'iteration step size
140 DIM X1[101] 'holds the input layer signal + bias term
150 DIM X2[10] 'holds the hidden layer signal
160 DIM WH[10,101] 'holds hidden layer weights
170 DIM WO[10] 'holds output layer weights
180 '
190 FOR H% = 1 TO 10 'SET WEIGHTS TO RANDOM VALUES
200 WO[H%] = (RND-0.5) 'output layer weights: -0.5 to 0.5
210 FOR I% = 1 TO 101 'hidden layer weights: -0.0005 to 0.0005
220 WH[H%,I%] = (RND-0.5)/1000
230 NEXT I%
240 NEXT H%
250 '
260 ' 'ITERATION LOOP
270 FOR ITER% = 1 TO 800 'loop for 800 iterations
280 '
290 ESUM = 0 'clear the error accumulator, ESUM
300 '
310 FOR LETTER% = 1 TO 260 'loop for each letter in the training set
320 GOSUB 1000 'load X1[] with training set
330 GOSUB 2000 'find the error for this letter, ELET
340 ESUM = ESUM + ELET^2 'accumulate error for this iteration
350 GOSUB 3000 'find the new weights
360 NEXT LETTER%
370 '
380 PRINT ITER% ESUM 'print the progress to the video screen
390 '
400 NEXT ITER%
410 '
420 GOSUB XXXX 'mythical subroutine to save the weights
430 END

 TABLE 26-2

in the array elements: X2[1] through X2[10]. The variable, X3, contains the
network's output value. The weights of the hidden layer are contained in the
array, WH[,], where the first index identifies the hidden node (1 to 10), and
the second index is the input layer node (1 to 101). The weights of the output
layer are held in WO[1] to WO[10]. This makes a total of 1020 weight values
that define how the network will operate.

The first action of the program is to set each weight to an arbitrary initial value
by using a random number generator. As shown in lines 190 to 240, the hidden
layer weights are assigned initial values between -0.0005 and 0.0005, while the
output layer weights are between -0.5 and 0.5. These ranges are chosen to be
the same order of magnitude that the final weights must be. This is based on:
(1) the range of values in the input signal, (2) the number of inputs summed at
each node, and (3) the range of values over which the sigmoid is active, an
input of about , and an output of 0 to 1. For instance, when 101&5 < x < 5
inputs with a typical value of 100 are multiplied by the typical weight value of
0.0002, the sum of the products is about 2, which is in the active range of the
sigmoid's input.

The Scientist and Engineer's Guide to Digital Signal Processing468

If we evaluated the performance of the neural network using these random
weights, we would expect it to be the same as random guessing. The learning
algorithm improves the performance of the network by gradually changing each
weight in the proper direction. This is called an iterative procedure, and is
controlled in the program by the FOR-NEXT loop in lines 270-400. Each
iteration makes the weights slightly more efficient at separating the target from
the nontarget examples. The iteration loop is usually carried out until no
further improvement is being made. In typical neural networks, this may be
anywhere from ten to ten-thousand iterations, but a few hundred is common.
This example carries out 800 iterations.

In order for this iterative strategy to work, there must be a single parameter
that describes how well the system is currently performing. The variable
ESUM (for error sum) serves this function in the program. The first action
inside the iteration loop is to set ESUM to zero (line 290) so that it can be
used as an accumulator. At the end of each iteration, the value of ESUM is
printed to the video screen (line 380), so that the operator can insure that
progress is being made. The value of ESUM will start high, and gradually
decrease as the neural network is trained to recognize the targets. Figure 26-9
shows examples of how ESUM decreases as the iterations proceed.

All 260 images in the training set are evaluated during each iteration, as
controlled by the FOR-NEXT loop in lines 310-360. Subroutine 1000 is used
to retrieve images from the database of examples. Since this is not something
of particular interest here, we will only describe the parameters passed to and
from this subroutine. Subroutine 1000 is entered with the parameter,
LETTER%, being between 1 and 260. Upon return, the input node values,
X1[1] to X1[100], contain the pixel values for the image in the database
corresponding to LETTER%. The bias node value, X1[101], is always
returned with a constant value of one. Subroutine 1000 also returns another
parameter, CORRECT. This contains the desired output value of the network
for this particular letter. That is, if the letter in the image is a vowel,
CORRECT will be returned with a value of one. If the letter in the image is
not a vowel, CORRECT will be returned with a value of zero.

After the image being worked on is loaded into X1[1] through X1[100],
subroutine 2000 passes the data through the current neural network to
produce the output node value, X3. In other words, subroutine 2000 is the
same as the program in Table 26-1, except for a different number of nodes
in each layer. This subroutine also calculates how well the current network
identifies the letter as a target or a nontarget. In line 2210, the variable
ELET (for error-letter) is calculated as the difference between the output
value actually generated, X3, and the desired value, CORRECT. This
makes ELET a value between -1 and 1. All of the 260 values for ELET
are combined (line 340) to form ESUM, the total squared error of the
network for the entire training set.

Line 2220 shows an option that is often included when calculating the error:
assigning a different importance to the errors for targets and nontargets. For
example, recall the cancer example presented earlier in this chapter,

Chapter 26- Neural Networks (and more!) 469

1000 'SUBROUTINE TO LOAD X1[] WITH IMAGES FROM THE DATABASE
1010 'Variables entering routine: LETTER%
1020 'Variables exiting routine: X1[1] to X1[100], X1[101] = 1, CORRECT
1030 '
1040 'The variable, LETTER%, between 1 and 260, indicates which image in the database is to be
1050 'returned in X1[1] to X1[100]. The bias node, X1[101], always has a value of one. The variable,
1060 'CORRECT, has a value of one if the image being returned is a vowel, and zero otherwise.
1070 '(The details of this subroutine are unimportant, and not listed here).
1900 RETURN

2000 'SUBROUTINE TO CALCULATE THE ERROR WITH THE CURRENT WEIGHTS
2010 'Variables entering routine: X1[], X2[], WI[,], WH[], CORRECT
2020 'Variables exiting routine: ELET
2030 '
2040 ' 'FIND THE HIDDEN NODE VALUES, X2[]
2050 FOR H% = 1 TO 10 'loop for each hidden nodes
2060 ACC = 0 'clear the accumulator
2070 FOR I% = 1 TO 101 'weight and sum each input node
2080 ACC = ACC + X1[I%] * WH[H%,I%]
2090 NEXT I%
2100 X2[H%] = 1 / (1 + EXP(-ACC)) 'pass summed value through sigmoid
2110 NEXT H%
2120 '
2130 ' 'FIND THE OUTPUT VALUE: X3
2140 ACC = 0 'clear the accumulator
2150 FOR H% = 1 TO 10 'weight and sum each hidden node
2160 ACC = ACC + X2[H%] * WO[H%]
2170 NEXT H%
2180 X3 = 1 / (1 + EXP(-ACC)) 'pass summed value through sigmoid
2190 '
2200 ' 'FIND ERROR FOR THIS LETTER, ELET
2210 ELET = (CORRECT - X3) 'find the error
2220 IF CORRECT = 1 THEN ELET = ELET*5 'give extra weight to targets
2230 '
2240 RETURN

3000 'SUBROUTINE TO FIND NEW WEIGHTS
3010 'Variables entering routine: X1[], X2[], X3, WI[,], WH[], ELET, MU
3020 'Variables exiting routine: WI[,], WH[]
3030 '
3040 ' 'FIND NEW WEIGHTS FOR HIDDEN LAYER
3050 FOR H% = 1 TO 10
3060 FOR I% = 1 TO 101
3070 SLOPEO = X3 * (1 - X3)
3080 SLOPEH = X2(H%) * (1 - X2[H%])
3090 DX3DW = X1[I%] * SLOPEH * WO[H%] * SLOPEO
3100 WH[H%,I%] = WH[H%,I%] + DX3DW * ELET * MU
3110 NEXT I%
3120 NEXT H%
3130 '
3140 ' 'FIND NEW WEIGHTS FOR OUTPUT LAYER
3150 FOR H% = 1 TO 10
3160 SLOPEO = X3 * (1 - X3)
3170 DX3DW = X2[H%] * SLOPEO
3180 WO[H%] = WO[H%] + DX3DW * ELET * MU
3190 NEXT H%
3200 '
3210 RETURN

 TABLE 26-3

The Scientist and Engineer's Guide to Digital Signal Processing470

and the consequences of making a false-positive error versus a false-negative
error. In the present example, we will arbitrarily declare that the error in
detecting a target is five times as bad as the error in detecting a nontarget. In
effect, this tells the network to do a better job with the targets, even if it hurts
the performance of the nontargets.

Subroutine 3000 is the heart of the neural network strategy, the algorithm
for changing the weights on each iteration. We will use an analogy to
explain the underlying mathematics. Consider the predicament of a military
paratrooper dropped behind enemy lines. He parachutes to the ground in
unfamiliar territory, only to find it is so dark he can't see more than a few
feet away. His orders are to proceed to the bottom of the nearest valley to
begin the remainder of his mission. The problem is, without being able to
see more than a few feet, how does he make his way to the valley floor?
Put another way, he needs an algorithm to adjust his x and y position on the
earth's surface in order to minimize his elevation. This is analogous to the
problem of adjusting the neural network weights, such that the network's
error, ESUM, is minimized.

We will look at two algorithms to solve this problem: evolution and
steepest descent. In evolution, the paratrooper takes a flying jump in some
random direction. If the new elevation is higher than the previous, he
curses and returns to his starting location, where he tries again. If the new
elevation is lower, he feels a measure of success, and repeats the process
from the new location. Eventually he will reach the bottom of the valley,
although in a very inefficient and haphazard path. This method is called
evolution because it is the same type of algorithm employed by nature in
biological evolution. Each new generation of a species has random
variations from the previous. If these differences are of benefit to the
species, they are more likely to be retained and passed to the next
generation. This is a result of the improvement allowing the animal to
receive more food, escape its enemies, produce more offspring, etc. If the
new trait is detrimental, the disadvantaged animal becomes lunch for some
predator, and the variation is discarded. In this sense, each new generation
is an iteration of the evolutionary optimization procedure.

When evolution is used as the training algorithm, each weight in the neural
network is slightly changed by adding the value from a random number
generator. If the modified weights make a better network (i.e., a lower value
for ESUM), the changes are retained, otherwise they are discarded. While this
works, it is very slow in converging. This is the jargon used to describe that
continual improvement is being made toward an optimal solution (the bottom
of the valley). In simpler terms, the program is going to need days to reach
a solution, rather than minutes or hours.

Fortunately, the steepest descent algorithm is much faster. This is how the
paratrooper would naturally respond: evaluate which way is downhill, and
move in that direction. Think about the situation this way. The paratrooper
can move one step to the north, and record the change in elevation. After
returning to his original position, he can take one step to the east, and

Chapter 26- Neural Networks (and more!) 471

Iteration
0 100 200 300 400 500 600 700 800

0

50

100

150

200

250

300

350

a
b
c

FIGURE 26-9
Neural network convergence. This graph
shows how the neural network error (the
value of ESUM) decreases as the iterations
proceed. Three separate trials are shown,
each starting with different initial weights.

Er
ro

r

record that elevation change. Using these two values, he can determine
which direction is downhill. Suppose the paratrooper drops 10 cm when he
moves one step in the northern direction, and drops 20 cm when he moves
one step in the eastern direction. To travel directly downhill, he needs to
move along each axis an amount proportional to the slope along that axis.
In this case, he might move north by 10 steps and east by 20 steps. This
moves h im down the s t eepes t pa r t o f t he s l ope a d i s t ance o f

 steps. Alternatively, he could move in a straight line to102% 202 ' 22.4
the new location, 22.4 steps along the diagonal. The key point is: the
steepest descent is achieved by moving along each axis a distance
proportional to the slope along that axis.

Subroutine 3000 implements this same steepest decent algorithm for the
network weights. Before entering subroutine 3000, one of the example
images has been applied to the input layer, and the information propagated
to the output. This means that the values for: X1[], X2[] and X3 are all
specified, as well as the current weight values: WH[,] and WO[]. In
addition, we know the error the network produces for this particular image,
ELET. The hidden layer weights are updated in lines 3050 to 3120, while
the output layer weights are modified in lines 3150 to 3190. This is done
by calculating the slope for each weight, and then changing each weight
by an amount proportional to that slope. In the paratrooper case, the slope
along an axis is found by moving a small distance along the axis (say,)x),
measuring the change in elevation (say,)E), and then dividing the two
()E/)x). The slope of a neural network weight can be found in this same
way: add a small increment to the weight value ()w), find the resulting
change in the output signal ()X3), and divide the two ()X3/)w). Later in
this chapter we will look at an example that calculates the slope this way.
However, in the present example we will use a more efficient method.

Earlier we said that the nonlinearity (the sigmoid) needs to be differentiable.
Here is where we will use this property. If we know the slope at each point on
the nonlinearity, we can directly write an equation for the slope of each weight
()X3/)w) without actually having to perturb it. Consider a specific weight, for

The Scientist and Engineer's Guide to Digital Signal Processing472

)X3
)w

' X2 [1] SLOPE O

EQUATION 26-3
Slope of the output layer weights.
This equation is written for the
weight, WO[1].

)X3
)w

' X1 [1] SLOPEH1 WO[1] SLOPE O

EQUATION 26-4
Slope of the hidden layer weights.
This equation is written for the
weight, WH[1,1].

wnew ' wold %
)X3
)w

ELET MU
EQUATION 26-5
Updating the weights. Each of the
weights is adjusted by adding an
amount proportional to the slope of
the weight.

example, WO[1], corresponding to the first input of the output node. Look at
the structure in Figs. 26-5 and 26-6, and ask: how will the output (X3) be
affected if this particular weight (w) is changed slightly, but everything else is
kept the same? The answer is:

where SLOPEO is the first derivative of the output layer sigmoid, evaluated
where we are operating on its curve. In other words, SLOPEO describes how
much the output of the sigmoid changes in response to a change in the input to
the sigmoid. From Eq. 26-2, SLOPEO can be calculated from the current
output value of the sigmoid, X3. This calculation is shown in line 3160. In
line 3170, the slope for this weight is calculated via Eq. 26-3, and stored in the
variable DX3DW (i.e.,).)X3 /)w

Using a similar analysis, the slope for a weight on the hidden layer, such as
WH[1,1], can be found by:

SLOPEH1 is the first derivative of the hidden layer sigmoid, evaluated where
we are operating on its curve. The other values, X1[1] and WO[1], are
simply constants that the weight change sees as it makes its way to the
output. In lines 3070 and 3080, the slopes of the sigmoids are calculated
using Eq. 26-2. The slope of the hidden layer weight, DX3DW is
calculated in line 3090 via Eq. 26-4.

Now that we know the slope of each of the weights, we can look at how each
weight is changed for the next iteration. The new value for each weight is
found by taking the current weight, and adding an amount that is proportional
to the slope:

This calculation is carried out in line 3100 for the hidden layer, and line 3180
for the output layer. The proportionality constant consists of two factors,

Chapter 26- Neural Networks (and more!) 473

ELET, the error of the network for this particular input, and MU, a constant set
at the beginning of the program. To understand the need for ELET in this
calculation, imagine that an image placed on the input produces a small error
in the output signal. Next, imagine that another image applied to the input
produces a large output error. When adjusting the weights, we want to nudge
the network more for the second image than the first. If something is working
poorly, we want to change it; if it is working well, we want to leave it alone.
This is accomplished by changing each weight in proportion to the current
error, ELET.

To understand how MU affects the system, recall the example of the
paratrooper. Once he determines the downhill direction, he must decide how
far to proceed before reevaluating the slope of the terrain. By making this
distance short, one meter for example, he will be able to precisely follow the
contours of the terrain and always be moving in an optimal direction. The
problem is that he spends most of his time evaluating the slope, rather than
actually moving down the hill. In comparison, he could choose the distance
to be large, say 1000 meters. While this would allow the paratrooper to move
rapidly along the terrain, he might overshoot the downhill path. Too large of
a distance makes him jump all over the country-side without making the desired
progress.

In the neural network, MU controls how much the weights are changed on each
iteration. The value to use depends on the particular problem, being as low as
10-6, or as high as 0.1. From the analogy of the paratrooper, it can be expected
that too small of a value will cause the network to converge too slowly. In
comparison, too large of a value will cause the convergence to be erratic, and
will exhibit chaotic oscillation around the final solution. Unfortunately, the
way neural networks react to various values of MU can be difficult to
understand or predict. This makes it critical that the network error (i.e.,
ESUM) be monitored during the training, such as printing it to the video screen
at the end of each iteration. If the system isn't converging properly, stop the
program and try another value for MU.

Evaluating the Results
So, how does it work? The training program for vowel recognition was run
three times using different random values for the initial weights. About one
hour is required to complete the 800 iterations on a 100 MHz Pentium
personnel computer. Figure 26-9 shows how the error of the network,
ESUM, changes over this period. The gradual decline indicates that the
network is learning the task, and that the weights reach a near optimal value
after several hundred iterations. Each trial produces a different solution to
the problem, with a different final performance. This is analogous to the
paratrooper starting at different locations, and thereby ending up at the
bottom of different valleys. Just as some valleys are deeper than others,
some neural network solutions are better than others. This means that the
learning algorithm should be run several times, with the best of the group
taken as the final solution.

The Scientist and Engineer's Guide to Digital Signal Processing474

trial (a)

trial (b)

trial (c)

1 2 3 4 5 6 7 8 9 10
hidden node

FIGURE 26-10
Example of neural network weights. In this figure, the hidden layer weights for the three solutions
are displayed as images. All three of these solutions appear random to the human eye.

In Fig. 26-10, the hidden layer weights of the three solutions are displayed as
images. This means the first action taken by the neural network is to correlate
(multiply and sum) these images with the input signal. They look like random
noise! These weights values can be shown to work, but why they work is
something of a mystery. Here is something else to ponder. The human brain
is composed of about 100 trillion neurons, each with an average of 10,000
interconnections. If we can't understand the simple neural network in this
example, how can we study something that is at least 100,000,000,000,000
times more complex? This is 21st century research.

Figure 26-11a shows a histogram of the neural network's output for the 260
letters in the training set. Remember, the weights were selected to make the
output near one for vowel images, and near zero otherwise. Separation has
been perfectly achieved, with no overlap between the two distributions. Also
notice that the vowel distribution is narrower than the nonvowel distribution.
This is because we declared the target error to be five times more important
than the nontarget error (see line 2220).

In comparison, Fig. 26-11b shows the histogram for images 261 through 1300
in the database. While the target and nontarget distributions are reasonably
distinct, they are not completely separated. Why does the neural network
perform better on the first 260 letters than the last 1040? Figure (a) is
cheating! It's easy to take a test if you have already seen the answers. In other
words, the neural network is recognizing specific images in the training set, not
the general patterns identifying vowels from nonvowels.

Figure 26-12 shows the performance of the three solutions, displayed as
ROC curves. Trial (b) provides a significantly better network than the

Chapter 26- Neural Networks (and more!) 475

Output value
0.00 0.25 0.50 0.75 1.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a. Training database

vowelsnonvowels

FIGURE 26-11
Neural network performance. These are histograms of the neural network's output values, (a) for
the training data, and (b) for the remaining images. The neural network performs better with the
training data because it has already seen the answers to the test.

Output value
0.00 0.25 0.50 0.75 1.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

b. New database

vowelsnonvowels

R
el

at
iv

e
nu

m
be

r o
f o

cc
ur

en
ce

s

R
el

at
iv

e
nu

m
be

r o
f o

cc
ur

en
ce

s

% nonvowels reported
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

a
b

c
FIGURE 26-12
ROC analysis of neural network examples.
These curves compare three neural networks
designed to detect images of vowels. Trial (b)
is the best solution, shown by its curve being
closer to the upper-left corner of the graph.
This network can correctly detect 24 out of 25
targets, while providing only 1 false alarm for
each 25 nontargets. That is, there is a point
on the ROC curve at and x ' 4% y ' 96% %

 v
ow

el
s r

ep
or

te
d

other two. This is a matter of random chance depending on the initial weights
used. At one threshold setting, the neural network designed in trial "b" can
detect 24 out of 25 targets (i.e., 96% of the vowel images), with a false alarm
rate of only 1 in 25 nontargets (i.e., 4% of the nonvowel images). Not bad
considering the abstract nature of this problem, and the very general solution
applied.

The Scientist and Engineer's Guide to Digital Signal Processing476

Some final comments on neural networks. Getting a neural network to converge
during training can be tricky. If the network error (ESUM) doesn't steadily
decrease, the program must be terminated, changed, and then restarted. This
may take several attempts before success is reached. Three things can be
changed to affect the convergence: (1) MU, (2) the magnitude of the initial
random weights, and (3) the number of hidden nodes (in the order they should
be changed).

The most critical item in neural network development is the validity of the
training examples. For instance, when new commercial products are being
developed, the only test data available are from prototypes, simulations,
educated guesses, etc. If a neural network is trained on this preliminary
information, it might not operate properly in the final application. Any
difference between the training database and the eventual data will degrade the
neural network's performance (Murphy's law for neural networks). Don't try
to second guess the neural network on this issue; you can't!

Recursive Filter Design
Chapters 19 and 20 show how to design recursive filters with the standard
frequency responses: high-pass, low-pass, band-pass, etc. What if you need
something custom? The answer is to design a recursive filter just as you would
a neural network: start with a generic set of recursion coefficients, and use
iteration to slowly mold them into what you want. This technique is important
for two reasons. First, it allows custom recursive filters to be designed without
having to hassle with the mathematics of the z-transform. Second, it shows that
the ideas from conventional DSP and neural networks can be combined to form
superb algorithms.

The main program for this method is shown in Table 26-4, with two
subroutines in Table 26-5. The array, T[], holds the desired frequency
response, some kind of curve that we have manually designed. Since this
program is based around the FFT, the lengths of the signals must be a power
of two. As written, this program uses an FFT length of 256, as defined by the
variable, N%, in line 130. This means that T[0] to T[128] correspond to the
frequencies between 0 and 0.5 of the sampling rate. Only the magnitude is
contained in this array; the phase is not controlled in this design, and becomes
whatever it becomes.

The recursion coefficients are set to their initial values in lines 270-310,
typically selected to be the identity system. Don't use random numbers here,
or the initial filter will be unstable. The recursion coefficients are held in the
arrays, A[] and B[]. The variable, NP%, sets the number of poles in the
designed filter. For example, if NP% is 5, the "a" coefficients run from A[0]
to A[5], while the "b" coefficients run from B[1] to B[5].

As previously mentioned, the iterative procedure requires a single value that
describes how well the current system is functioning. This is provided by the
variable, ER (for error), and is calculated in subroutine 3000. Lines

Chapter 26- Neural Networks (and more!) 477

100 'ITERATIVE DESIGN OF RECURSIVE FILTER
110 '
120 'INITIALIZE
130 N% = 256 'number of points in FFT
140 NP% = 8 'number of poles in filter
150 DELTA = .00001 'perturbation increment
160 MU = .2 'iteration step size
170 DIM REX[255] 'real part of signal during FFT
180 DIM IMX[255] 'imaginary part of signal during FFT
190 DIM T[128] 'desired frequency response (mag only)
200 DIM A[8] 'the "a" recursion coefficients
210 DIM B[8] 'the "b" recursion coefficients
220 DIM SA[8] 'slope for "a" coefficients
230 DIM SB[8] 'slope for "b" coefficients
240 '
250 GOSUB XXXX 'mythical subroutine to load T[]
260 '
270 FOR P% = 0 TO NP% 'initialize coefficients to the identity system
280 A[P%] = 0
290 B[P%] = 0
300 NEXT P%
310 A[0] = 1
320 '
330 ' 'ITERATION LOOP
340 FOR ITER% = 1 TO 100 'loop for desired number of iterations
350 GOSUB 2000 'calculate new coefficients
360 PRINT ITER% ENEW MU 'print current status to video screen
370 IF ENEW > EOLD THEN MU = MU/2 'adjust the value of MU
380 NEXT ITER%
390 '
400 '
410 FOR P% = 0 TO NP% 'PRINT OUT THE COEFFICIENTS
420 PRINT A[P%] B[P%]
430 NEXT P%
440 '
450 END

TABLE 26-4

3040 to 3080 load an impulse in the array, IMX[]. Next, lines 3100-3150
use this impulse as an input signal to the recursive filter defined by the current
values of A[] and B[]. The output of this filter is thus the impulse response
of the current system, and is stored in the array, REX[]. The system's
frequency response is then found by taking the FFT of the impulse response, as
shown in line 3170. Subroutine 1000 is the FFT program listed in Table 12-4
in Chapter 12. This FFT subroutine returns the frequency response in
rectangular form, overwriting the arrays REX[] and IMX[].

Lines 3200-3250 then calculate ER, the mean squared error between the
magnitude of the current frequency response, and the desired frequency
response. Pay particular attention to how this error is found. The iterative
action of this program optimizes this error, making the way it is defined very
important. The FOR-NEXT loop runs through each frequency in the frequency
response. For each frequency, line 3220 calculates the magnitude of the
current frequency response from the rectangular data. In line 3230, the error
at this frequency is found by subtracting the desired magnitude, T[], from the
current magnitude, MAG. This error is then squared, and added to the

The Scientist and Engineer's Guide to Digital Signal Processing478

accumulator variable, ER. After looping through each frequency, line 3250
completes the calculation to make ER the mean squared error of the entire
frequency response.

Lines 340 to 380 control the iteration loop of the program. Subroutine 2000
is where the changes to the recursion coefficients are made. The first action
in this subroutine is to determine the current value of ER, and store it in
another variable, EOLD (lines 2040 & 2050). After the subroutine updates
the coefficients, the value of ER is again determined, and assigned to the
variable, ENEW (lines 2270 and 2280).

The variable, MU, controls the iteration step size, just as in the previous neural
network program. An advanced feature is used in this program: an automated
adjustment to the value of MU. This is the reason for having the two variables,
EOLD and ENEW. When the program starts, MU is set to the relatively high
value of 0.2 (line 160). This allows the convergence to proceed rapidly, but
will limit how close the filter can come to an optimal solution. As the
iterations proceed, points will be reached where no progress is being made,
identified by ENEW being higher than EOLD. Each time this occurs, line 370
reduces the value of MU.

Subroutine 2000 updates the recursion coefficients according to the steepest
decent method: calculate the slope for each coefficient, and then change the
coefficient an amount proportional to its slope. Lines 2080-2130 calculate the
slopes for the "a" coefficients, storing them in the array, SA[]. Likewise, lines
2150-2200 calculate the slopes for the "b" coefficients, storing them in the
array, SB[]. Lines 2220-2250 then modify each of the recursion coefficients
by an amount proportional to these slopes. In this program, the proportionality
constant is simply the step size, MU. No error term is required in the
proportionality constant because there is only one example to be matched: the
desired frequency response.

The last issue is how the program calculates the slopes of the recursion
coefficients. In the neural network example, an equation for the slope was
derived. This procedure cannot be used here because it would require taking
the derivative across the DFT. Instead, a brute force method is applied:
actually change the recursion coefficient by a small increment, and then directly
calculate the new value of ER. The slope is then found as the change in ER
divided by the amount of the increment. Specifically, the current value of ER
is found in lines 2040-2050, and stored in the variable, EOLD. The loop in
lines 2080-2130 runs through each of the "a" coefficients. The first action
inside this loop is to add a small increment, DELTA, to the recursion
coefficient being worked on (line 2090). Subroutine 3000 is invoked in line
2100 to find the value of ER with the modified coefficient. Line 2110 then
calculates the slope of this coefficient as: . Line 2120(ER & EOLD) /DELTA
then restores the modified coefficient by subtracting the value of DELTA.

Figure 26-13 shows several examples of filters designed using this program.
The dotted line is the desired frequency response, while the solid line is the

Chapter 26- Neural Networks (and more!) 479

2000 'SUBROUTINE TO CALCULATE THE NEW RECURSION COEFFICIENTS
2010 'Variables entering routine: A[], B[], DELTA, MU
2020 'Variables exiting routine: A[], B[], EOLD, ENEW
2030 '
2040 GOSUB 3000 'FIND THE CURRENT ERROR
2050 EOLD = ER 'store current error in variable, EOLD
2060 '
2070 'FIND THE ERROR SLOPES
2080 FOR P% = 0 TO NP% 'loop through each "a" coefficient
2090 A[P%] = A[P%] + DELTA 'add a small increment to the coefficient
2100 GOSUB 3000 'find the error with the change
2110 SA[P%] = (ER-EOLD)/DELTA 'calculate the error slope, store in SA[]
2120 A[P%] = A[P%] - DELTA 'return coefficient to original value
2130 NEXT P%
2140 '
2150 FOR P% = 1 TO NP% 'repeat process for each "b" coefficient
2160 B[P%] = B[P%] + DELTA
2170 GOSUB 3000
2180 SB[P%] = (ER-EOLD)/DELTA 'calculate the error slope, store in SB[]
2190 B[P%] = B[P%] - DELTA
2200 NEXT P%
2210 ' 'CALCULATE NEW COEFFICIENTS
2220 FOR P% = 0 TO NP% 'loop through each coefficient
2230 A[P%] = A[P%] - SA[P%] * MU 'adjust coefficients to move "downhill"
2240 B[P%] = B[P%] - SB[P%] * MU
2250 NEXT P%
2260 '
2270 GOSUB 3000 'FIND THE NEW ERROR
2280 ENEW = ER 'store new error in variable, ENEW
2290 '
2300 RETURN

3000 'SUBROUTINE TO CALCULATE THE FREQUENCY DOMAIN ERROR
3010 'Variables entering routine: A[], B[], T[]
3020 'Variables exiting routine: ER
3030 '
3040 FOR I% = 0 TO N%-1 'LOAD SHIFTED IMPULSE INTO IMX[]
3050 REX[I%] = 0
3060 IMX[I%] = 0
3070 NEXT I%
3080 IMX[12] = 1
3090 ' 'CALCULATE IMPULSE RESPONSE
3100 FOR I% = 12 TO N%-1
3110 FOR J% = 0 TO NP%
3120 REX[I%] = REX[I%] + A[J%] * IMX[I%-J%] + B[J%] * REX[I%-J%]
3130 NEXT J%
3140 NEXT I%
3150 IMX[12] = 0
3160 ' 'CALCULATE THE FFT
3170 GOSUB 1000 'Table 12-4, uses REX[], IMX[], N%
3180 '
3190 'FIND FREQUENCY DOMAIN ERROR
3200 ER = 0 'zero ER, to use as an accumulator
3210 FOR I% = 0 TO N%/2 'loop through each positive frequency
3220 MAG = SQR(REX[I%]^2 + IMX[I%]^2) 'rectangular --> polar conversion
3230 ER = ER + (MAG - T[I%])^2 'calculate and accumulate squared error
3240 NEXT I%
3250 ER = SQR(ER/(N%/2+1)) 'finish calculation of error, ER
3260 '
3270 RETURN

TABLE 26-5

The Scientist and Engineer's Guide to Digital Signal Processing480

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

d. Custom

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

c. 1/sinc(x)

a0 = 1.151692
a1 = -0.06794763
a2 = -0.07929603
b1 = -0.1129629
b2 = 0.1062142

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

a. Low-pass

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

b. Low-pass

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

FIGURE 26-13
Iterative design of recursive filters. Figure (a) shows an 8 pole low-pass filter with the error equally distributed
between 0 and 0.5. In (b), the error has been weighted to force better performance in the stopband, at the expense
of error in the passband. Figure (c) shows a 2 pole filter used for the 1/sinc(x) correction in digital-to-analog
conversion. The frequency response in (d) is completely custom. In each figure, the desired frequency response
is shown by the dotted line, and the actual frequency response by the solid curve.

frequency response of the designed filter. Each of these filters requires several
minutes to converge on a 100 MHz Pentium. Figure (a) is an 8 pole low-pass
filter, where the error is equally weighted over the entire frequency spectrum
(the program as written). Figure (b) is the same filter, except the error in the
stopband is multiplied by eight when ER is being calculated. This forces the
filter to have less stopband ripple, at the expense of greater ripple in the
passband.

Figure (c) shows a 2 pole filter for: . As discussed in Chapter 3, this1 /sinc(x)
can be used to counteract the zeroth-order hold during digital-to-analog
conversion (see Fig. 3-6). The error in this filter was only summed between
0 and 0.45, resulting in a better match over this range, at the expense of a
worse match between 0.45 and 0.5. Lastly, (d) is a very irregular 6 pole
frequency response that includes a sharp dip. To achieve convergence, the
recursion coefficients were initially set to those of a notch filter.

481

CHAPTER

27 Data Compression

Data transmission and storage cost money. The more information being dealt with, the more it
costs. In spite of this, most digital data are not stored in the most compact form. Rather, they
are stored in whatever way makes them easiest to use, such as: ASCII text from word processors,
binary code that can be executed on a computer, individual samples from a data acquisition
system, etc. Typically, these easy-to-use encoding methods require data files about twice as large
as actually needed to represent the information. Data compression is the general term for the
various algorithms and programs developed to address this problem. A compression program is
used to convert data from an easy-to-use format to one optimized for compactness. Likewise, an
uncompression program returns the information to its original form. We examine five techniques
for data compression in this chapter. The first three are simple encoding techniques, called: run-
length, Huffman, and delta encoding. The last two are elaborate procedures that have established
themselves as industry standards: LZW and JPEG.

Data Compression Strategies
Table 27-1 shows two different ways that data compression algorithms can be
categorized. In (a), the methods have been classified as either lossless or
lossy. A lossless technique means that the restored data file is identical to the
original. This is absolutely necessary for many types of data, for example:
executable code, word processing files, tabulated numbers, etc. You cannot
afford to misplace even a single bit of this type of information. In comparison,
data files that represent images and other acquired signals do not have to be
keep in perfect condition for storage or transmission. All real world
measurements inherently contain a certain amount of noise. If the changes
made to these signals resemble a small amount of additional noise, no harm is
done. Compression techniques that allow this type of degradation are called
lossy. This distinction is important because lossy techniques are much more
effective at compression than lossless methods. The higher the compression
ratio, the more noise added to the data.

The Scientist and Engineer's Guide to Digital Signal Processing482

Lossless Lossy outputMethod

a. Lossless or Lossy

run-length
Huffman

delta
LZW

CS&Q
JPEG

MPEG

fixed fixed
fixed variable

variable
variable

Group size:
input

CS&Q
Huffman

Arithmetic
run-length, LZW

variable
fixed

b. Fixed or variable group size

TABLE 27-1
Compression classifications. Data compression methods can be divided in two ways. In (a), the techniques
are classified as lossless or lossy. Lossless methods restore the compressed data to exactly the same form as
the original, while lossy methods only generate an approximation. In (b), the methods are classified according
to a fixed or variable size of group taken from the original file and written to the compressed file.

Images transmitted over the world wide web are an excellent example of why
data compression is important. Suppose we need to download a digitized color
photograph over a computer's 33.6 kbps modem. If the image is not compressed
(a TIFF file, for example), it will contain about 600 kbytes of data. If it has
been compressed using a lossless technique (such as used in the GIF format),
it will be about one-half this size, or 300 kbytes. If lossy compression has
been used (a JPEG file), it will be about 50 kbytes. The point is, the download
times for these three equivalent files are 142 seconds, 71 seconds, and 12
seconds, respectively. That's a big difference! JPEG is the best choice for
digitized photographs, while GIF is used with drawn images, such as company
logos that have large areas of a single color.

Our second way of classifying data compression methods is shown in Table 27-
1b. Most data compression programs operate by taking a group of data from
the original file, compressing it in some way, and then writing the compressed
group to the output file. For instance, one of the techniques in this table is
CS&Q, short for coarser sampling and/or quantization. Suppose we are
compressing a digitized waveform, such as an audio signal that has been
digitized to 12 bits. We might read two adjacent samples from the original
file (24 bits), discard one of the sample completely, discard the least significant
4 bits from the other sample, and then write the remaining 8 bits to the output
file. With 24 bits in and 8 bits out, we have implemented a 3:1 compression
ratio using a lossy algorithm. While this is rather crude in itself, it is very
effective when used with a technique called transform compression. As we
will discuss later, this is the basis of JPEG.

Table 27-1b shows CS&Q to be a fixed-input fixed-output scheme. That is,
a fixed number of bits are read from the input file and a smaller fixed
number of bits are written to the output file. Other compression methods
allow a variable number of bits to be read or written. As you go through
the description of each of these compression methods, refer back to this
table to understand how it fits into this classification scheme. Why are
JPEG and MPEG not listed in this table? These are composite algorithms
that combine many of the other techniques. They are too sophisticated to
be classified into these simple categories.

Chapter 27- Data Compression 483

original data stream:

run-length encoded:

17 8 54 0 0 0 97 5 16 0 45 23 0 0 0 0 0 3 67 0 0 8

17 8 54 0 3 97 5 16 0 1 45 23 0 5 3 67 0 2 8

FIGURE 27-1
Example of run-length encoding. Each run of zeros is replaced by two characters in the compressed file:
a zero to indicate that compression is occurring, followed by the number of zeros in the run.

Run-Length Encoding
Data files frequently contain the same character repeated many times in a row.
For example, text files use multiple spaces to separate sentences, indent
paragraphs, format tables & charts, etc. Digitized signals can also have runs
of the same value, indicating that the signal is not changing. For instance, an
image of the nighttime sky would contain long runs of the character or
characters representing the black background. Likewise, digitized music might
have a long run of zeros between songs. Run-length encoding is a simple
method of compressing these types of files.

Figure 27-1 illustrates run-length encoding for a data sequence having frequent
runs of zeros. Each time a zero is encountered in the input data, two values are
written to the output file. The first of these values is a zero, a flag to indicate
that run-length compression is beginning. The second value is the number of
zeros in the run. If the average run-length is longer than two, compression will
take place. On the other hand, many single zeros in the data can make the
encoded file larger than the original.

Many different run-length schemes have been developed. For example, the
input data can be treated as individual bytes, or groups of bytes that represent
something more elaborate, such as floating point numbers. Run-length
encoding can be used on only one of the characters (as with the zero above),
several of the characters, or all of the characters.

A good example of a generalized run-length scheme is PackBits, created for
Macintosh users. Each byte (eight bits) from the input file is replaced by nine
bits in the compressed file. The added ninth bit is interpreted as the sign of
the number. That is, each character read from the input file is between 0 to
255, while each character written to the encoded file is between -255 and 255.
To understand how this is used, consider the input file: , and1,2,3,4,2,2,2,2,4
the compressed file generated by the PackBits algorithm: The1,2,3,4,2,&3,4.
compression program simply transfers each number from the input file to the
compressed file, with the exception of the run: 2,2,2,2. This is represented in
the compressed file by the two numbers: 2,-3. The first number ("2") indicates
what character the run consists of. The second number ("-3") indicates the
number of characters in the run, found by taking the absolute value and adding
one. For instance, 4,-2 means 4,4,4; 21,-4 means 21,21,21,21,21, etc.

The Scientist and Engineer's Guide to Digital Signal Processing484

0 null 32 space 64 @ 96 `
1 start heading 33 ! 65 A 97 a
2 start of text 34 " 66 B 98 b
3 end of text 35 # 67 C 99 c
4 end of xmit 36 $ 68 D 100 d
5 enquiry 37 % 69 E 101 e
6 acknowledge 38 & 70 F 102 f
7 bell, beep 39 ' 71 G 103 g
8 backspace 40 (72 H 104 h
9 horz. tab 41) 73 I 105 i
10 line feed 42 * 74 J 106 j
11 vert. tab, home 43 + 75 K 107 k
12 form feed, cls 44 , 76 L 108 l
13 carriage return 45 - 77 M 109 m
14 shift out 46 . 78 N 110 n
15 shift in 47 / 79 O 111 o
16 data line esc 48 0 80 P 112 p
17 device control 1 49 1 81 Q 113 q
18 device control 2 50 2 82 R 114 r
19 device control 3 51 3 83 S 115 s
20 device control 4 52 4 84 T 116 t
21 negative ack. 53 5 85 U 117 r
22 synch. idle 54 6 86 V 118 v
23 end xmit block 55 7 87 W 119 w
24 cancel 56 8 88 X 120 x
25 end of medium 57 9 89 Y 121 y
26 substitute 58 : 90 Z 122 z
27 escape 59 ; 91 [123 {
28 file separator 60 < 92 \ 124 |
29 group separator 61 = 93] 125 }
30 record separator 62 > 94 ^ 126 ~
31 unit separator 63 ? 95 _ 127 del

TABLE 27-2
ASCII codes. This is a long established
standard for allowing letters and numbers
to be represented in digital form. Each
printable character is assigned a number
between 32 and 127, while the numbers
between 0 and 31 are used for various
control actions. Even though only 128
codes are defined, ASCII characters are
usually stored as a full byte (8 bits). The
undefined values (128 to 255) are often
used for Greek letters, math symbols, and
various geometric patterns; however, this is
not standardized. Many of the control
characters (0 to 31) are based on older
communications networks, and are not
applicable to computer technology.

An inconvenience with PackBits is that the nine bits must be reformatted into
the standard eight bit bytes used in computer storage and transmission. A
useful modification to this scheme can be made when the input is restricted to
be ASCII text. As shown in Table 27-2, each ASCII character is usually
stored as a full byte (eight bits), but really only uses seven of the bits to
identify the character. In other words, the values 127 through 255 are not
defined with any standardized meaning, and do not need to be stored or
transmitted. This allows the eighth bit to indicate if run-length encoding is in
progress.

Huffman Encoding
This method is named after D.A. Huffman, who developed the procedure in the
1950s. Figure 27-2 shows a histogram of the byte values from a large ASCII
file. More than 96% of this file consists of only 31 characters: the lower case
letters, the space, the comma, the period, and the carriage return. This
observation can be used to make an appropriate compression scheme for this
file. To start, we will assign each of these 31 common characters a five bit
binary code: 00000 = "a", 00001 = "b", 00010 = "c", etc. This allows 96% of
the file to be reduced in size by 5/8. The last of the five bit codes, 11111, will
be a flag indicating that the character being transmitted is not one of the 31
common characters. The next eight bits in the file indicate what the character
is, according to the standard ASCII assignment. This results in 4% of the
characters in the input file requiring 5+8=13 bits. The idea is to assign
frequently used characters fewer bits, and seldom used characters

Chapter 27- Data Compression 485

Byte value
0 50 100 150 200 250

0.00

0.05

0.10

0.15

0.20

lower case
letters

upper case
letters &
numbers

space

CR

FIGURE 27-2
Histogram of text. This is a histogram of
the ASCII values from a chapter in this
book. The most common characters are
the lower case letters, the space and the
carriage return.

Fr
ac

tio
na

l o
cc

ur
en

ce
more bits. In this example, the average number of bits required per original
character is : . In other words, an overall0.96×5 % 0.04×13 ' 5.32
compression ratio of: 8 bits/5.32 bits, or about .1.5 :1

Huffman encoding takes this idea to the extreme. Characters that occur most
often, such the space and period, may be assigned as few as one or two bits.
Infrequently used characters, such as: !, @, #, $ and %, may require a dozen
or more bits. In mathematical terms, the optimal situation is reached when the
number of bits used for each character is proportional to the logarithm of the
character's probability of occurrence.

A clever feature of Huffman encoding is how the variable length codes can be
packed together. Imagine receiving a serial data stream of ones and zeros. If
each character is represented by eight bits, you can directly separate one
character from the next by breaking off 8 bit chunks. Now consider a Huffman
encoded data stream, where each character can have a variable number of bits.
How do you separate one character from the next? The answer lies in the
proper selection of the Huffman codes that enable the correct separation. An
example will illustrate how this works.

Figure 27-3 shows a simplified Huffman encoding scheme. The characters A
through G occur in the original data stream with the probabilities shown. Since
the character A is the most common, we will represent it with a single bit, the
code: 1. The next most common character, B, receives two bits, the code: 01.
This continues to the least frequent character, G, being assigned six bits,
000011. As shown in this illustration, the variable length codes are resorted
into eight bit groups, the standard for computer use.

When uncompression occurs, all the eight bit groups are placed end-to-end to
form a long serial string of ones and zeros. Look closely at the encoding
table of Fig. 27-3, and notice how each code consists of two parts: a number
of zeros before a one, and an optional binary code after the one. This allows
the binary data stream to be separated into codes without the need for
delimiters or other marker between the codes. The uncompression program

The Scientist and Engineer's Guide to Digital Signal Processing486

0010 0001 000011 1 0011 000010 01 00 10 1

C E G A D F B E A

00100001 00001110 01100001 00100 10 1
byte 1 byte 2 byte 3 byte 4

Huffman encoded:

grouped into bytes:

original data stream:

1
01
0010
0011
0001
00 00 10
000011

A
B
C
D
E
F
G

.154

.110

.072

.063

.059

.015

.011

letter probability Huffman code

Example Encoding Table
FIGURE 27-3
Huffman encoding. The encoding table
assigns each of the seven letters used in this
example a variable length binary code, based
on its probability of occurrence. The original
data stream composed of these 7 characters is
translated by this table into the Huffman
encoded data. Since each of the Huffman
codes is a different length, the binary data
need to be regrouped into standard 8 bit bytes
for storage and transmission.

looks at the stream of ones and zeros until a valid code is formed, and then
starting over looking for the next character. The way that the codes are formed
insures that no ambiguity exists in the separation.

A more sophisticated version of the Huffman approach is called arithmetic
encoding. In this scheme, sequences of characters are represented by
individual codes, according to their probability of occurrence. This has the
advantage of better data compression, say 5-10%. Run-length encoding
followed by either Huffman or arithmetic encoding is also a common strategy.
As you might expect, these types of algorithms are very complicated, and
usually left to data compression specialists.

To implement Huffman or arithmetic encoding, the compression and un-
compression algorithms must agree on the binary codes used to represent each
character (or groups of characters). This can be handled in one of two ways.
The simplest is to use a predefined encoding table that is always the same,
regardless of the information being compressed. More complex schemes use
encoding optimized for the particular data being used. This requires that the
encoding table be included in the compressed file for use by the uncompression
program. Both methods are common.

Delta Encoding
In science, engineering, and mathematics, the Greek letter delta ()) is used to
denote the change in a variable. The term delta encoding, refers to

Chapter 27- Data Compression 487

original data stream:

delta encoded:

17 19 24 24 24 21 15 10 89 95 96 96 96 95 94 94 95 93 90 87 86 86

17 2 5 0 0 -3 -6 -5 79 6 1 0 0 -1 -1 0 1 -2 -3 -3 -1 0

de
lta

FIGURE 27-4
Example of delta encoding. The first value in the encoded file is the same as the first value in the original
file. Thereafter, each sample in the encoded file is the difference between the current and last sample in
the original file.

de
lta

de
lta

m
ov

e

A
m

pl
itu

de

A
m

pl
itu

de

Sample number
0 100 200 300 400 500

-128

-96

-64

-32

0

32

64

96

128

a. Audio signal

Sample number
0 100 200 300 400 500

-128

-96

-64

-32

0

32

64

96

128

b. Delta encoded

FIGURE 27-5
Example of delta encoding. Figure (a) is an audio signal digitized to 8 bits. Figure (b) shows the delta
encoded version of this signal. Delta encoding is useful for data compression if the signal being encoded
varies slowly from sample-to-sample.

A
m

pl
itu

de

A
m

pl
itu

de

several techniques that store data as the difference between successive samples
(or characters), rather than directly storing the samples themselves. Figure 27-
4 shows an example of how this is done. The first value in the delta encoded
file is the same as the first value in the original data. All the following values
in the encoded file are equal to the difference (delta) between the corresponding
value in the input file, and the previous value in the input file.

Delta encoding can be used for data compression when the values in the
original data are smooth, that is, there is typically only a small change between
adjacent values. This is not the case for ASCII text and executable code;
however, it is very common when the file represents a signal. For instance,
Fig. 27-5a shows a segment of an audio signal, digitized to 8 bits, with each
sample between -127 and 127. Figure 27-5b shows the delta encoded version
of this signal. The key feature is that the delta encoded signal has a lower
amplitude than the original signal. In other words, delta encoding has
increased the probability that each sample's value will be near zero, and
decreased the probability that it will be far from zero. This uneven probability
is just the thing that Huffman encoding needs to operate. If the original signal
is not changing, or is changing in a straight line, delta encoding will result in
runs of samples having the same value.

The Scientist and Engineer's Guide to Digital Signal Processing488

This is what run-length encoding requires. Correspondingly, delta encoding
followed by Huffman and/or run-length encoding is a common strategy for
compressing signals.

The idea used in delta encoding can be expanded into a more complicated
technique called Linear Predictive Coding, or LPC. To understand LPC,
imagine that the first 99 samples from the input signal have been encoded, and
we are about to work on sample number 100. We then ask ourselves: based
on the first 99 samples, what is the most likely value for sample 100? In delta
encoding, the answer is that the most likely value for sample 100 is the same
as the previous value, sample 99. This expected value is used as a reference
to encode sample 100. That is, the difference between the sample and the
expectation is placed in the encoded file. LPC expands on this by making a
better guess at what the most probable value is. This is done by looking at the
last several samples, rather than just the last sample. The algorithms used by
LPC are similar to recursive filters, making use of the z-transform and other
intensively mathematical techniques.

LZW Compression
LZW compression is named after its developers, A. Lempel and J. Ziv, with
later modifications by Terry A. Welch. It is the foremost technique for
general purpose data compression due to its simplicity and versatility.
Typically, you can expect LZW to compress text, executable code, and similar
data files to about one-half their original size. LZW also performs well when
presented with extremely redundant data files, such as tabulated numbers,
computer source code, and acquired signals. Compression ratios of 5:1 are
common for these cases. LZW is the basis of several personal computer
utilities that claim to "double the capacity of your hard drive."

LZW compression is always used in GIF image files, and offered as an option
in TIFF and PostScript. LZW compression is protected under U.S. patent
number 4,558,302, granted December 10, 1985 to Sperry Corporation (now the
Unisys Corporation). For information on commercial licensing, contact: Welch
Licensing Department, Law Department, M/SC2SW1, Unisys Corporation, Blue
Bell, Pennsylvania, 19424-0001.

LZW compression uses a code table, as illustrated in Fig. 27-6. A common
choice is to provide 4096 entries in the table. In this case, the LZW
encoded data consists entirely of 12 bit codes, each referring to one of the
entries in the code table. Uncompression is achieved by taking each code
from the compressed file, and translating it through the code table to find
what character or characters it represents. Codes 0-255 in the code table
are always assigned to represent single bytes from the input file. For
example, if only these first 256 codes were used, each byte in the original
file would be converted into 12 bits in the LZW encoded file, resulting in
a 50% larger file size. During uncompression, each 12 bit code would be
translated via the code table back into the single bytes. Of course, this
wouldn't be a useful situation.

Chapter 27- Data Compression 489

FIGURE 27-6
Example of code table compression. This is the basis of the
popular LZW compression method. Encoding occurs by
identifying sequences of bytes in the original file that exist
in the code table. The 12 bit code representing the sequence
is placed in the compressed file instead of the sequence. The
first 256 entries in the table correspond to the single byte
values, 0 to 255, while the remaining entries correspond to
sequences of bytes. The LZW algorithm is an efficient way
of generating the code table based on the particular data
being compressed. (The code table in this figure is a
simplified example, not one actually generated by the LZW
algorithm).

id
en

tic
al

 c
od

e
un

iq
ue

 c
od

e

123 145 201 4 119 89 243 245 59 11 206 145 201 4 243 245original data stream:

123 256 119 89 257 59 11 206 256 257

code number

0254
0255

0000
0001

0
1

254
255

0256
0257

4095

145 201 4
243 245

xxx xxx xxx

Example Code Table
translation

code table encoded:

The LZW method achieves compression by using codes 256 through 4095
to represent sequences of bytes. For example, code 523 may represent the
sequence of three bytes: 231 124 234. Each time the compression algorithm
encounters this sequence in the input file, code 523 is placed in the encoded
file. During uncompression, code 523 is translated via the code table to
recreate the true 3 byte sequence. The longer the sequence assigned to a
single code, and the more often the sequence is repeated, the higher the
compression achieved.

Although this is a simple approach, there are two major obstacles that need to
be overcome: (1) how to determine what sequences should be in the code
table, and (2) how to provide the uncompression program the same code table
used by the compression program. The LZW algorithm exquisitely solves both
these problems.

When the LZW program starts to encode a file, the code table contains only the
first 256 entries, with the remainder of the table being blank. This means that
the first codes going into the compressed file are simply the single bytes from
the input file being converted to 12 bits. As the encoding continues, the LZW
algorithm identifies repeated sequences in the data, and adds them to the code
table. Compression starts the second time a sequence is encountered. The key
point is that a sequence from the input file is not added to the code table until
it has already been placed in the compressed file as individual characters
(codes 0 to 255). This is important because it allows the uncompression
program to reconstruct the code table directly from the compressed data,
without having to transmit the code table separately.

The Scientist and Engineer's Guide to Digital Signal Processing490

START

END

STRING+CHAR

input first byte,
store in STRING

input next byte,
store in CHAR

is
STRING+CHAR

in table?

NO YES

output the code
for STRING

STRING = CHAR

STRING =
STRING + CHAR

more bytes

NO

YES

ouput the code
for STRING

to input?

1

2

3

4

5

6

7

8

9

add entry in table for

FIGURE 27-7
LZW compression flowchart. The variable, CHAR, is a single byte. The variable, STRING, is a variable
length sequence of bytes. Data are read from the input file (box 1 & 2) as single bytes, and written to the
compressed file (box 4) as 12 bit codes. Table 27-3 shows an example of this algorithm.

Figure 27-7 shows a flowchart for LZW compression. Table 27-3 provides the
step-by-step details for an example input file consisting of 45 bytes, the ASCII
text string: the/rain/in/Spain/falls/mainly/on/the/plain. When we say that the
LZW algorithm reads the character "a" from the input file, we mean it reads the
value: 01100001 (97 expressed in 8 bits), where 97 is "a" in ASCII. When we
say it writes the character "a" to the encoded file, we mean it writes:
000001100001 (97 expressed in 12 bits).

Chapter 27- Data Compression 491

TABLE 27-3
LZW example. This shows the compression of the phrase: the/rain/in/Spain/falls/mainly/on/the/plain/.

CHAR STRING
+ CHAR In Table? Output Add to

Table
New

STRING Comments

1 t t t first character- no action
2 h th no t 256 = th h
3 e he no h 257 = he e
4 / e/ no e 258 = e/ /
5 r /r no / 259 = /r r
6 a ra no r 260 = ra a
7 i ai no a 261 = ai i
8 n in no i 262 = in n
9 / n/ no n 263 = n/ /

10 i /i no / 264 = /i i
11 n in yes (262) in first match found
12 / in/ no 262 265 = in/ /
13 S /S no / 266 = /S S
14 p Sp no S 267 = Sp p
15 a pa no p 268 = pa a
16 i ai yes (261) ai matches ai, ain not in table yet
17 n ain no 261 269 = ain n ain added to table
18 / n/ yes (263) n/
19 f n/f no 263 270 = n/f f
20 a fa no f 271 = fa a
21 l al no a 272 = al l
22 l ll no l 273 = ll l
23 s ls no l 274 = ls s
24 / s/ no s 275 = s/ /
25 m /m no / 276 = /m m
26 a ma no m 277 = ma a
27 i ai yes (261) ai matches ai
28 n ain yes (269) ain matches longer string, ain
29 l ainl no 269 278 = ainl l
30 y ly no l 279 = ly y
31 / y/ no y 280 = y/ /
32 o /o no / 281 = /o o
33 n on no o 282 = on n
34 / n/ yes (263) n/
35 t n/t no 263 283 = n/t t
36 h th yes (256) th matches th, the not in table yet
37 e the no 256 284 = the e the added to table
38 / e/ yes e/
39 p e/p no 258 285 = e/p p
40 l pl no p 286 = pl l
41 a la no l 287 = la a
42 i ai yes (261) ai matches ai
43 n ain yes (269) ain matches longer string ain
44 / ain/ no 269 288 = ain/ /
45 EOF / / end of file, output STRING

The Scientist and Engineer's Guide to Digital Signal Processing492

The compression algorithm uses two variables: CHAR and STRING. The
variable, CHAR, holds a single character, i.e., a single byte value between 0
and 255. The variable, STRING, is a variable length string, i.e., a group of one
or more characters, with each character being a single byte. In box 1 of Fig.
27-7, the program starts by taking the first byte from the input file, and placing
it in the variable, STRING. Table 27-3 shows this action in line 1. This is
followed by the algorithm looping for each additional byte in the input file,
controlled in the flow diagram by box 8. Each time a byte is read from the
input file (box 2), it is stored in the variable, CHAR. The data table is then
searched to determine if the concatenation of the two variables,
STRING+CHAR, has already been assigned a code (box 3).

If a match in the code table is not found, three actions are taken, as shown in
boxes 4, 5 & 6. In box 4, the 12 bit code corresponding to the contents of the
variable, STRING, is written to the compressed file. In box 5, a new code is
created in the table for the concatenation of STRING+CHAR. In box 6, the
variable, STRING, takes the value of the variable, CHAR. An example of these
actions is shown in lines 2 through 10 in Table 27-3, for the first 10 bytes of
the example file.

When a match in the code table is found (box 3), the concatenation of
STRING+CHAR is stored in the variable, STRING, without any other action
taking place (box 7). That is, if a matching sequence is found in the table,
no action should be taken before determining if there is a longer matching
sequence also in the table. An example of this is shown in line 11, where
the sequence: STRING+CHAR = in, is identified as already having a code
in the table. In line 12, the next character from the input file, /, is added
to the sequence, and the code table is searched for: in/. Since this longer
sequence is not in the table, the program adds it to the table, outputs the
code for the shorter sequence that is in the table (code 262), and starts over
searching for sequences beginning with the character, /. This flow of
events is continued until there are no more characters in the input file. The
program is wrapped up with the code corresponding to the current value of
STRING being written to the compressed file (as illustrated in box 9 of Fig.
27-7 and line 45 of Table 27-3).

A flowchart of the LZW uncompression algorithm is shown in Fig. 27-8. Each
code is read from the compressed file and compared to the code table to provide
the translation. As each code is processed in this manner, the code table is
updated so that it continually matches the one used during the compression.
However, there is a small complication in the uncompression routine. There
are certain combinations of data that result in the uncompression algorithm
receiving a code that does not yet exist in its code table. This contingency is
handled in boxes 4,5 & 6.

Only a few dozen lines of code are required for the most elementary LZW
programs. The real difficulty lies in the efficient management of the code
table. The brute force approach results in large memory requirements and a
slow program execution. Several tricks are used in commercial LZW
programs to improve their performance. For instance, the memory problem

Chapter 27- Data Compression 493

START

END

STRING+CHAR

input first code,
store in OCODE

input next code,
store in NCODE

is
NCODE in table?

NO YES

STRING =
translation of NCODE

more codes

NO

YES
to input?

1

3

4

5

6

7

12

STRING =

output translation
of OCODE

2

ouput STRING
8

CHAR = the first
character in STRING

9

add entry in table for
OCODE + CHAR

10

OCODE = NCODE
11

translation of OCODE
STRING =

FIGURE 27-8
LZW uncompression flowchart. The variables, OCODE and NCODE (oldcode and newcode), hold the
12 bit codes from the compressed file, CHAR holds a single byte, STRING holds a string of bytes.

The Scientist and Engineer's Guide to Digital Signal Processing494

arises because it is not know beforehand how long each of the character strings
for each code will be. Most LZW programs handle this by taking
advantage of the redundant nature of the code table. For example, look at line
29 in Table 27-3, where code 278 is defined to be ainl. Rather than storing
these four bytes, code 278 could be stored as: code 269 + l, where code 269
was previously defined as ain in line 17. Likewise, code 269 would be stored
as: code 261 + n, where code 261 was previously defined as ai in line 7. This
pattern always holds: every code can be expressed as a previous code plus one
new character.

The execution time of the compression algorithm is limited by searching the
code table to determine if a match is present. As an analogy, imagine you want
to find if a friend's name is listed in the telephone directory. The catch is, the
only directory you have is arranged by telephone number, not alphabetical
order. This requires you to search page after page trying to find the name you
want. This inefficient situation is exactly the same as searching all 4096 codes
for a match to a specific character string. The answer: organize the code table
so that what you are looking for tells you where to look (like a partially
alphabetized telephone directory). In other words, don't assign the 4096 codes
to sequential locations in memory. Rather, divide the memory into sections
based on what sequences will be stored there. For example, suppose we want
to find if the sequence: code 329 + x, is in the code table. The code table
should be organized so that the "x" indicates where to starting looking. There
are many schemes for this type of code table management, and they can become
quite complicated.

This brings up the last comment on LZW and similar compression schemes: it
is a very competitive field. While the basics of data compression are relatively
simple, the kinds of programs sold as commercial products are extremely
sophisticated. Companies make money by selling you programs that perform
compression, and jealously protect their trade-secrets through patents and the
like. Don't expect to achieve the same level of performance as these programs
in a few hours work.

JPEG (Transform Compression)
Many methods of lossy compression have been developed; however, a family
of techniques called transform compression has proven the most valuable. The
best example of transform compression is embodied in the popular JPEG
standard of image encoding. JPEG is named after its origin, the Joint
Photographers Experts Group. We will describe the operation of JPEG to
illustrate how lossy compression works.

We have already discussed a simple method of lossy data compression, coarser
sampling and/or quantization (CS&Q in Table 27-1). This involves reducing
the number of bits per sample or entirely discard some of the samples. Both
these procedures have the desired effect: the data file becomes smaller at the
expense of signal quality. As you might expect, these simple methods do not
work very well.

Chapter 27- Data Compression 495

8 pixels

42 28 35 28 42 49 35 42

49 49 35 28 35 35 35 42

42 21 21 28 42 35 42 28

21 35 35 42 42 28 28 14

56 70 77 84 91 28 28 21

70 126 133 147 161 91 35 14

126 203 189 182 175 175 35 21

49 189 245 210 182 84 21 35

154 154 175 182 189 168 217 175

154 147 168 154 168 168 196 175

175 154 203 175 189 182 196 182

175 168 168 168 140 175 168 203

133 168 154 196 175 189 203 154

168 161 161 168 154 154 189 189

147 161 175 182 189 175 217 175

175 175 203 175 189 175 175 182

231 224 224 217 217 203 189 196

210 217 203 189 203 224 217 224

196 217 210 224 203 203 196 189

210 203 196 203 182 203 182 189

203 224 203 217 196 175 154 140

182 189 168 161 154 126 119 112

175 154 126 105 140 105 119 84

154 98 105 98 105 63 112 84

FIGURE 27-9
JPEG image division. JPEG transform compression starts by breaking the image into 8×8 groups,
each containing 64 pixels. Three of these 8×8 groups are enlarged in this figure, showing the values
of the individual pixels, a single byte value between 0 and 255.

8
pi

xe
ls

Transform compression is based on a simple premise: when the signal is passed
through the Fourier (or other) transform, the resulting data values will no
longer be equal in their information carrying roles. In particular, the low
frequency components of a signal are more important than the high frequency
components. Removing 50% of the bits from the high frequency components
might remove, say, only 5% of the encoded information.

As shown in Fig. 27-9, JPEG compression starts by breaking the image into
8×8 pixel groups. The full JPEG algorithm can accept a wide range of bits per
pixel, including the use of color information. In this example, each pixel is a
single byte, a grayscale value between 0 and 255. These 8×8 pixel groups are
treated independently during compression. That is, each group is initially
represented by 64 bytes. After transforming and removing data, each group is
represented by, say, 2 to 20 bytes. During uncompression, the inverse

The Scientist and Engineer's Guide to Digital Signal Processing496

b [x,y] ' cos (2x % 1) uB
16

cos (2y % 1)vB
16

EQUATION 27-1
DCT basis functions. The variables
x & y are the indexes in the spatial
domain, and u & v are the indexes in
the frequency spectrum. This is for
an 8×8 DCT, making all the indexes
run from 0 to 7.

transform is taken of the 2 to 20 bytes to create an approximation of the
original 8×8 group. These approximated groups are then fitted together to
form the uncompressed image. Why use 8×8 pixel groups instead of, for
instance, 16×16? The 8×8 grouping was based on the maximum size that
integrated circuit technology could handle at the time the standard was
developed. In any event, the 8×8 size works well, and it may or may not be
changed in the future.

Many different transforms have been investigated for data compression, some
of them invented specifically for this purpose. For instance, the Karhunen-
Loeve transform provides the best possible compression ratio, but is difficult
to implement. The Fourier transform is easy to use, but does not provide
adequate compression. After much competition, the winner is a relative of the
Fourier transform, the Discrete Cosine Transform (DCT).

Just as the Fourier transform uses sine and cosine waves to represent a signal,
the DCT only uses cosine waves. There are several versions of the DCT, with
slight differences in their mathematics. As an example of one version, imagine
a 129 point signal, running from sample 0 to sample 128. Now, make this a
256 point signal by duplicating samples 1 through 127 and adding them as
samples 255 to 130. That is: Taking the0, 1, 2, ˛ , 127, 128, 127, ˛ , 2, 1.
Fourier transform of this 256 point signal results in a frequency spectrum of
129 points, spread between 0 and 128. Since the time domain signal was
forced to be symmetrical, the spectrum's imaginary part will be composed of
all zeros. In other words, we started with a 129 point time domain signal, and
ended with a frequency spectrum of 129 points, each the amplitude of a cosine
wave. Voila, the DCT!

When the DCT is taken of an 8×8 group, it results in an 8×8 spectrum. In
other words, 64 numbers are changed into 64 other numbers. All these values
are real; there is no complex mathematics here. Just as in Fourier analysis,
each value in the spectrum is the amplitude of a basis function. Figure 27-10
shows 6 of the 64 basis functions used in an 8×8 DCT, according to where the
amplitude sits in the spectrum. The 8×8 DCT basis functions are given by:

The low frequencies reside in the upper-left corner of the spectrum, while the
high frequencies are in the lower-right. The DC component is at [0,0], the
upper-left most value. The basis function for [0,1] is one-half cycle of a cosine
wave in one direction, and a constant value in the other. The basis function for
[1,0] is similar, just rotated by 90E.

Chapter 27- Data Compression 497

1

0

-1

1

0

-1

1

0

-1

1

0

-1

1

0

-1

1

0

-1

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

DCT spectrum

0 1 2 3 4 5 6 7x 0 1 2 3 4 5 6 7
y

u

v

A
m

pl
itu

de

FIGURE 27-10
The DCT basis functions. The DCT spectrum consists of an 8×8 array, with each element in the
array being an amplitude of one of the 64 basis functions. Six of these basis functions are shown
here, referenced to where the corresponding amplitude resides.

The DCT calculates the spectrum by correlating the 8×8 pixel group with each
of the basis functions. That is, each spectral value is found by multiplying the
appropriate basis function by the 8×8 pixel group, and then summing the
products. Two adjustments are then needed to finish the DCT calculation (just
as with the Fourier transform). First, divide the 15 spectral values in row 0
and column 0 by two. Second, divide all 64 values in the spectrum by 16.
The inverse DCT is calculated by assigning each of the amplitudes in the
spectrum to the proper basis function, and summing to recreate the spatial
domain. No extra steps are required. These are exactly the same concepts as
in Fourier analysis, just with different basis functions.

Figure 27-11 illustrates JPEG encoding for the three 8×8 groups identified
in Fig. 27-9. The left column, Figs. a, b & c, show the original pixel values.
The center column, Figs. d, e & f, show the DCT spectra of these groups.

The Scientist and Engineer's Guide to Digital Signal Processing498

42 28 35 28 42 49 35 42

49 49 35 28 35 35 35 42

42 21 21 28 42 35 42 28

21 35 35 42 42 28 28 14

56 70 77 84 91 28 28 21

70 126 133 147 161 91 35 14

126 203 189 182 175 175 35 21

49 189 245 210 182 84 21 35

154 154 175 182 189 168 217 175

154 147 168 154 168 168 196 175

175 154 203 175 189 182 196 182

175 168 168 168 140 175 168 203

133 168 154 196 175 189 203 154

168 161 161 168 154 154 189 189

147 161 175 182 189 175 217 175

175 175 203 175 189 175 175 182

231 224 224 217 217 203 189 196

210 217 203 189 203 224 217 224

196 217 210 224 203 203 196 189

210 203 196 203 182 203 182 189

203 224 203 217 196 175 154 140

182 189 168 161 154 126 119 112

175 154 126 105 140 105 119 84

154 98 105 98 105 63 112 84

70 24 -28 -4 -2 -10 -1 0

-53 -35 43 13 7 13 1 3

23 9 -10 -8 -7 -6 5 -3

6 2 -2 8 2 -1 0 -1

-10 -2 -1 -12 2 1 -1 4

3 0 0 11 -4 -1 5 6

-3 -5 -5 -4 3 2 -3 5

3 0 4 5 1 2 1 0

174 -11 -2 -3 -3 6 -3 4

-2 -3 1 2 0 3 1 2

3 0 -4 0 0 0 -1 9

-4 -6 -2 1 -1 4 -10 -3

1 2 -2 0 0 -2 0 -5

3 -1 3 -2 2 1 1 0

3 5 2 -2 3 0 4 3

4 -3 -13 3 -4 3 -5 3

174 19 0 3 1 0 -3 1

52 -13 -3 -4 -4 -4 5 -8

-18 -4 8 3 3 2 0 9

5 12 -4 0 0 -5 -1 0

1 2 -2 -1 4 4 2 0

-1 2 1 3 0 0 1 1

-2 5 -5 -5 3 2 -1 -1

3 5 -7 0 0 0 -4 0

0 -3 -1 -1 1 0 0 -1

1 0 -1 -1 0 0 0 -1

-1 -2 1 0 -2 0 -2 -2

-1 -2 -1 2 0 2 0 1

0 -2 1 0 0 1 0 0

0 -4 -1 0 1 0 0 0

0 -2 0 1 -1 -1 1 -1

-1 -3 1 1 1 -3 -2 -1

-13 -7 1 4 0 0 10 -2

-22 6 -13 5 -5 2 -2 -13

-9 -15 0 -17 -8 8 12 25

-9 16 1 9 1 -5 -5 13

-20 -3 -13 -16 -19 -1 -4 -22

-11 6 -8 16 -9 -3 -7 6

-14 10 -9 4 -15 3 3 -4

-13 19 12 9 18 5 -5 10

0 0 0 0 -1 0 0 0

-1 0 0 0 0 0 0 -1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 -1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Quantization ErrorDCT SpectrumOriginal Group

a. Eyebrow

b. Eye

c. Nose

d. Eyebrow spectrum

e. Eye spectrum

f. Nose spectrum

g. Using 10 bits

h. Using 8 bits

i. Using 5 bits

FIGURE 27-11
Example of JPEG encoding. The left column shows three 8×8 pixel groups, the same ones shown in Fig. 27-9.
The center column shows the DCT spectra of these three groups. The third column shows the error in the
uncompressed pixel values resulting from using a finite number of bits to represent the spectrum.

The right column, Figs. g, h & i, shows the effect of reducing the number of
bits used to represent each component in the frequency spectrum. For instance,
(g) is formed by truncating each of the samples in (d) to ten bits, taking the
inverse DCT, and then subtracting the reconstructed image from the original.
Likewise, (h) and (i) are formed by truncating each sample in the spectrum to
eight and five bits, respectively. As expected, the error in the reconstruction

Chapter 27- Data Compression 499

FIGURE 27-12
Example of JPEG reconstruction. The 8×8 pixel
group used in this example is the eye in Fig. 27-9. As
shown, less than 1/4 of the 64 values are needed to
achieve a good approximation to the correct image.

a. 3 coefficients b. 6 coefficients c. 15 coefficients

d. 64 coefficients

(correct image)

increases as fewer bits are used to represent the data. As an example of this
bit truncation, the spectra shown in the center column are represented with 8
bits per spectral value, arranged as 0 to 255 for the DC component, and -127
to 127 for the other values.

The second method of compressing the frequency domain is to discard some
of the 64 spectral values. As shown by the spectra in Fig. 27-11, nearly
all of the signal is contained in the low frequency components. This means
the highest frequency components can be eliminated, while only degrading
the signal a small amount. Figure 27-12 shows an example of the image
distortion that occurs when various numbers of the high frequency
components are deleted. The 8×8 group used in this example is the eye
image of Fig. 27-10. Figure (d) shows the correct reconstruction using all
64 spectral values. The remaining figures show the reconstruction using the
indicated number of lowest frequency coefficients. As illustrated in (c),
even removing three-fourths of the highest frequency components produces
little error in the reconstruction. Even better, the error that does occur
looks very much like random noise.

JPEG is good example of how several data compression schemes can be
combined for greater effectiveness. The entire JPEG procedure is outlined
in the following steps. First, the image is broken into the 8×8 groups.
Second, the DCT is taken of each group. Third, each 8×8 spectrum is
compressed by the above methods: reducing the number of bits and
eliminating some of the components. This takes place in a single step,
controlled by a quantization table. Two examples of quantization tables are
shown in Fig. 27-13. Each value in the spectrum is divided by the matching
value in the quantization table, and the result rounded to the nearest
integer. For instance, the upper-left value of the quantization table is one,

The Scientist and Engineer's Guide to Digital Signal Processing500

1 1 1 1 1 2 2 4

1 1 1 1 1 2 2 4

1 1 1 1 2 2 2 4

1 1 1 1 2 2 4 8

1 1 2 2 2 2 4 8

2 2 2 2 2 4 8 8

2 2 2 4 4 8 8 16

4 4 4 4 8 8 16 16

1 2 4 8 16 32 64 128

2 4 4 8 16 32 64 128

4 4 8 16 32 64 128 128

8 8 16 32 64 128 128 256

16 16 32 64 128 128 256 256

32 32 64 128 128 256 256 256

64 64 128 128 256 256 256 256

128 128 128 256 256 256 256 256

FIGURE 27-13
JPEG quantization tables. These are two example quantization tables that might be used during
compression. Each value in the DCT spectrum is divided by the corresponding value in the
quantization table, and the result rounded to the nearest integer.

a. Low compression b. High compression

FIGURE 27-14
JPEG serial conversion. A serpentine pattern
used to convert the 8×8 DCT spectrum into a
linear sequence of 64 values. This places all of
the high frequency components together, where
the large number of zeros can be efficiently
compressed with run-length encoding.

resulting in the DC value being left unchanged. In comparison, the lower-right
entry in (a) is 16, meaning that the original range of -127 to 127 is reduced to
only -7 to 7. In other words, the value has been reduced in precision from
eight bits to four bits. In a more extreme case, the lower-right entry in (b) is
256, completely eliminating the spectral value.

In the fourth step of JPEG encoding, the modified spectrum is converted
from an 8×8 array into a linear sequence. The serpentine pattern shown in
Figure 27-14 is used for this step, placing all of the high frequency
components together at the end of the linear sequence. This groups the
zeros from the eliminated components into long runs. The fifth step
compresses these runs of zeros by run-length encoding. In the sixth step,
the sequence is encoded by either Huffman or arithmetic encoding to form
the final compressed file.

The amount of compression, and the resulting loss of image quality, can be
selected when the JPEG compression program is run. Figure 27-15 shows the
type of image distortion resulting from high compression ratios. With the 45:1
compression ratio shown, each of the 8×8 groups is represented by only about
12 bits. Close inspection of this image shows that six of the lowest frequency
basis functions are represented to some degree.

Chapter 27- Data Compression 501

a. Original image b. With 10:1 compression

c. With 45:1 compression

FIGURE 27-15
Example of JPEG distortion. Figure (a)
shows the original image, while (b) and (c)
shows restored images using compression
ratios of 10:1 and 45:1, respectively. The
high compression ratio used in (c) results in
each 8×8 pixel group being represented by
less than 12 bits.

Why is the DCT better than the Fourier transform for image compression? The
main reason is that the DCT has one-half cycle basis functions, i.e., S[0,1] and
S[1,0]. As shown in Fig. 27-10, these gently slope from one side of the array
to the other. In comparison, the lowest frequencies in the Fourier transform
form one complete cycle. Images nearly always contain regions where the
brightness is gradually changing over a region. Using a basis function that
matches this basic pattern allows for better compression.

MPEG
MPEG is a compression standard for digital video sequences, such as used in
computer video and digital television networks. In addition, MPEG also
provides for the compression of the sound track associated with the video. The
name comes from its originating organization, the Moving Pictures Experts
Group. If you think JPEG is complicated, MPEG is a nightmare! MPEG is
something you buy, not try to write yourself. The future of this technology is

The Scientist and Engineer's Guide to Digital Signal Processing502

to encode the compression and uncompression algorithms directly into
integrated circuits. The potential of MPEG is vast. Think of thousands of
video channels being carried on a single optical fiber running into your home.
This is a key technology of the 21st century.

In addition to reducing the data rate, MPEG has several important features.
The movie can be played forward or in reverse, and at either normal or fast
speed. The encoded information is random access, that is, any individual
frame in the sequence can be easily displayed as a still picture. This goes
along with making the movie editable, meaning that short segments from the
movie can be encoded only with reference to themselves, not the entire
sequence. MPEG is designed to be robust to errors. The last thing you want
is for a single bit error to cause a disruption of the movie.

The approach used by MPEG can be divided into two types of compression:
within-the-frame and between-frame. Within-the-frame compression means
that individual frames making up the video sequence are encoded as if they
were ordinary still images. This compression is preformed using the JPEG
standard, with just a few variations. In MPEG terminology, a frame that has
been encoded in this way is called an intra-coded or I-picture.

Most of the pixels in a video sequence change very little from one frame to the
next. Unless the camera is moving, most of the image is composed of a
background that remains constant over dozens of frames. MPEG takes
advantage of this with a sophisticated form of delta encoding to compress the
redundant information between frames. After compressing one of the frames
as an I-picture, MPEG encodes successive frames as predictive-coded or P-
pictures. That is, only the pixels that have changed since the I-picture are
included in the P-picture.

While these two compression schemes form the backbone of MPEG, the actual
implementation is immensely more sophisticated than described here. For
example, a P-picture can be referenced to an I-picture that has been shifted,
accounting for motion of objects in the image sequence. There are also
bidirectional predictive-coded or B-pictures. These are referenced to both a
previous and a future I-picture. This handles regions in the image that
gradually change over many of frames. The individual frames can also be
stored out-of-order in the compressed data to facilitate the proper sequencing
of the I, P, and B-pictures. The addition of color and sound makes this all the
more complicated.

The main distortion associated with MPEG occurs when large sections of the
image change quickly. In effect, a burst of information is needed to keep up
with the rapidly changing scenes. If the data rate is fixed, the viewer notices
"blocky" patterns when changing from one scene to the next. This can be
minimized in networks that transmit multiple video channels simultaneously,
such as cable television. The sudden burst of information needed to support a
rapidly changing scene in one video channel, is averaged with the modest
requirements of the relatively static scenes in the other channels.

503

CHAPTER

28 Digital Signal Processors

Digital Signal Processing is carried out by mathematical operations. In comparison, word
processing and similar programs merely rearrange stored data. This means that computers
designed for business and other general applications are not optimized for algorithms such as
digital filtering and Fourier analysis. Digital Signal Processors are microprocessors specifically
designed to handle Digital Signal Processing tasks. These devices have seen tremendous growth
in the last decade, finding use in everything from cellular telephones to advanced scientific
instruments. In fact, hardware engineers use "DSP" to mean Digital Signal Processor, just as
algorithm developers use "DSP" to mean Digital Signal Processing. This chapter looks at how
DSPs are different from other types of microprocessors, how to decide if a DSP is right for your
application, and how to get started in this exciting new field. In the next chapter we will take a
more detailed look at one of these sophisticated products: the Analog Devices SHARC® family.

How DSPs are Different from Other Microprocessors
In the 1960s it was predicted that artificial intelligence would revolutionize the
way humans interact with computers and other machines. It was believed that
by the end of the century we would have robots cleaning our houses, computers
driving our cars, and voice interfaces controlling the storage and retrieval of
information. This hasn't happened; these abstract tasks are far more
complicated than expected, and very difficult to carry out with the step-by-step
logic provided by digital computers.

However, the last forty years have shown that computers are extremely capable
in two broad areas, (1) data manipulation, such as word processing and
database management, and (2) mathematical calculation, used in science,
engineering, and Digital Signal Processing. All microprocessors can perform
both tasks; however, it is difficult (expensive) to make a device that is
optimized for both. There are technical tradeoffs in the hardware design, such
as the size of the instruction set and how interrupts are handled. Even

The Scientist and Engineer's Guide to Digital Signal Processing504

Data Manipulation Math Calculation

Word processing, database
management, spread sheets,
operating sytems, etc.

Digital Signal Processing,
motion control, scientific and
engineering simulations, etc.

data movement (A º B)
value testing (If A=B then ...)

addition (A+B=C)
multiplication (A×B=C)

Typical
Applications

Main
Operations

FIGURE 28-1
Data manipulation versus mathematical calculation. Digital computers are useful for two general
tasks: data manipulation and mathematical calculation. Data manipulation is based on moving
data and testing inequalities, while mathematical calculation uses multiplication and addition.

more important, there are marketing issues involved: development and
manufacturing cost, competitive position, product lifetime, and so on. As a
broad generalization, these factors have made traditional microprocessors, such
as the Pentium®, primarily directed at data manipulation. Similarly, DSPs are
designed to perform the mathematical calculations needed in Digital Signal
Processing.

Figure 28-1 lists the most important differences between these two
categories. Data manipulation involves storing and sorting information.
For instance, consider a word processing program. The basic task is to
store the information (typed in by the operator), organize the information
(cut and paste, spell checking, page layout, etc.), and then retrieve the
information (such as saving the document on a floppy disk or printing it
with a laser printer). These tasks are accomplished by moving data from
one location to another, and testing for inequalities (A=B, A<B, etc.). As
an example, imagine sorting a list of words into alphabetical order. Each
word is represented by an 8 bit number, the ASCII value of the first letter
in the word. Alphabetizing involved rearranging the order of the words
until the ASCII values continually increase from the beginning to the end
of the list. This can be accomplished by repeating two steps over-and-over
until the alphabetization is complete. First, test two adjacent entries for
being in alphabetical order (IF A>B THEN ...). Second, if the two entries
are not in alphabetical order, switch them so that they are (AWB). When
this two step process is repeated many times on all adjacent pairs, the list
will eventually become alphabetized.

As another example, consider how a document is printed from a word
processor. The computer continually tests the input device (mouse or keyboard)
for the binary code that indicates "print the document." When this code is
detected, the program moves the data from the computer's memory to the
printer. Here we have the same two basic operations: moving data and
inequality testing. While mathematics is occasionally used in this type of

Chapter 28- Digital Signal Processors 505

y[n] ' a0 x[n] % a1 x[n&1] % a2 x[n&2] % a3 x[n&3] % a4 x[n&4] % ˛

×a0

×a1

×a2

×a3

×a4

×a5

×a6

×a7

Input Signal, x[]

Output signal, y[]

x[n]
x[n-1]

x[n-2]
x[n-3]

y[n]

FIGURE 28-2
FIR digital filter. In FIR filtering, each
sample in the output signal, y[n], is found
by multiplying samples from the input
signal, x[n], x[n-1], x[n-2], ..., by the filter
kernel coefficients, a0, a1, a2, a3 ..., and
summing the products.

application, it is infrequent and does not significantly affect the overall
execution speed.

In comparison, the execution speed of most DSP algorithms is limited almost
completely by the number of multiplications and additions required. For
example, Fig. 28-2 shows the implementation of an FIR digital filter, the most
common DSP technique. Using the standard notation, the input signal is
referred to by , while the output signal is denoted by . Our task is tox[] y[]
calculate the sample at location n in the output signal, i.e., . An FIR filtery[n]
performs this calculation by multiplying appropriate samples from the input
signal by a group of coefficients, denoted by: , and then addinga0, a1, a2, a3,˛
the products. In equation form, is found by:y[n]

This is simply saying that the input signal has been convolved with a filter
kernel (i.e., an impulse response) consisting of: . Depending ona0, a1, a2, a3,˛
the application, there may only be a few coefficients in the filter kernel, or
many thousands. While there is some data transfer and inequality evaluation
in this algorithm, such as to keep track of the intermediate results and control
the loops, the math operations dominate the execution time.

The Scientist and Engineer's Guide to Digital Signal Processing506

In addition to preforming mathematical calculations very rapidly, DSPs must
also have a predictable execution time. Suppose you launch your desktop
computer on some task, say, converting a word-processing document from one
form to another. It doesn't matter if the processing takes ten milliseconds or
ten seconds; you simply wait for the action to be completed before you give the
computer its next assignment.

In comparison, most DSPs are used in applications where the processing is
continuous, not having a defined start or end. For instance, consider an
engineer designing a DSP system for an audio signal, such as a hearing aid.
If the digital signal is being received at 20,000 samples per second, the DSP
must be able to maintain a sustained throughput of 20,000 samples per second.
However, there are important reasons not to make it any faster than necessary.
As the speed increases, so does the cost, the power consumption, the design
difficulty, and so on. This makes an accurate knowledge of the execution time
critical for selecting the proper device, as well as the algorithms that can be
applied.

Circular Buffering
Digital Signal Processors are designed to quickly carry out FIR filters and
similar techniques. To understand the hardware, we must first understand the
algorithms. In this section we will make a detailed list of the steps needed to
implement an FIR filter. In the next section we will see how DSPs are
designed to perform these steps as efficiently as possible.

To start, we need to distinguish between off-line processing and real-time
processing. In off-line processing, the entire input signal resides in the
computer at the same time. For example, a geophysicist might use a
seismometer to record the ground movement during an earthquake. After the
shaking is over, the information may be read into a computer and analyzed in
some way. Another example of off-line processing is medical imaging, such
as computed tomography and MRI. The data set is acquired while the patient
is inside the machine, but the image reconstruction may be delayed until a later
time. The key point is that all of the information is simultaneously available
to the processing program. This is common in scientific research and
engineering, but not in consumer products. Off-line processing is the realm of
personal computers and mainframes.

In real-time processing, the output signal is produced at the same time that the
input signal is being acquired. For example, this is needed in telephone
communication, hearing aids, and radar. These applications must have the
information immediately available, although it can be delayed by a short
amount. For instance, a 10 millisecond delay in a telephone call cannot be
detected by the speaker or listener. Likewise, it makes no difference if a
radar signal is delayed by a few seconds before being displayed to the
operator. Real-time applications input a sample, perform the algorithm, and
output a sample, over-and-over. Alternatively, they may input a group

Chapter 28- Digital Signal Processors 507

x[n-3]

x[n-2]

x[n-1]

x[n]

x[n-6]

x[n-5]

x[n-4]

x[n-7]

20040

20041

20042

20043

20044

20045

20046

20047

20048

20049

-0.225767

-0.269847

-0.228918

-0.113940

-0.048679

-0.222977

-0.371370

-0.462791

ADDRESS VALUE

newest sample

oldest sample

MEMORY STORED

x[n-4]

x[n-3]

x[n-2]

x[n-1]

x[n-7]

x[n-6]

x[n-5]

x[n]

20040

20041

20042

20043

20044

20045

20046

20047

20048

20049

-0.225767

-0.269847

-0.228918

-0.113940

-0.062222

-0.222977

-0.371370

-0.462791

ADDRESS VALUE

newest sample

oldest sample

MEMORY STORED

a. Circular buffer at some instant b. Circular buffer after next sample

FIGURE 28-3
Circular buffer operation. Circular buffers are used to store the most recent values of a continually
updated signal. This illustration shows how an eight sample circular buffer might appear at some
instant in time (a), and how it would appear one sample later (b).

of samples, perform the algorithm, and output a group of samples. This is the
world of Digital Signal Processors.

Now look back at Fig. 28-2 and imagine that this is an FIR filter being
implemented in real-time. To calculate the output sample, we must have access
to a certain number of the most recent samples from the input. For example,
suppose we use eight coefficients in this filter, . This means wea0, a1, ˛ a7
must know the value of the eight most recent samples from the input signal,

. These eight samples must be stored in memory andx[n], x[n&1], ˛ x[n&7]
continually updated as new samples are acquired. What is the best way to
manage these stored samples? The answer is circular buffering.

Figure 28-3 illustrates an eight sample circular buffer. We have placed this
circular buffer in eight consecutive memory locations, 20041 to 20048. Figure
(a) shows how the eight samples from the input might be stored at one
particular instant in time, while (b) shows the changes after the next sample
is acquired. The idea of circular buffering is that the end of this linear array is
connected to its beginning; memory location 20041 is viewed as being next to
20048, just as 20044 is next to 20045. You keep track of the array by a
pointer (a variable whose value is an address) that indicates where the most
recent sample resides. For instance, in (a) the pointer contains the address
20044, while in (b) it contains 20045. When a new sample is acquired, it
replaces the oldest sample in the array, and the pointer is moved one address
ahead. Circular buffers are efficient because only one value needs to be
changed when a new sample is acquired.

Four parameters are needed to manage a circular buffer. First, there must be
a pointer that indicates the start of the circular buffer in memory (in this
example, 20041). Second, there must be a pointer indicating the end of the

The Scientist and Engineer's Guide to Digital Signal Processing508

 1. Obtain a sample with the ADC; generate an interrupt
 2. Detect and manage the interrupt
 3. Move the sample into the input signal's circular buffer
 4. Update the pointer for the input signal's circular buffer
 5. Zero the accumulator
 6. Control the loop through each of the coefficients

 7. Fetch the coefficient from the coefficient's circular buffer
 8. Update the pointer for the coefficient's circular buffer
 9. Fetch the sample from the input signal's circular buffer
10. Update the pointer for the input signal's circular buffer
11. Multiply the coefficient by the sample
12. Add the product to the accumulator

13. Move the output sample (accumulator) to a holding buffer
14. Move the output sample from the holding buffer to the DAC

TABLE 28-1
FIR filter steps.

array (e.g., 20048), or a variable that holds its length (e.g., 8). Third, the step
size of the memory addressing must be specified. In Fig. 28-3 the step size is
one, for example: address 20043 contains one sample, address 20044 contains
the next sample, and so on. This is frequently not the case. For instance, the
addressing may refer to bytes, and each sample may require two or four bytes
to hold its value. In these cases, the step size would need to be two or four,
respectively.

These three values define the size and configuration of the circular buffer, and
will not change during the program operation. The fourth value, the pointer to
the most recent sample, must be modified as each new sample is acquired. In
other words, there must be program logic that controls how this fourth value is
updated based on the value of the first three values. While this logic is quite
simple, it must be very fast. This is the whole point of this discussion; DSPs
should be optimized at managing circular buffers to achieve the highest
possible execution speed.

As an aside, circular buffering is also useful in off-line processing. Consider
a program where both the input and the output signals are completely contained
in memory. Circular buffering isn't needed for a convolution calculation,
because every sample can be immediately accessed. However, many algorithms
are implemented in stages, with an intermediate signal being created between
each stage. For instance, a recursive filter carried out as a series of biquads
operates in this way. The brute force method is to store the entire length of
each intermediate signal in memory. Circular buffering provides another
option: store only those intermediate samples needed for the calculation at
hand. This reduces the required amount of memory, at the expense of a more
complicated algorithm. The important idea is that circular buffers are useful
for off-line processing, but critical for real-time applications.

Now we can look at the steps needed to implement an FIR filter using circular
buffers for both the input signal and the coefficients. This list may seem trivial
and overexamined- it's not! The efficient handling of these individual tasks is
what separates a DSP from a traditional microprocessor. For each new sample,
all the following steps need to be taken:

Chapter 28- Digital Signal Processors 509

The goal is to make these steps execute quickly. Since steps 6-12 will be
repeated many times (once for each coefficient in the filter), special attention
must be given to these operations. Traditional microprocessors must generally
carry out these 14 steps in serial (one after another), while DSPs are designed
to perform them in parallel. In some cases, all of the operations within the
loop (steps 6-12) can be completed in a single clock cycle. Let's look at the
internal architecture that allows this magnificent performance.

Architecture of the Digital Signal Processor
One of the biggest bottlenecks in executing DSP algorithms is transferring
information to and from memory. This includes data, such as samples from the
input signal and the filter coefficients, as well as program instructions, the
binary codes that go into the program sequencer. For example, suppose we
need to multiply two numbers that reside somewhere in memory. To do this,
we must fetch three binary values from memory, the numbers to be multiplied,
plus the program instruction describing what to do.

Figure 28-4a shows how this seemingly simple task is done in a traditional
microprocessor. This is often called a Von Neumann architecture, after the
brilliant American mathematician John Von Neumann (1903-1957). Von
Neumann guided the mathematics of many important discoveries of the early
twentieth century. His many achievements include: developing the concept of
a stored program computer, formalizing the mathematics of quantum mechanics,
and work on the atomic bomb. If it was new and exciting, Von Neumann was
there!

As shown in (a), a Von Neumann architecture contains a single memory and a
single bus for transferring data into and out of the central processing unit
(CPU). Multiplying two numbers requires at least three clock cycles, one to
transfer each of the three numbers over the bus from the memory to the CPU.
We don't count the time to transfer the result back to memory, because we
assume that it remains in the CPU for additional manipulation (such as the sum
of products in an FIR filter). The Von Neumann design is quite satisfactory
when you are content to execute all of the required tasks in serial. In fact,
most computers today are of the Von Neumann design. We only need other
architectures when very fast processing is required, and we are willing to pay
the price of increased complexity.

This leads us to the Harvard architecture, shown in (b). This is named for
the work done at Harvard University in the 1940s under the leadership of
Howard Aiken (1900-1973). As shown in this illustration, Aiken insisted on
separate memories for data and program instructions, with separate buses for
each. Since the buses operate independently, program instructions and data can
be fetched at the same time, improving the speed over the single bus design.
Most present day DSPs use this dual bus architecture.

Figure (c) illustrates the next level of sophistication, the Super Harvard
Architecture. This term was coined by Analog Devices to describe the

The Scientist and Engineer's Guide to Digital Signal Processing510

internal operation of their ADSP-2106x and new ADSP-211xx families of
Digital Signal Processors. These are called SHARC® DSPs, a contraction of
the longer term, Super Harvard ARChitecture. The idea is to build upon the
Harvard architecture by adding features to improve the throughput. While the
SHARC DSPs are optimized in dozens of ways, two areas are important
enough to be included in Fig. 28-4c: an instruction cache, and an I/O
controller.

First, let's look at how the instruction cache improves the performance of the
Harvard architecture. A handicap of the basic Harvard design is that the data
memory bus is busier than the program memory bus. When two numbers are
multiplied, two binary values (the numbers) must be passed over the data
memory bus, while only one binary value (the program instruction) is passed
over the program memory bus. To improve upon this situation, we start by
relocating part of the "data" to program memory. For instance, we might place
the filter coefficients in program memory, while keeping the input signal in data
memory. (This relocated data is called "secondary data" in the illustration).
At first glance, this doesn't seem to help the situation; now we must transfer
one value over the data memory bus (the input signal sample), but two values
over the program memory bus (the program instruction and the coefficient). In
fact, if we were executing random instructions, this situation would be no better
at all.

However, DSP algorithms generally spend most of their execution time in
loops, such as instructions 6-12 of Table 28-1. This means that the same set
of program instructions will continually pass from program memory to the
CPU. The Super Harvard architecture takes advantage of this situation by
including an instruction cache in the CPU. This is a small memory that
contains about 32 of the most recent program instructions. The first time
through a loop, the program instructions must be passed over the program
memory bus. This results in slower operation because of the conflict with the
coefficients that must also be fetched along this path. However, on additional
executions of the loop, the program instructions can be pulled from the
instruction cache. This means that all of the memory to CPU information
transfers can be accomplished in a single cycle: the sample from the input
signal comes over the data memory bus, the coefficient comes over the program
memory bus, and the program instruction comes from the instruction cache. In
the jargon of the field, this efficient transfer of data is called a high memory-
access bandwidth.

Figure 28-5 presents a more detailed view of the SHARC architecture,
showing the I/O controller connected to data memory. This is how the
signals enter and exit the system. For instance, the SHARC DSPs provides
both serial and parallel communications ports. These are extremely high
speed connections. For example, at a 40 MHz clock speed, there are two
serial ports that operate at 40 Mbits/second each, while six parallel ports
each provide a 40 Mbytes/second data transfer. When all six parallel
ports are used together, the data transfer rate is an incredible 240
Mbytes/second.

Chapter 28- Digital Signal Processors 511

Memory

data and
instructions

Program
Memory

Data
Memory

instructions and
secondary data data only

Program
Memory

Data
Memory

instructions only data only

a. Von Neumann Architecture ()

b. Harvard Architecture ()

c. Super Harvard Architecture ()

CPUaddress bus

data bus

PM address bus

PM data bus

PM address bus

PM data bus

DM address bus

DM data bus

CPU

DM address bus

DM data bus

single memory

dual memory

dual memory, instruction cache, I/O controller

Instruction
Cache

CPU

I/O
Controller

data

FIGURE 28-4
Microprocessor architecture. The Von Neumann architecture
uses a single memory to hold both data and instructions. In
comparison, the Harvard architecture uses separate memories
for data and instructions, providing higher speed. The Super
Harvard Architecture improves upon the Harvard design by
adding an instruction cache and a dedicated I/O controller.

This is fast enough to transfer the entire text of this book in only 2
milliseconds! Just as important, dedicated hardware allows these data streams
to be transferred directly into memory (Direct Memory Access, or DMA),
without having to pass through the CPU's registers. In other words, tasks 1 &
14 on our list happen independently and simultaneously with the other tasks;
no cycles are stolen from the CPU. The main buses (program memory bus and
data memory bus) are also accessible from outside the chip, providing an
additional interface to off-chip memory and peripherals. This allows the
SHARC DSPs to use a four Gigaword (16 Gbyte) memory, accessible at 40
Mwords/second (160 Mbytes/second), for 32 bit data. Wow!

This type of high speed I/O is a key characteristic of DSPs. The overriding
goal is to move the data in, perform the math, and move the data out before the
next sample is available. Everything else is secondary. Some DSPs have on-
board analog-to-digital and digital-to-analog converters, a feature called mixed
signal. However, all DSPs can interface with external converters through
serial or parallel ports.

The Scientist and Engineer's Guide to Digital Signal Processing512

Now let's look inside the CPU. At the top of the diagram are two blocks
labeled Data Address Generator (DAG), one for each of the two
memories. These control the addresses sent to the program and data
memories, specifying where the information is to be read from or written to.
In simpler microprocessors this task is handled as an inherent part of the
program sequencer, and is quite transparent to the programmer. However,
DSPs are designed to operate with circular buffers, and benefit from the
extra hardware to manage them efficiently. This avoids needing to use
precious CPU clock cycles to keep track of how the data are stored. For
instance, in the SHARC DSPs, each of the two DAGs can control eight
circular buffers. This means that each DAG holds 32 variables (4 per
buffer), plus the required logic.

Why so many circular buffers? Some DSP algorithms are best carried out in
stages. For instance, IIR filters are more stable if implemented as a cascade
of biquads (a stage containing two poles and up to two zeros). Multiple stages
require multiple circular buffers for the fastest operation. The DAGs in the
SHARC DSPs are also designed to efficiently carry out the Fast Fourier
transform. In this mode, the DAGs are configured to generate bit-reversed
addresses into the circular buffers, a necessary part of the FFT algorithm. In
addition, an abundance of circular buffers greatly simplifies DSP code
generation- both for the human programmer as well as high-level language
compilers, such as C.

The data register section of the CPU is used in the same way as in traditional
microprocessors. In the ADSP-2106x SHARC DSPs, there are 16 general
purpose registers of 40 bits each. These can hold intermediate calculations,
prepare data for the math processor, serve as a buffer for data transfer, hold
flags for program control, and so on. If needed, these registers can also be
used to control loops and counters; however, the SHARC DSPs have extra
hardware registers to carry out many of these functions.

The math processing is broken into three sections, a multiplier , an
arithmetic logic unit (ALU), and a barrel shifter. The multiplier takes
the values from two registers, multiplies them, and places the result into
another register. The ALU performs addition, subtraction, absolute value,
logical operations (AND, OR, XOR, NOT), conversion between fixed and
floating point formats, and similar functions. Elementary binary operations
are carried out by the barrel shifter, such as shifting, rotating, extracting
and depositing segments, and so on. A powerful feature of the SHARC
family is that the multiplier and the ALU can be accessed in parallel. In a
single clock cycle, data from registers 0-7 can be passed to the multiplier,
data from registers 8-15 can be passed to the ALU, and the two results
returned to any of the 16 registers.

There are also many important features of the SHARC family architecture that
aren't shown in this simplified illustration. For instance, an 80 bit
accumulator is built into the multiplier to reduce the round-off error
associated with multiple fixed-point math operations. Another interesting

Chapter 28- Digital Signal Processors 513

Program

Memory

Data

Memory

instructions and

secondary data
data only

Address

PM Data

Generator

Address

DM Data

Generator

Data

Registers

Muliplier

ALU

Shifter

DM address busPM address bus

DM data busPM data bus

Program Sequencer

Instruction

Cache

I/O Controller

(DMA)

High speed I/O
(serial, parallel,
ADC, DAC, etc.)

FIGURE 28-5
Typical DSP architecture. Digital Signal Processors are designed to implement tasks in parallel. This
simplified diagram is of the Analog Devices SHARC DSP. Compare this architecture with the tasks
needed to implement an FIR filter, as listed in Table 28-1. All of the steps within the loop can be
executed in a single clock cycle.

feature is the use of shadow registers for all the CPU's key registers. These
are duplicate registers that can be switched with their counterparts in a single
clock cycle. They are used for fast context switching, the ability to handle
interrupts quickly. When an interrupt occurs in traditional microprocessors, all
the internal data must be saved before the interrupt can be handled. This
usually involves pushing all of the occupied registers onto the stack, one at a
time. In comparison, an interrupt in the SHARC family is handled by moving
the internal data into the shadow registers in a single clock cycle. When the
interrupt routine is completed, the registers are just as quickly restored. This
feature allows step 4 on our list (managing the sample-ready interrupt) to be
handled very quickly and efficiently.

Now we come to the critical performance of the architecture, how many of the
operations within the loop (steps 6-12 of Table 28-1) can be carried out at the
same time. Because of its highly parallel nature, the SHARC DSP can
simultaneously carry out all of these tasks. Specifically, within a single clock
cycle, it can perform a multiply (step 11), an addition (step 12), two data
moves (steps 7 and 9), update two circular buffer pointers (steps 8 and 10), and

The Scientist and Engineer's Guide to Digital Signal Processing514

control the loop (step 6). There will be extra clock cycles associated with
beginning and ending the loop (steps 3, 4, 5 and 13, plus moving initial values
into place); however, these tasks are also handled very efficiently. If the loop
is executed more than a few times, this overhead will be negligible. As an
example, suppose you write an efficient FIR filter program using 100
coefficients. You can expect it to require about 105 to 110 clock cycles per
sample to execute (i.e., 100 coefficient loops plus overhead). This is very
impressive; a traditional microprocessor requires many thousands of clock
cycles for this algorithm.

Fixed versus Floating Point
Digital Signal Processing can be divided into two categories, fixed point and
floating point. These refer to the format used to store and manipulate
numbers within the devices. Fixed point DSPs usually represent each number
with a minimum of 16 bits, although a different length can be used. For
instance, Motorola manufactures a family of fixed point DSPs that use 24 bits.
There are four common ways that these possible bit patterns can216 ' 65,536
represent a number. In unsigned integer, the stored number can take on any
integer value from 0 to 65,535. Similarly, signed integer uses two's
complement to make the range include negative numbers, from -32,768 to
32,767. With unsigned fraction notation, the 65,536 levels are spread
uniformly between 0 and 1. Lastly, the signed fraction format allows
negative numbers, equally spaced between -1 and 1.

In comparison, floating point DSPs typically use a minimum of 32 bits to
store each value. This results in many more bit patterns than for fixed
point, to be exact. A key feature of floating point notation232 ' 4,294,967,296
is that the represented numbers are not uniformly spaced. In the most common
format (ANSI/IEEE Std. 754-1985), the largest and smallest numbers are

 and , respectively. The represented values are unequally±3.4×1038 ±1.2×10& 38

spaced between these two extremes, such that the gap between any two
numbers is about ten-million times smaller than the value of the numbers.
This is important because it places large gaps between large numbers, but small
gaps between small numbers. Floating point notation is discussed in more
detail in Chapter 4.

All floating point DSPs can also handle fixed point numbers, a necessity to
implement counters, loops, and signals coming from the ADC and going to the
DAC. However, this doesn't mean that fixed point math will be carried out as
quickly as the floating point operations; it depends on the internal architecture.
For instance, the SHARC DSPs are optimized for both floating point and fixed
point operations, and executes them with equal efficiency. For this reason, the
SHARC devices are often referred to as "32-bit DSPs," rather than just
"Floating Point."

Figure 28-6 illustrates the primary trade-offs between fixed and floating point
DSPs. In Chapter 3 we stressed that fixed point arithmetic is much

Chapter 28- Digital Signal Processors 515

Product CostPrecision

Development Time

Floating Point Fixed Point

Dynamic RangeFIGURE 28-6
Fixed versus floating point. Fixed point DSPs
are generally cheaper, while floating point
devices have better precision, higher dynamic
range, and a shorter development cycle.

faster than floating point in general purpose computers. However, with DSPs
the speed is about the same, a result of the hardware being highly optimized for
math operations. The internal architecture of a floating point DSP is more
complicated than for a fixed point device. All the registers and data buses must
be 32 bits wide instead of only 16; the multiplier and ALU must be able to
quickly perform floating point arithmetic, the instruction set must be larger (so
that they can handle both floating and fixed point numbers), and so on.
Floating point (32 bit) has better precision and a higher dynamic range than
fixed point (16 bit) . In addition, floating point programs often have a shorter
development cycle, since the programmer doesn't generally need to worry about
issues such as overflow, underflow, and round-off error.

On the other hand, fixed point DSPs have traditionally been cheaper than
floating point devices. Nothing changes more rapidly than the price of
electronics; anything you find in a book will be out-of-date before it is
printed. Nevertheless, cost is a key factor in understanding how DSPs are
evolving, and we need to give you a general idea. When this book was
completed in 1999, fixed point DSPs sold for between $5 and $100, while
floating point devices were in the range of $10 to $300. This difference in
cost can be viewed as a measure of the relative complexity between the
devices. If you want to find out what the prices are today, you need to look
today.

Now let's turn our attention to performance; what can a 32-bit floating point
system do that a 16-bit fixed point can't? The answer to this question is
signal-to-noise ratio. Suppose we store a number in a 32 bit floating point
format. As previously mentioned, the gap between this number and its adjacent
neighbor is about one ten-millionth of the value of the number. To store the
number, it must be round up or down by a maximum of one-half the gap size.
In other words, each time we store a number in floating point notation, we add
noise to the signal.

The same thing happens when a number is stored as a 16-bit fixed point value,
except that the added noise is much worse. This is because the gaps between
adjacent numbers are much larger. For instance, suppose we store the number
10,000 as a signed integer (running from -32,768 to 32,767). The gap between
numbers is one ten-thousandth of the value of the number we are storing. If we

The Scientist and Engineer's Guide to Digital Signal Processing516

want to store the number 1000, the gap between numbers is only one one-
thousandth of the value.

Noise in signals is usually represented by its standard deviation. This was
discussed in detail in Chapter 2. For here, the important fact is that the
standard deviation of this quantization noise is about one-third of the gap
size. This means that the signal-to-noise ratio for storing a floating point
number is about 30 million to one, while for a fixed point number it is only
about ten-thousand to one. In other words, floating point has roughly 3,000
times less quantization noise than fixed point.

This brings up an important way that DSPs are different from traditional
microprocessors. Suppose we implement an FIR filter in fixed point. To do
this, we loop through each coefficient, multiply it by the appropriate sample
from the input signal, and add the product to an accumulator. Here's the
problem. In traditional microprocessors, this accumulator is just another 16 bit
fixed point variable. To avoid overflow, we need to scale the values being
added, and will correspondingly add quantization noise on each step. In the
worst case, this quantization noise will simply add, greatly lowering the signal-
to-noise ratio of the system. For instance, in a 500 coefficient FIR filter, the
noise on each output sample may be 500 times the noise on each input sample.
The signal-to-noise ratio of ten-thousand to one has dropped to a ghastly
twenty to one. Although this is an extreme case, it illustrates the main point:
when many operations are carried out on each sample, it's bad, really bad. See
Chapter 3 for more details.

DSPs handle this problem by using an extended precision accumulator.
This is a special register that has 2-3 times as many bits as the other memory
locations. For example, in a 16 bit DSP it may have 32 to 40 bits, while in the
SHARC DSPs it contains 80 bits for fixed point use. This extended range
virtually eliminates round-off noise while the accumulation is in progress. The
only round-off error suffered is when the accumulator is scaled and stored in
the 16 bit memory. This strategy works very well, although it does limit how
some algorithms must be carried out. In comparison, floating point has such
low quantization noise that these techniques are usually not necessary.

In addition to having lower quantization noise, floating point systems are also
easier to develop algorithms for. Most DSP techniques are based on repeated
multiplications and additions. In fixed point, the possibility of an overflow or
underflow needs to be considered after each operation. The programmer needs
to continually understand the amplitude of the numbers, how the quantization
errors are accumulating, and what scaling needs to take place. In comparison,
these issues do not arise in floating point; the numbers take care of themselves
(except in rare cases).

To give you a better understanding of this issue, Fig. 28-7 shows a table from
the SHARC user manual. This describes the ways that multiplication can be
carried out for both fixed and floating point formats. First, look at how
floating point numbers can be multiplied; there is only one way! That

Chapter 28- Digital Signal Processors 517

Rn
MRF
MRB

Rn
Rn
MRF
MRB

Rn
Rn
MRF
MRB

Rn
Rn
MRF
MRB

Rn
Rn
MRF
MRB

MRF
MRB

MRxF
MRxB

Rn

= MRF
= MRB
= MRF
= MRB

= MRF
= MRB
= MRF
= MRB

= SAT MRF
= SAT MRB
= SAT MRF
= SAT MRB

= RND MRF
= RND MRB
= RND MRF
= RND MRB

= 0

= Rn

= MRxF
MRxB

= Rx * Ry

+ Rx * Ry

- Rx * Ry

S S F
U U I

FR

S

S

(SI)
(UI)
(SF)
(UF)

(SF)
(UF)

)

S F
U U I

FR

)

S F
U U I

FR

)

Fn = Fx * Fy

Fixed Point Floating Point

(

(

(

FIGURE 28-7
Fixed versus floating point instructions. These are the multiplication instructions used in
the SHARC DSPs. While only a single command is needed for floating point, many
options are needed for fixed point. See the text for an explanation of these options.

is, Fn = Fx * Fy, where Fn, Fx, and Fy are any of the 16 data registers. It
could not be any simpler. In comparison, look at all the possible commands for
fixed point multiplication. These are the many options needed to efficiently
handle the problems of round-off, scaling, and format.

In Fig. 28-7, Rn, Rx, and Ry refer to any of the 16 data registers, and MRF
and MRB are 80 bit accumulators. The vertical lines indicate options. For
instance, the top-left entry in this table means that all the following are valid
commands: Rn = Rx * Ry, MRF = Rx * Ry, and MRB = Rx * Ry. In other
words, the value of any two registers can be multiplied and placed into another
register, or into one of the extended precision accumulators. This table also
shows that the numbers may be either signed or unsigned (S or U), and may be
fractional or integer (F or I). The RND and SAT options are ways of
controlling rounding and register overflow.

The Scientist and Engineer's Guide to Digital Signal Processing518

There are other details and options in the table, but they are not important for
our present discussion. The important idea is that the fixed point programmer
must understand dozens of ways to carry out the very basic task of
multiplication. In contrast, the floating point programmer can spend his time
concentrating on the algorithm.

Given these tradeoffs between fixed and floating point, how do you choose
which to use? Here are some things to consider. First, look at how many bits
are used in the ADC and DAC. In many applications, 12-14 bits per sample
is the crossover for using fixed versus floating point. For instance, television
and other video signals typically use 8 bit ADC and DAC, and the precision of
fixed point is acceptable. In comparison, professional audio applications can
sample with as high as 20 or 24 bits, and almost certainly need floating point
to capture the large dynamic range.

The next thing to look at is the complexity of the algorithm that will be run.
If it is relatively simple, think fixed point; if it is more complicated, think
floating point. For example, FIR filtering and other operations in the time
domain only require a few dozen lines of code, making them suitable for fixed
point. In contrast, frequency domain algorithms, such as spectral analysis and
FFT convolution, are very detailed and can be much more difficult to program.
While they can be written in fixed point, the development time will be greatly
reduced if floating point is used.

Lastly, think about the money: how important is the cost of the product, and
how important is the cost of the development? When fixed point is chosen, the
cost of the product will be reduced, but the development cost will probably be
higher due to the more difficult algorithms. In the reverse manner, floating
point will generally result in a quicker and cheaper development cycle, but a
more expensive final product.

Figure 28-8 shows some of the major trends in DSPs. Figure (a) illustrates the
impact that Digital Signal Processors have had on the embedded market. These
are applications that use a microprocessor to directly operate and control some
larger system, such as a cellular telephone, microwave oven, or automotive
instrument display panel. The name "microcontroller" is often used in
referring to these devices, to distinguish them from the microprocessors used
in personal computers. As shown in (a), about 38% of embedded designers
have already started using DSPs, and another 49% are considering the switch.
The high throughput and computational power of DSPs often makes them an
ideal choice for embedded designs.

As illustrated in (b), about twice as many engineers currently use fixed
point as use floating point DSPs. However, this depends greatly on the
application. Fixed point is more popular in competitive consumer products
where the cost of the electronics must be kept very low. A good example
of this is cellular telephones. When you are in competition to sell millions
of your product, a cost difference of only a few dollars can be the difference
between success and failure. In comparison, floating point is more common
when greater performance is needed and cost is not important. For

Chapter 28- Digital Signal Processors 519

No Plans

Floating Point

Next Year
in 2000

Next

Fixed Point

Migrate
Migrate

Migrate

Design

b. DSP currently used

c. Migration to floating point

Considering

Changed

Considering

Have Already

Not

a. Changing from uProc to DSP

FIGURE 28-8
Major trends in DSPs. As illustrated in (a), about 38% of embedded designers have already switched from
conventional microprocessors to DSPs, and another 49% are considering the change. In (b), about twice as
many engineers use fixed point as use floating point DSPs. This is mainly driven by consumer products that
must have low cost electronics, such as cellular telephones. However, as shown in (c), floating point is the
fastest growing segment; over one-half of engineers currently using 16 bit devices plan to migrate to floating
point DSPs

instance, suppose you are designing a medical imaging system, such a
computed tomography scanner. Only a few hundred of the model will ever
be sold, at a price of several hundred-thousand dollars each. For this
application, the cost of the DSP is insignificant, but the performance is
critical. In spite of the larger number of fixed point DSPs being used, the
floating point market is the fastest growing segment. As shown in (c), over
one-half of engineers using 16-bits devices plan to migrate to floating point
at some time in the near future.

Before leaving this topic, we should reemphasize that floating point and fixed
point usually use 32 bits and 16 bits, respectively, but not always. For

The Scientist and Engineer's Guide to Digital Signal Processing520

instance, the SHARC family can represent numbers in 32-bit fixed point, a
mode that is common in digital audio applications. This makes the 232

quantization levels spaced uniformly over a relatively small range, say,
between -1 and 1. In comparison, floating point notation places the 232

quantization levels logarithmically over a huge range, typically ±3.4×1038.
This gives 32-bit fixed point better precision, that is, the quantization error on
any one sample will be lower. However, 32-bit floating point has a higher
dynamic range, meaning there is a greater difference between the largest
number and the smallest number that can be represented.

C versus Assembly
DSPs are programmed in the same languages as other scientific and engineering
applications, usually assembly or C. Programs written in assembly can execute
faster, while programs written in C are easier to develop and maintain. In
traditional applications, such as programs run on personal computers and
mainframes, C is almost always the first choice. If assembly is used at all, it
is restricted to short subroutines that must run with the utmost speed. This is
shown graphically in Fig. 28-9a; for every traditional programmer that works
in assembly, there are approximately ten that use C.

However, DSP programs are different from traditional software tasks in two
important respects. First, the programs are usually much shorter, say, one-
hundred lines versus ten-thousand lines. Second, the execution speed is
often a critical part of the application. After all, that's why someone uses
a DSP in the first place, for its blinding speed. These two factors motivate
many software engineers to switch from C to assembly for programming
Digital Signal Processors. This is illustrated in (b); nearly as many DSP
programmers use assembly as use C.

Figure (c) takes this further by looking at the revenue produced by DSP
products. For every dollar made with a DSP programmed in C, two dollars are
made with a DSP programmed in assembly. The reason for this is simple;
money is made by outperforming the competition. From a pure performance
standpoint, such as execution speed and manufacturing cost, assembly almost
always has the advantage over C. For instance, C code usually requires a
larger memory than assembly, resulting in more expensive hardware. However,
the DSP market is continually changing. As the market grows, manufacturers
will respond by designing DSPs that are optimized for programming in C. For
instance, C is much more efficient when there is a large, general purpose
register set and a unified memory space. These future improvements will
minimize the difference in execution time between C and assembly, and allow
C to be used in more applications.

To better understand this decision between C and assembly, let's look at
a typical DSP task programmed in each language. The example we will
use is the calculation of the dot product of the two arrays, and .x [] y []
This is a simple mathematical operation, we multiply each coefficient in one

Chapter 28- Digital Signal Processors 521

Assembly

C

b. DSP Programmers

Assembly

C

a. Traditional Programmers

Assembly

C

c. DSP RevenueFIGURE 28-9
Programming in C versus assembly. As
shown in (a), only about 10% of traditional
programmers (such as those that work on
personal computers and mainframes) use
assembly. However, as illustrated in (b),
assembly is much more common in Digital
Signal Processors. This is because DSP
programs must operate as fast as possible,
and are usually quite short. Figure (c) shows
that assembly is even more common in
products that generate a high revenue.

TABLE 28-2
Dot product in C. This progam calculates
the dot product of two arrays, x[] and y[],
and stores the result in the variable, result.

001 #define LEN 20
002 float dm x[LEN];
003 float pm y[LEN];
004 float result;
005
006 main()
007
008 {
009 int n;
010 float s;
011 for (n=0;n<LEN;n++)
012 s += x[n]*y[n];
013 result = s
014 }

array by the corresponding coefficient in the other array, and sum the
products, i.e. . This should look veryx[0]×y[0] % x[1]×y[1] % x[2]×y[2] % ˛
familiar; it is the fundamental operation in an FIR filter. That is, each
sample in the output signal is found by multiplying stored samples from the
input signal (in one array) by the filter coefficients (in the other array), and
summing the products.

Table 28-2 shows how the dot product is calculated in a C program. In lines
001-004 we define the two arrays, and , to be 20 elements long.x [] y []
We also define result , the variable that holds the calculated dot

The Scientist and Engineer's Guide to Digital Signal Processing522

TABLE 28-3
Dot product in assembly (unoptimized). This program calculates the dot product of the
two arrays, x[] and y[], and stores the result in the variable, result. This is assembly code
for the Analog Devices SHARC DSPs. See the text for details.

001 i12 = _y; /* i12 points to beginning of y[] */
002 i4 = _x; /* i4 points to beginning of x[] */
003
004 lcntr = 20, do (pc,4) until lce; /* loop for the 20 array entries */
005 f2 = dm(i4,m6); /* load the x[] value into register f2 */
006 f4 = pm(i12,m14); /* load the y[] value into register f4 */
007 f8 = f2*f4; /* multiply the two values, store in f8 */
008 f12 = f8 + f12; /* add the product to the accumulator in f12 */
009
010 dm(_result) = f12; /* write the accumulator to memory */

product at the completion of the program. Line 011 controls the 20 loops
needed for the calculation, using the variable n as a loop counter. The only
statement within the loop is line 012, which multiplies the corresponding
coefficients from the two arrays, and adds the product to the accumulator
variable, s. (If you are not familiar with C, the statement: s %' x[n] (y[n]
means the same as:). After the loop, the value in thes ' s % x[n] (y[n]
accumulator, s, is transferred to the output variable, result, in line 013.

A key advantage of using a high-level language (such as C, Fortran, or Basic)
is that the programmer does not need to understand the architecture of the
microprocessor being used; knowledge of the architecture is left to the
compiler. For instance, this short C program uses several variables: n, s,
result, plus the arrays: and . All of these variables must be assignedx [] y []
a "home" in hardware to keep track of their value. Depending on the
microprocessor, these storage locations can be the general purpose data
registers, locations in the main memory, or special registers dedicated to
particular functions. However, the person writing a high-level program knows
little or nothing about this memory management; this task has been delegated
to the software engineer who wrote the compiler. The problem is, these two
people have never met; they only communicate through a set of predefined
rules. High-level languages are easier than assembly because you give half the
work to someone else. However, they are less efficient because you aren't
quite sure how the delegated work is being carried out.

In comparison, Table 28-3 shows the dot product program written in
assembly for the SHARC DSP. The assembly language for the Analog
Devices DSPs (both their 16 bit fixed-point and 32 bit SHARC devices) are
known for their simple algebraic-like syntax. While we won't go through all
the details, here is the general operation. Notice that everything relates to
hardware; there are no abstract variables in this code, only data registers
and memory locations.

Each semicolon represents a clock cycle. The arrays and are held inx [] y []
circular buffers in the main memory. In lines 001 and 002, registers i4

Chapter 28- Digital Signal Processors 523

TABLE 28-4
Dot product in assembly (optimized). This is an optimized version of the program in
TABLE 28-2, designed to take advantage of the SHARC's highly parallel architecture.

001 i12 = _y; /* i12 points to beginning of y[] */
002 i4 = _x; /* i4 points to beginning of x[] */
003
004 f2 = dm(i4,m6), f4 = pm(i12,m14) /* prime the registers */
005 f8 = f2*f4, f2 = dm(i4,m6), f4 = pm(i12,m14);
006
007 lcntr = 18, do (pc,1) until lce; /* highly efficient main loop */
008 f12 = f8 + f12, f8 = f2*f4, f2 = dm(i4,m6), f4 = pm(i12,m14);
009
010 f12 = f8 + f12, f8 = f2*f4; /* complete the last loop */
011 f12 = f8 + f12;
012
013 dm(_result) = f12; /* store the result in memory */

and i12 are pointed to the starting locations of these arrays. Next, we execute
20 loop cycles, as controlled by line 004. The format for this statement takes
advantage of the SHARC DSP's zero-overhead looping capability. In other
words, all of the variables needed to control the loop are held in dedicated
hardware registers that operate in parallel with the other operations going on
inside the microprocessor. In this case, the register: lcntr (loop counter) is
loaded with an initial value of 20, and decrements each time the loop is
executed. The loop is terminated when lcntr reaches a value of zero (indicated
by the statement: lce, for "loop counter expired"). The loop encompasses lines
004 to 008, as controlled by the statement (pc,4). That is, the loop ends four
lines after the current program counter.

Inside the loop, line 005 loads the value from into data register f2, whilex []
line 006 loads the value from into data register f4. The symbols "dm" andy []
"pm" indicate that the values are fetched over the "data memory" bus and
"program memory" bus, respectively. The variables: i4, m6, i12, and m14 are
registers in the data address generators that manage the circular buffers holding

 and . The two values in f2 and f4 are multiplied in line 007, and thex [] y []
product stored in data register f8. In line 008, the product in f8 is added to the
accumulator, data register f12. After the loop is completed, the accumulator
in f12 is transferred to memory.

This program correctly calculates the dot product, but it does not take
advantage of the SHARC highly parallel architecture. Table 28-4 shows this
program rewritten in a highly optimized form, with many operations being
carried out in parallel. First notice that line 007 only executes 18 loops, rather
than 20. Also notice that this loop only contains a single line (008), but that
this line contains multiple instructions. The strategy is to make the loop as
efficient as possible, in this case, a single line that can be executed in a single
clock cycle. To do this, we need to have a small amount of code to "prime" the

The Scientist and Engineer's Guide to Digital Signal Processing524

registers on the first loop (lines 004 and 005), and another small section of
code to finish the last loop (lines 010 and 011).

To understand how this works, study line 008, the only statement inside the
loop. In this single statement, four operations are being carried out in parallel:
(1) the value for is moved from a circular buffer in program memory andx []
placed in f2; (2) the value for is being moved from a circular buffer iny []
data memory and placed in f4; (3) the previous values of f2 and f4 are
multiplied and placed in f8; and (4) the previous value in f8 is added to the
accumulator in f12.

For example, the fifth time that line 008 is executed, and are fetchedx[7] y[7]
from memory and stored in f2 and f4. At the same time, the values for x[6]
and (that were in f2 and f4 at the start of this cycle) are multiplied andy[6]
placed in f8. In addition, the value of (that was in f8 at the start ofx[5]×y[5]
this cycle) is added to the value of f12.

Let's compare the number of clock cycles required by the unoptimized and
the optimized programs. Keep in mind that there are 20 loops, with four
actions being required in each loop. The unoptimized program requires 80
clock cycles to carry out the actions within the loops, plus 5 clock cycles
of overhead, for a total of 85 clock cycles. In comparison, the optimized
program conducts 18 loops in 18 clock cycles, but requires 11 clock cycles
of overhead to prime the registers and complete the last loop. This results
in a total execution time of 29 clock cycles, or about three times faster than
the brute force method.

Here is the big question: How fast does the C program execute relative to the
assembly code? When the program in Table 28-2 is compiled, does the
executable code resemble our efficient or inefficient assembly example? The
answer is that the compiler generates the efficient code. However, it is
important to realize that the dot product is a very simple example. The
compiler has a much more difficult time producing optimized code when the
program becomes more complicated, such as multiple nested loops and erratic
jumps to subroutines. If you are doing something straightforward, expect the
compiler to provide you a nearly optimal solution. If you are doing something
strange or complicated, expect that an assembly program will execute
significantly faster than one written in C. In the worst case, think a factor of
2-3. As previously mentioned, the efficiency of C versus assembly depends
greatly on the particular DSP being used. Floating point architectures can
generally be programmed more efficiently than fixed-point devices when using
high-level languages such as C. Of course, the proper software tools are
important for this, such as a debugger with profiling features that help you
understand how long different code segments take to execute.

There is also a way you can get the best of both worlds: write the program
in C, but use assembly for the critical sections that must execute quickly.
This is one reason that C is so popular in science and engineering. It operates
as a high-level language, but also allows you to directly manipulate

Chapter 28- Digital Signal Processors 525

Performance
Flexibility and

Fast Development

C Assembly

FIGURE 28-10
Assembly versus C. Programs in C are
more flexible and quicker to develop. In
comparison, programs in assembly often
have better performance; they run faster
and use less memory, resulting in lower
cost.

the hardware if you so desire. Even if you intend to program only in C, you
will probably need some knowledge of the architecture of the DSP and the
assembly instruction set. For instance, look back at lines 002 and 003 in
Table 28-2, the dot product program in C. The "dm" means that is to bex []
stored in data memory, while the "pm" indicates that will reside iny []
program memory. Even though the program is written in a high level language,
a basic knowledge of the hardware is still required to get the best performance
from the device.

Which language is best for your application? It depends on what is more
important to you. If you need flexibility and fast development, choose C. On
the other hand, use assembly if you need the best possible performance. As
illustrated in Fig. 28-10, this is a tradeoff you are forced to make. Here are
some things you should consider.

‘ How complicated is the program? If it is large and intricate, you will
probably want to use C. If it is small and simple, assembly may be a good
choice.

‘ Are you pushing the maximum speed of the DSP? If so, assembly will
give you the last drop of performance from the device. For less demanding
applications, assembly has little advantage, and you should consider using
C.

‘ How many programmers will be working together? If the project is large
enough for more than one programmer, lean toward C and use in-line
assembly only for time critical segments.

‘ Which is more important, product cost or development cost? If it is
product cost, choose assembly; if it is development cost, choose C.

‘ What is your background? If you are experienced in assembly (on other
microprocessors), choose assembly for your DSP. If your previous work
is in C, choose C for your DSP.

‘ What does the DSP's manufacturer suggest you use?

This last item is very important. Suppose you ask a DSP manufacturer which
language to use, and they tell you: "Either C or assembly can be used, but we

The Scientist and Engineer's Guide to Digital Signal Processing526

recommend C." You had better take their advice! What they are really saying
is: "Our DSP is so difficult to program in assembly that you will need 6
months of training to use it." On the other hand, some DSPs are easy to
program in assembly. For instance, the Analog Devices products are in this
category. Just ask their engineers; they are very proud of this.

One of the best ways to make decisions about DSP products and software is to
speak with engineers who have used them. Ask the manufacturers for
references of companies using their products, or search the web for people you
can e-mail. Don't be shy; engineers love to give their opinions on products they
have used. They will be flattered that you asked.

How Fast are DSPs?
The primary reason for using a DSP instead of a traditional microprocessor
is speed, the ability to move samples into the device, carry out the needed
mathematical operations, and output the processed data. This brings up the
question: How fast are DSPs? The usual way of answering this question is
benchmarks, methods for expressing the speed of a microprocessor as a
number. For instance, fixed point systems are often quoted in MIPS
(million integer operations per second). Likewise, floating point devices
can be specified in MFLOPS (million floating point operations per second).

One hundred and fifty years ago, British Prime Minister Benjamin Disraeli
declared that there are three types of lies: lies, damn lies, and statistics. If
Disraeli were alive today and working with microprocessors, he would add
benchmarks as a fourth category. The idea behind benchmarks is to provide
a head-to-head comparison to show which is the best device. Unfortunately,
this often fails in practicality, because different microprocessors excel in
different areas. Imagine asking the question: Which is the better car, a
Cadillac or a Ferrari? It depends on what you want it for!

Confusion about benchmarks is aggravated by the competitive nature of the
electronics industry. Manufacturers want to show their products in the best
light, and they will use any ambiguity in the testing procedure to their
advantage. There is an old saying in electronics: "A specification writer can
get twice as much performance from a device as an engineer." These
people aren't being untruthful, they are just paid to have good imaginations.
Benchmarks should be viewed as a tool for a complicated task. If you are
inexperienced in using this tool, you may come to the wrong conclusion. A
better approach is to look for specific information on the execution speed
of the algorithms you plan to carry out. For instance, if your application
calls for an FIR filter, look for the exact number of clock cycles it takes for
the device to execute this particular task.

Using this strategy, let's look at the time required to execute various
algorithms on our featured DSP, the Analog Devices SHARC family. Keep

Chapter 28- Digital Signal Processors 527

1G

100M

10M

1M

100K

10K

1K

1D
2D

FIR

FFT Convolution

IIR
FFT

HDTV

Video-

Hi Fi

Voice

Video

Audio

Phone

FIGURE 28-11
The speed of DSPs. The throughput of a particular DSP algorithm can be found by
dividing the clock rate by the required number of clock cycles per sample. This illustration
shows the range of throughput for four common algorithms, executed on a SHARC DSP
at a clock speed of 40 MHz.

Pr
oc

es
si

ng
 ra

te
 (s

am
pl

es
 p

er
 se

co
nd

)

in mind that microprocessor speed is doubling about every three years. This
means you should pay special attention to the method we use in this example.
The actual numbers are always changing, and you will need to repeat the
calculations every time you start a new project. In the world of twenty-first
century technology, blink and you are out-of-date!

When it comes to understanding execution time, the SHARC family is one
of the easiest DSP to work with. This is because it can carry out a
multiply-accumulate operation in a single clock cycle. Since most FIR
filters use 25 to 400 coefficients, 25 to 400 clock cycles are required,
respectively, for each sample being processed. As previously described,
there is a small amount of overhead needed to achieve this loop efficiency
(priming the first loop and completing the last loop), but it is negligible
when the number of loops is this large. To obtain the throughput of the
filter, we can divide the SHARC clock rate (40 MHz at present) by the
number of clock cycles required per sample. This gives us a maximum FIR
data rate of about 100k to 1.6M samples/second. The calculations can't get
much simpler than this! These FIR throughput values are shown in Fig. 28-
11.

The calculations are just as easy for recursive filters. Typical IIR filters use
about 5 to 17 coefficients. Since these loops are relatively short, we will
add a small amount of overhead, say 3 cycles per sample. This results in
8 to 20 clock cycles being required per sample of processed data. For the

The Scientist and Engineer's Guide to Digital Signal Processing528

40 MHz clock rate, this provides a maximum IIR throughput of 1.8M to
3.1M samples/second. These IIR values are also shown in Fig. 28-11.

Next we come to the frequency domain techniques, based on the Fast Fourier
Transform. FFT subroutines are almost always provided by the manufacturer
of the DSP. These are highly-optimized routines written in assembly. The
specification sheet of the ADSP-21062 SHARC DSP indicates that a 1024
sample complex FFT requires 18,221 clock cycles, or about 0.46 milliseconds
at 40 MHz. To calculate the throughput, it is easier to view this as 17.8 clock
cycles per sample. This "per-sample" value only changes slightly with longer
or shorter FFTs. For instance, a 256 sample FFT requires about 14.2 clock
cycles per sample, and a 4096 sample FFT requires 21.4 clock cycles per
sample. Real FFTs can be calculated about 40% faster than these complex FFT
values. This makes the overall range of all FFT routines about 10 to 22 clock
cycles per sample, corresponding to a throughput of about 1.8M to 3.3M
samples/second.

FFT convolution is a fast way to carry out FIR filters. In a typical case, a 512
sample segment is taken from the input, padded with an additional 512 zeros,
and converted into its frequency spectrum by using a 1024 point FFT. After
multiplying this spectrum by the desired frequency response, a 1024 point
Inverse FFT is used to move back into the time domain. The resulting 1024
points are combined with the adjacent processed segments using the overlap-
add method. This produces 512 points of the output signal.

How many clock cycles does this take? Each 512 sample segment requires two
1024 point FFTs, plus a small amount of overhead. In round terms, this is
about a factor of five greater than for a single FFT of 512 points. Since the
real FFT requires about 12 clock cycles per sample, FFT convolution can be
carried out in about 60 clock cycles per sample. For a 2106x SHARC DSP at
40 MHz, this corresponds to a data throughput of approximately 660k
samples/second.

Notice that this is about the same as a 60 coefficient FIR filter carried out by
conventional convolution. In other words, if an FIR filter has less than 60
coefficients, it can be carried out faster by standard convolution. If it has
greater than 60 coefficients, FFT convolution is quicker. A key advantage of
FFT convolution is that the execution time only increases as the logarithm of
the number of coefficients. For instance a 4,096 point filter kernel only
requires about 30% longer to execute as one with only 512 points.

FFT convolution can also be applied in two-dimensions, such as for image
processing. For instance, suppose we want to process an 800×600 pixel image
in the frequency domain. First, pad the image with zeros to make it
1024×1024. The two-dimensional frequency spectrum is then calculated by
taking the FFT of each of the rows, followed by taking the FFT of each of the
resulting columns. After multiplying this 1024×1024 spectrum by the desired
frequency response, the two-dimensional Inverse FFT is taken. This is carried
out by taking the Inverse FFT of each of the rows, and then each of the
resulting columns. Adding the number of clock cycles and dividing by the

Chapter 28- Digital Signal Processors 529

number of samples, we find that this entire procedure takes roughly 150 clock
cycles per pixel. For a 40 MHz ADSP-2106, this corresponds to a data
throughput of about 260k samples/second.

Comparing these different techniques in Fig. 28-11, we can make an important
observation. Nearly all DSP techniques require between 4 and 400
instructions (clock cycles in the SHARC family) to execute. For a SHARC
DSP operating at 40 MHz, we can immediately conclude that its data
throughput will be between 100k and 10M samples per second, depending on
how complex of algorithm is used.

Now that we understand how fast DSPs can process digitized signals, let's turn
our attention to the other end; how fast do we need to process the data? Of
course, this depends on the application. We will look at two of the most
common, audio and video processing.

The data rate needed for an audio signal depends on the required quality of the
reproduced sound. At the low end, telephone quality speech only requires
capturing the frequencies between about 100 Hz and 3.2 kHz, dictating a
sampling rate of about 8k samples/second. In comparison, high fidelity music
must contain the full 20 Hz to 20 kHz range of human hearing. A 44.1 kHz
sampling rate is often used for both the left and right channels, making the
complete Hi Fi signal 88.2k samples/second. How does the SHARC family
compare with these requirements? As shown in Fig. 28-11, it can easily handle
high fidelity audio, or process several dozen voice signals at the same time.

Video signals are a different story; they require about one-thousand times the
data rate of audio signals. A good example of low quality video is the the CIF
(Common Interface Format) standard for videophones. This uses 352×288
pixels, with 3 colors per pixel, and 30 frames per second, for a total data rate
of 9.1 million samples per second. At the high end of quality there is HDTV
(high-definition television), using 1920×1080 pixels, with 3 colors per pixel,
and 30 frames per second. This requires a data rate to over 186 million
samples per second. These data rates are above the capabilities of a single
SHARC DSP, as shown in Fig. 28-11. There are other applications that also
require these very high data rates, for instance, radar, sonar, and military uses
such as missile guidance.

To handle these high-power tasks, several DSPs can be combined into a single
system. This is called multiprocessing or parallel processing. The
SHARC DSPs were designed with this type of multiprocessing in mind, and
include special features to make it as easy as possible. For instance, no
external hardware logic is required to connect the external busses of multiple
SHARC DSPs together; all of the bus arbitration logic is already contained
within each device. As an alternative, the link ports (4 bit, parallel) can
be used to connect multiple processors in various configurations. Figure 28-
12 shows typical ways that the SHARC DSPs can be arranged in
multiprocessing systems. In Fig. (a), the algorithm is broken into sequential
steps, with each processor performing one of the steps in an "assembly line"

The Scientist and Engineer's Guide to Digital Signal Processing530

ADSP-2106x

Link

Port

ADSP-2106x

Link

Port

ADSP-2106x

Link

Port

Link

Port

Link

Port

Link

Port

BULK MEMORY

External Port External Port External Port

b. Cluster multiprocessing

ADSP-2106x

Link

Port

ADSP-2106x

Link

Port

ADSP-2106x

Link

Port

DATA DATA
Link

Port

Link

Port

Link

Port

a. Data flow multiprocessing

FIGURE 28-12
Multiprocessing configurations. Multiprocessor systems typically use one of two schemes
to communicate between processor nodes, (a) dedicated point-to-point communication
channels, or (b) a shared global memory accessed over a parallel bus.

strategy. In (b), the processors interact through a single shared global memory,
accessed over a parallel bus (i.e., the external port). Figure 28-13 shows
another way that a large number of processors can be combined into a single
system, a 2D or 3D "mesh." Each of these configuration will have relative
advantages and disadvantages for a particular task.

To make the programmer's life easier, the SHARC family uses a unified
address space. This means that the 4 Gigaword address space, accessed by the
32 bit address bus, is divided among the various processors that are working
together. To transfer data from one processor to another, simply read from or
write to the appropriate memory locations. The SHARC internal logic takes
care of the rest, transferring the data between processors at a rate as high as
240 Mbytes/sec (at 40 MHz).

Chapter 28- Digital Signal Processors 531

ADSP-2106x

Link

Port

ADSP-2106x

Link

Port

Link

Port

Link

Port

ADSP-2106x

Link

Port

Link

Port

ADSP-2106x

Link

Port

ADSP-2106x

Link

Port

Link

Port

Link

Port

Link Port Link Port

ADSP-2106x

Link

Port

Link

Port

Link Port

Link Port Link PortLink Port

Link Port Link PortLink Port

Link Port Link PortLink Port

FIGURE 28-13
Multiprocessing "mesh" configuration. For applications such as radar imaging, a 2D or 3D
array may be the most efficient way to coordinate a large number of processors.

1995 1996 1997 1998 1999 2000 2001 2002

0

5

10

15

20

FIGURE 28-14
The DSP market. At the turn of the
century, the DSP market will be 8-10
billion dollars per year, and expanding at
a rate of about 30-40% per year.

B
ill

io
ns

 o
f d

ol
la

rs

The Digital Signal Processor Market
The DSP market is very large and growing rapidly. As shown in Fig. 28-14,
it will be about 8-10 billion dollars/year at the turn of the century, and
growing at a rate of 30-40% each year. This is being fueled by the incessant

The Scientist and Engineer's Guide to Digital Signal Processing532

demand for better and cheaper consumer products, such as: cellular
telephones, multimedia computers, and high-fidelity music reproduction.
These high-revenue applications are shaping the field, while less profitable
areas, such as scientific instrumentation, are just riding the wave of
technology.

DSPs can be purchased in three forms, as a core, as a processor, and as a
board level product. In DSP, the term "core" refers to the section of the
processor where the key tasks are carried out, including the data registers,
multiplier, ALU, address generator, and program sequencer. A complete
processor requires combining the core with memory and interfaces to the
outside world. While the core and these peripheral sections are designed
separately, they will be fabricated on the same piece of silicon, making the
processor a single integrated circuit.

Suppose you build cellular telephones and want to include a DSP in the
design. You will probably want to purchase the DSP as a processor, that
is, an integrated circuit ("chip") that contains the core, memory and other
internal features. For instance, the SHARC ADSP-21060 comes in a "240
lead Metric PQFP" package, only 35×35×4 mm in size. To incorporate this
IC in your product, you design a printed circuit board where it will be
soldered in next to your other electronics. This is the most common way
that DSPs are used.

Now, suppose the company you work for manufactures its own integrated
circuits. In this case, you might not want the entire processor, just the design
of the core. After completing the appropriate licensing agreement, you can
start making chips that are highly customized to your particular application.
This gives you the flexibility of selecting how much memory is included, how
the chip receives and transmits data, how it is packaged, and so on. Custom
devices of this type are an increasingly important segment of the DSP
marketplace.

Lastly, there are several dozen companies that will sell you DSPs already
mounted on a printed circuit board. These have such features as extra
memory, A/D and D/A converters, EPROM sockets, multiple processors on
the same board, and so on. While some of these boards are intended to be
used as stand alone computers, most are configured to be plugged into a
host, such as a personal computer. Companies that make these types of
boards are called Third Party Developers. The best way to find them is to
ask the manufacturer of the DSP you want to use. Look at the DSP
manufacturer's website; if you don't find a list there, send them an e-mail.
They will be more than happy to tell you who is using their products and
how to contact them.

The present day Digital Signal Processor market (1998) is dominated by four
companies. Here is a list, and the general scheme they use for numbering their
products:

Chapter 28- Digital Signal Processors 533

Analog Devices (www.analog.com/dsp)
 ADSP-21xx 16 bit, fixed point
 ADSP-21xxx 32 bit, floating and fixed point

Lucent Technologies (www.lucent.com)
 DSP16xxx 16 bit fixed point
 DSP32xx 32 bit floating point

Motorola (www.mot.com)
 DSP561xx 16 bit fixed point
 DSP560xx 24 bit, fixed point
 DSP96002 32 bit, floating point

Texas Instruments (www.ti.com)
 TMS320Cxx 16 bit fixed point
 TMS320Cxx 32 bit floating point

Keep in mind that the distinction between DSPs and other microprocessors is
not always a clear line. For instance, look at how Intel describes the MMX
technology addition to its Pentium processor:

"Intel engineers have added 57 powerful new instructions
specifically designed to manipulate and process video, audio
and graphical data efficiently. These instructions are oriented
to the highly parallel, repetitive sequences often found in
multimedia operations."

In the future, we will undoubtedly see more DSP-like functions merged
into traditional microprocessors and microcontrollers. The internet and other
multimedia applications are a strong driving force for these changes. These
applications are expanding so rapidly, in twenty years it is very possible that
the Digital Signal Processor may be the "traditional" microprocessor.

How do you keep up with this rapidly changing field? The best way is to
read trade journals that cover the DSP market, such as EDN (Electronic
Design News, www.ednmag.com), and ECN (Electronic Component News,
www.ecnmag.com). These are distributed free, and contain up-to-date
information on what is available and where the industry is going. Trade
journals are a "must-read" for anyone serious about the field. You will also
want to be on the mailing list of several DSP manufacturers. This will
allow you to receive new product announcements, pricing information, and
special offers (such as free software and low-cost evaluation kits). Some
manufacturers also distribute periodic newsletters. For instance, Analog
Devices publishes Analog Dialogue four times a year, containing articles

The Scientist and Engineer's Guide to Digital Signal Processing534

and information on current topics in signal processing. All of these
resources, and much more, can be contacted over the internet. Start by
exploring the manufacturers’ websites, and then sending them e-mail
requesting specific information.

535

CHAPTER

29

SHARC, EZ-KIT, EZ-LAB, VisualDSP, EZ-ICE, the SHARC logo, the Analog Devices
logo, and the VisualDSP logo are registered trademarks of Analog Devices, Inc.

Getting Started with DSPs

Once you decide that a Digital Signal Processor is right for your application, you need a way to
get started. Many manufacturers will sell you a low cost evaluation kit, allowing you to
experience their products first-hand. These are a great educational tool; it doesn't matter if you
are a novice or a pro, they are the best way to become familiar with a particular DSP. For
instance, Analog Devices provides the EZ-KIT® Lite to teach potential customers about its
SHARC® family of Digital Signal Processors. For only $179, you receive all the hardware and
software you need to see the DSP in action. This includes "canned" programs provided with the
kit, as well as applications you can write yourself in assembly or C. Suppose you buy one of
these kits from Analog Devices and play with it for a few days. This chapter is an overview of
what you can expect to find and learn.

The ADSP-2106x family
In the last chapter we looked at the general operation of the ADSP-2106x
"SHARC" family of Digital Signal Processors. Table 29-1 shows the various
members of this family. All these devices use the same architecture, but have
different amounts of on-chip memory, a key factor in deciding which one to
use. Memory access is a common bottleneck in DSP systems. The SHARC
DSPs address this by providing an ample supply of on-chip dual-ported SRAM.
However, the last thing you want to do is pay for more memory than you need.
DSPs often go into cost sensitive products, such as cellular telephones and CD
players. In other words, the organization of this family is determined by
marketing as well as technology.

The oldest member of this family is the ADSP-21020. This chip contains the
core architecture, but does not include on-chip memory or I/O handling. This
means it cannot function as a stand-alone computer; it requires external
components to be a functional system. The other devices are complete

The Scientist and Engineer's Guide to Digital Signal Processing536

PRODUCT Memory Notes

AD1460 4 Mbit ×4
Quad-SHARC, Four ADSP-21060's in the
same module; provides an incredible 480
MFLOPS in only 2.05"×2.05"×0.16".

ADSP-21160M 4 Mbit
New! Features Single Instruction Multiple
Data (SIMD) core architecture; optimized
for multiprocessing with link ports, 64 bit
external bus, and 14 channels of DMA

ADSP-21060 4 Mbit
Power house of the family; most memory;
link ports for high speed data transfer and
multi-processing

ADSP-21062 2 Mbit
Same features as the ADSP-21060, but with
less internal memory (SRAM), for lower
cost

ADSP-21061 1 Mbit
Low cost version used in the EZ-KIT Lite;
less memory & no link ports; additional
features in DMA for the serial port

ADSP-21065L 544 kbit
A recent addition to the family; fast and very
low cost ($10). Will attract many fixed point
applications to the SHARC family

ADSP-21020 -0-
Oldest member of the family. Contains the
core processor, but no on-chip memory or
I/O interface. Not quite a SHARC DSP.

TABLE 29-1
Members of the SHARC family.

computers within a single chip. All they require to operate is a source of
power, and some way to load a program into memory, such as an external
PROM or data link.

Notice in Table 29-1 that even the low-end products have a very significant
amount of memory. For instance, the ADSP-21065L has 544 kbits of internal
SRAM. This is enough to hold 6-8 seconds of digitized speech (8k samples per
second, 8 bits per sample). On the high-end of the family, the ADSP-21060
has a 4 Mbit memory. This is more than enough to store an entire digitized
image (512×512 pixels, 8 bits per pixel). If you require even more memory,
you easily add external SRAM (or slower memory) to any of these devices.

In addition to memory, there are also differences between these family
members in their I/O sections. The ADSP-21060 and ADSP-21062 (the high-
end) each have six link ports. These are 4 bit wide parallel connections for
combining DSPs in multiprocessing systems, and other applications that
require flexible high-speed I/O. The ADSP-21061 and ADSP-21065L (the
low-end) do not have link ports, but feature more DMA channels to assist
in their serial port operation. You will also see these part numbers with an
"L" or "M" after them, such as "ADSP-21060L." This indicates that the
device operates from a voltage lower than the traditional 5.0 volts. For

Chapter 29- Getting Started with DSPs 537

SHARC

UART/
RS-232
Driver

PROM

CODEC

emulator
connector

processor bus

serial
port

ports
linkADSP-21061

flag LEDs

flag
IRQ

reset

POWER

9-12 vdc, 1 amp

audio in

audio out

(to PC)

Expansion

serial cable

serial JTAGport

FIGURE 29-1
Block diagram of the EZ-KIT Lite board. Only four external connections are needed: audio in,
audio out, a serial (RS-232) cable to your personal computer, and power. The serial cable and
power supply are provided with the EZ-KIT Lite.

instance, the ADSP-21060L operates from 3.3 volts, while the ADSP-21160M
uses only 2.5 volts.

In June 1998, Analog Devices unveiled the second generation of its SHARC
architecture, with the announcement of the ADSP-21160. This features a
Single Instruction Multiple Data (SIMD, or "sim-dee") core architecture
operating at 100 MHz, an accelerated memory bus bandwidth of 1600
megabytes per second, two 64 bit data busses, and four 80-bit accumulators
for fixed point calculations. All totaled, the new ADSP-21160M executes a
1024 point FFT in only 46 microseconds. The SIMD DSP contains a second
set of computational units (arithmetic and logic unit, barrel shifter, data register
file, and multiplier), allowing ADI to maintain backward code compatibility
with the ADSP-2106x family, while providing a road-map to up to ten times
higher performance.

The SHARC EZ-KIT Lite

The EZ-kit Lite gives you everything you need to learn about the SHARC
DSP, including: hardware, software, and reference manuals. Figure 29-1
shows a block diagram of the hardware provided in the EZ-KIT Lite, based
around the ADSP-21061 Digital Signal Processor. This comes as a 4½ × 6½
inch printed circuit board, mounted on plastic standoffs to allow it to sit on

The Scientist and Engineer's Guide to Digital Signal Processing538

your desk. (There is also a version called the EZ-LAB, using the ADSP-
21062, that plugs into a slot in your computer). There are only four
connections you need to worry about: DC power, a serial connection to your
personal computer, and the input and output signals. A DC power supply and
serial cable are even provided in the kit. The input and output signals are at
audio level, about 1 volt amplitude. Alternatively, a jumper on the board
allows a microphone to be directly attached into the input. The idea is to plug
a microphone into the input, and attach a set of amplified speakers (such as
used with personal computers) to the output. This allows you to hear the effect
of various DSP algorithms.

Analog-to-digital and digital-to-analog conversion is accomplished with an
Analog Devices AD1847 codec (coder-decoder). This is a 16 bit sigma-delta
converter, capable of digitizing two channels (stereo) at a rate of up to 48k
samples/second, and simultaneously outputing two channels at the same rate.
Since the primary use of this board is to process audio signals, the inputs and
outputs are AC coupled with a cutoff of about 20 Hz.

Three push buttons on the board allow the user to generate an interrupt, reset
the processor, and toggle a flag bit that can be read by the system. Four LEDs
mounted on the board can be turned on and off by toggling bits. If you are
ambitious, there are sections of the board that allow you to access the serial
port, link ports (only on the EZ-LAB with its ADSP-21062), and processor bus.
However, these are unpopulated, and you will need to attach the connectors
and other components yourself.

Here's how it works. When the power is applied, the processor boots from an
on-board EPROM (512 kbytes), loading a program that establishes serial
communication with your personal computer. Next, you launch the EZ-Lite
Host program on you PC, allowing you to download programs and upload data
from the DSP. Several prewritten programs come with the EZ-KIT Lite; these
can be run by simply clicking on icons. For instance, a band-pass program
allows you to speak into the microphone, and hear the result after passing
through a band-pass filter. These programs are useful for two reasons: (1) they
allow you to quickly get the system doing something interesting, giving you
confidence that it does work, and (2) they provide a template for creating
programs of your own. Which brings us to our next topic, a design example
using the EZ-KIT Lite.

Design Example: An FIR Audio Filter
After you experiment with the prewritten programs for awhile, you will want
to modify them to gain experience with the programming. Programs can be
written in either assembly or C; the EZ-KIT Lite provides software tools to
support both languages. Later in this chapter we will look at advanced methods
of programming, such as simulation, debugging, and working in an integrated
development environment. For now, we will focus on the easiest way to get
a program to run. Little steps for little feet.

Chapter 29- Getting Started with DSPs 539

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

a. Frequency response

Sample number
0 100 200 300

-0.5

0.0

0.5

1.0

1.5

b. Impulse response (filter kernel)

FIGURE 29-2
Example FIR filter. In (a) the frequency response of a highly custom filter is shown. The
corresponding impulse response (filter kernel) is shown in (b). This filter was designed in Chapter
17 to show that virtually any frequency response can be achieved with FIR digital filters.

A
m

pl
itu

de

A
m

pl
itu

de

Since the source code is in ASCII, a standard text editor is all that is needed
to make changes to existing files, or create entirely new programs. Table 29-2
shows an example of an FIR filter program written in assembly. While this is
the only code you need to worry about for now, keep in mind that there are
other files needed to make this a complete program. This includes an
"architecture description file" (which defines the hardware configuration and
memory allocation), setup of the interrupt vector table, and a codec
initialization routine. Eventually you will need to understand what goes on
in these sections, but for now you simply copy them from the prewritten
programs.

As shown at the top of Table 29-2, there are three variables that need to be
defined before jumping into the main section of code. These are the number of
points in the filter kernel, NR_COEF; a circular buffer that holds the past
samples from the input signal, dline[]; and a circular buffer that holds the
filter kernel, coef[]. We also need to give the program two other pieces of
information: the sampling rate of the codec, and the name of the file containing
the filter kernel, so that it can be read into coef[]. All these steps are easy;
nothing more than a single line of code each. We don't show them in this
example because they are contained in the sections of code that we are ignoring
for simplicity.

Figure 29-2 shows the filter kernel we will test the program with, the same
custom filter we designed in Chapter 17. As you recall, this filter was chosen
to have a very irregular frequency response, reinforcing the notion that FIR
digital filters can provide virtually any frequency response you desire. Figure
(a) shows the frequency response of our test filter, while (b) shows the
corresponding impulse response (i.e., the filter kernel). This 301 point filter
kernel is stored in an ASCII file, and is combined with the other sections of
code during linking to form a single executable program.

The Scientist and Engineer's Guide to Digital Signal Processing540

The main section of the program performs two functions. In lines 6 to 13, the
data-address-generators (DAGs) are configured to manage the circular buffers:
dline[], and coef[]. As described in the last chapter, three parameters are
needed for each buffer: the starting location of the buffer in memory (b0 and
b8), the length of the buffer (l0 and l8), and the step size of the data being
stored in the buffer (m0 and m8). These parameters that control the circular
buffers are stored in hardware registers in the DAGs, allowing them to access
and manage the data very efficiently.

The second action of the main program is a "thumb-twiddling" loop,
implemented in lines 15 to 19. This does nothing but wait for an interrupt
indicating that an input sample has been acquired. All of the processing in this
program occurs on a sample-by-sample basis. Each time a sample is read
from the input, a sample in the output signal is calculated and routed to the
codec. Most time-domain algorithms, such as FIR and IIR filters, fall into this
category. The alternative is frame-by-frame processing, which is required
for frequency-domain techniques. In the frame-by-frame method, a group of
samples is read from the input, calculations are conducted, and a group of
samples is written to the output.

The subroutine that services the sample-ready interrupt is broken into three
sections. The first section (lines 27 to 33) fetches the sample from the codec
as a fixed point number, and converts it to floating point. In SHARC
assembly language, a data register holding a fixed point number is referred to
by "r" (such as r0, r8, r15, etc.), and by "f" if it is holding a floating point
number (i.e., f0, f8, or f15.). For instance, in line 32, the fixed point number
in data register 0 (i.e., r0) is converted into a floating point number and
overwrites data register 0 (i.e., f0). This conversion is done according to a
scaling specified by the fixed point number in data register 1 (i.e. r1). In the
third section (lines 47 to 53), the opposite steps take place; the floating point
number for the output sample is converted to fixed point and sent to the codec.

The FIR filter that converts the input samples into the output samples is
contained in lines 35 to 45. All the calculations are carried out in floating
point, avoiding the need to worry about scaling and overflow. As described in
the last chapter, this section of code is optimized to take advantage of the
SHARC DSP's ability to execute multiple instructions each clock cycle.

After we have the assembly program written and the filter kernel designed,
we are ready to create a program that can be executed on the SHARC DSP.
This is done by running the compiler, the assembler, and then the linker;
three programs provided with the EZ-KIT Lite. The compiler converts a C
program into the SHARC's assembly language. If you directly write the
program in assembly, such as in this example, you bypass this step. The
assembler and linker convert the program and external files (such as the
architecture file, codec initialization routines, filter kernel, etc.) into the final
executable file. All this takes about 30 seconds, with the final result being
a SHARC program residing on the harddisk of your PC. The EZ-KIT Lite
host is then used to run the program on the EZ-KIT Lite. Simply click

Chapter 29- Getting Started with DSPs 541

TABLE 29-2
FIR filter program in assembly.

 Before entering the main program, the following constant and variables must be defined:
 NR_COEF The number of coefficients in the filter kernel (301 in this example)
 dline[NR_COEF] A circular buffer holding the past input samples, in data memory
 coef[NR_COEF] A circular buffer holding the filter coefficients, in program memory

001 /**
002 ****************** MAIN PROGRAM **********************
003 **/
004 main:
005
006 /* INITIALIZE THE DAGS TO CONTROL THE CIRCULAR BUFFERS */
007
008 b0 = dline; /* set up dline[], the buffer holding the past input samples */
009 l0 = @dline;
010 m0 = 1;
011 b8 = coef; /* set up coef[], the buffer holding the filter coefficients */
012 l8 = @coef;
013 m8 = 1;
014
015 /* ENTER A LOOP, WAITING FOR THE SAMPLE-READY INTERRUPT */
016
017 wait:
018 idle;
019 jump wait;
020
021
022 /***
023 ********* SUBROUTINE TO PROCESS ONE SAMPLE ***********
024 ***/
025 sample_ready:
026
027 /* ACQUIRE THE INPUT SAMPLE, CONVERT TO FLOATING POINT */
028
029 r0 = dm(rx_buf + 1); /* move the input sample into r0 */
030 r0 = lshift r0 by 16; /* shift to the highest 16 bits to preserve the sign */
031 r1 = -31; /* set the scaling for the conversion */
032 f0 = float r0 by r1; /* convert from fixed to floating point */
033 dm(i0,m0) = f0; /* store the new sample in dline[], and zero f12 */
034
035 /* CALCULATE THE OUTPUT SAMPLE FROM THE FIR FILTER */
036
037 f12 = 0; /* prime the registers */
038 f2 = dm(i0,m0), f4 = pm(i8,m8);
039 f8 = f2*f4, f2 = dm(i0,m0), f4 = pm(i8,m8);
040 /* efficient main loop */
041 lcntr = NR_COEF-2, do (pc,1) until lce;
042 f8 = f2*f4, f12 = f8+f12, f2 = dm(i0,m0), f4 = pm(i8,m8);
043
044 f8 = f2*f4, f12 = f8+f12; /* complete the last loop */
045 f12 = f8+f12;
046
047 /* CONVERT THE OUTPUT SAMPLE TO FIXED POINT & OUTPUT */
048
049 r1 = 31; /* set the scaling for the conversion */
050 r8 = fix f12 by r1; /* convert from floating to fixed point */
051 rti(db); /* return from interrupt, but execute next 2 lines */
052 r8 = lshift r8 by -16; /* shift to the lowest 16 bits */
053 dm(tx_buf + 1) = r8; /* move the sample to the output */

The Scientist and Engineer's Guide to Digital Signal Processing542

EZ-KIT

Signal Generator Oscilloscope

input output

FIGURE 29-3
Testing the EZ-KIT Lite. Analog engineers test the performance of a system by connecting a signal
generator to its input, and an oscilloscope to its output. When a DSP system (such as the EZ-KIT
Lite) is tested in this way, it appears to be a virtually perfect analog system

on the file you want the DSP to run, and the EZ-KIT Lite host takes care of the
rest, downloading the program and starting it running.

This brings us to two questions. First, how do we test our audio filter to make
sure it is operating as we designed it; and second, what in the world is a
company called Analog Devices doing making Digital Signal Processors?

Analog measurements on a DSP system
For just a few moments, forget that you are studying digital techniques. Let's
take a look at this from the standpoint of an engineer that specializes in analog
electronics. He doesn't care what is inside of the EZ-KIT Lite, only that it has
an analog input and an analog output. As shown in Fig. 29-3, he would invoke
the traditional analog method of analyzing a "black box," attach a signal
generator to the input, and look at the output on an oscilloscope.

What does our analog guru find? First, the system is linear (as least as far as
this simple test can tell). If a sine wave is placed into the input, a sine wave
is observed on the output. If the amplitude or frequency of the input is
changed, a corresponding change is seen in the output. When the input
frequency is slowly increased, there comes a point where the amplitude of the
output sine wave decreases rapidly to zero. That occurs just below one-half the
sampling rate, due to the action of the anti-alias filter on the ADC.

Now our engineer notices something unknown in the analog world: the
system has a perfect linear phase. In other words, there is a constant delay
between an event occurring in the input signal, and the result of that event
in the output signal. For instance, consider our example filter kernel in Fig.
29-2. Since the center of symmetry is at sample 150, the output signal will
be delayed by 150 samples relative to the input signal. If the system is
sampling at 8 kHz, for example, this delay will be 18.75 milliseconds. In
addition, the sigma-delta converter will also provide a small additional
fixed delay.

Chapter 29- Getting Started with DSPs 543

Frequency
0 2000 4000 6000 8000 10000

0

1

2

3

Measured frequency response

FIGURE 29-4
Measured frequency response. This graph
shows measured points on the frequency
response of the example FIR filter. These
measured points have far less accuracy than
the designed frequency response of Fig. 29-
2a.

A
m

pl
itu

de
Our analog engineer will become very agitated when he sees this linear phase.
The signals won't appear the way he thinks they should, and he will start
twisting knobs at lightning speed. He will complain that the triggering isn't
working right, and mumble such things as: "this doesn't make sense," what's
going on here?", and "who's been playing with my oscilloscope?" The
performance of DSP systems is so good, it will take him a few minutes before
he understands what he is seeing.

To make him even more impressed, we ask our engineer to manually measure
the frequency response of the system. To do this, he will step the signal
generator through all the frequencies between 125 Hz and 10 kHz in
increments of 125 Hz. At each frequency he measures the amplitude of the
output signal and divides it by the amplitude of the input signal. (Of course,
the easiest way to do this is to keep the input signal at a constant amplitude).
We set the sampling rate of the EZ-KIT Lite at 22 kHz for this test. In other
words, the 0 to 0.5 digital frequency of Fig. 29-2a is mapped to DC to 11 kHz
in our real world measurement.

Figure 29-4 shows actual measurements taken on the EZ-KIT Lite; it
couldn't be better! The measured data points agree with the theoretical
curve within the limit of measurement error. This is something our analog
engineer has never seen with filters made from resistors, capacitors, and
inductors.

However, even this doesn't give the DSP the credit it deserves. Analog
measurements using oscilloscopes and digital-volt-meters have a typical
accuracy and precision of about 0.1% to 1%. In comparison, this DSP system
is limited only by the -0.001% round-off error of the 16 bit codec, since the
internal calculations use floating point. In other words, the device being
evaluated is one-hundred times more precise than the measurement tool being
used. A proper evaluation of the frequency response would require a
specialized instrument, such as a computerized data acquisition system with a
20 bit ADC. Given these facts, it is not surprising that DSPs are often used in
measurement instruments to achieve high precision.

The Scientist and Engineer's Guide to Digital Signal Processing544

Now we can answer the question: Why does Analog Devices sell Digital
Signal Processors? Only a decade ago, state-of-the-art signal processing was
carried out with precision op amps and similar transistor circuits. Today, the
highest quality analog processing is accomplished with digital techniques.
Analog Devices is a great role-model for individuals and other companies; hold
on to your vision and goals, but don't be afraid to adapt with the changing
technology!

Another Look at Fixed versus Floating Point
In this last example, we took advantage of one of the SHARC DSP's key
features, its ability to handle floating point calculations. Even though the
samples are in a fixed point format when passed to and from the codec, we go
to the trouble of converting them to floating point for the intermediate FIR
filtering algorithm. As discussed in the last chapter, there are two reasons for
wanting to process the data with floating point math: ease of programming, and
performance. Does it really make a difference?

For the programmer, yes, it makes a large difference. Floating point code is
far easier to write. Look back at the assembly program in Table 29-2. There
are only two lines (41 and 42) in the main FIR filter. In contrast, the fixed
point programmer must add code to manage the data at each math calculation.
To avoid overflow and underflow, the values must be checked for size and, if
needed, scaled accordingly. The intermediate results will also need to be stored
in an extended precision accumulator to avoid the devastating effects of
repeated round-off error.

The issue of performance is much more subtle. For example, Fig. 29-5a shows
an FIR low-pass filter with a moderately sharp cutoff, as described in Chapter
16. This "large scale" curve would look the same whether fixed or floating
point were used in the calculation. To see the difference between these two
methods, we must zoom in on the amplitude by a factor of several hundred as
shown in (b), (c), and (d). Here we can see a clear difference. The floating
point execution, (b), has such low round-off noise that its performance is
limited by the way we designed the filter kernel. The 0.02% overshoot near the
transition is a characteristic of the Blackman window used in this filter. The
point is, if we want to improve the performance, we need to work on the
algorithm, not the implementation. The curves in (c) and (d) show the round-
off noise introduced when each point in the filter kernel is represented by 16
and 14 bits, respectively. A better algorithm would do nothing to make these
better curves; the shape of the actual frequency response is swamped by
noise.

Figure 29-6 shows the difference between fixed and floating point in the
time domain. Figure (a) shows a wiggly signal that exponentially decreases
in amplitude. This might represent, for example, the sound wave from a
plucked string, or the shaking of the ground from a distant explosion. As
before, this "large scale" waveform would look the same whether fixed or
floating point were used to represent the samples. To see the difference,

Chapter 29- Getting Started with DSPs 545

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

a. Frequency response

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.998

0.999

1.000

1.001

1.002

b. Floating point

Ripple from
window used

FIGURE 29-5
Round-off noise in the frequency response. Figure (a) shows the frequency response of a windowed-sinc low-pass
filter, using a Blackman window and 150 points in the filter kernel. Figures (b), (c), and (d) show a more detailed
view of this response by zooming in on the amplitude. When the filter kernel is represented in floating point, (b), the
round-off noise is insignificant compared to the imperfections of the windowed-sinc design. As shown in (c) and (d),
representing the filter kernel in fixed point makes round-off noise the dominate imperfection.

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.998

0.999

1.000

1.001

1.002

c. 16 bits

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.998

0.999

1.000

1.001

1.002

d. 14 bits

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

we must zoom in on the amplitude, as shown in (b), (c) and (d). As discussed
in Chapter 3, this quantization appears much as additive random noise, limiting
the detectability of small components in the signals.

These performance differences between fixed and floating point are often not
important; for instance, they cannot even be seen in the "large scale" signals
of Fig. 29-5a and Fig. 29-6a. However, there are some applications where the
extra performance of floating point is helpful, and may even be critical. For
instance, high-fidelity consumer audio system, such as CD players, represent
the signals with 16 bit fixed point. In most cases, this exceeds the capability
of human hearing. However, the best professional audio systems sample the
signals with as high as 20 to 24 bits, leaving absolutely no room for artifacts
that might contaminate the music. Floating point is nearly ideal for algorithms
that process these high-precision digital signals.

Another case where the higher performance of floating point is needed is
when the algorithm is especially sensitive to noise. For instance, FIR

The Scientist and Engineer's Guide to Digital Signal Processing546

Sample number
0 50 100 150 200 250 300

-1.0

-0.5

0.0

0.5

1.0

a. Example signal

Sample number
200 225 250 275 300

-0.0010

-0.0005

0.0000

0.0005

0.0010

b. Floating point

FIGURE 29-6
Round-off noise in the time domain. Figure (a) shows an example signal with an exponentially decaying
amplitude. Figures (b), (c), and (d) show a more detailed view by zooming in on the amplitude. When the
signal is represented in floating point, (b), the round-off noise is so low that it cannot be seen in this graph.
As shown in (c) and (d), representing the signal in fixed point produces far higher levels of round-off noise.

Sample number
200 225 250 275 300

-0.0010

-0.0005

0.0000

0.0005

0.0010

c. Fixed point (16 bit)

Sample number
200 225 250 275 300

-0.0010

-0.0005

0.0000

0.0005

0.0010

d. Fixed point (14 bit)

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

filters are quite insensitive to round-off effects. As shown in Fig. 29-5, round-
off noise doesn't change the overall shape of the frequency response; the entire
curve just becomes noisier. IIR filters are a different story; round-off can
cause all sorts of havoc, including making them unstable. Floating point allows
these algorithms to achieve better performance in cutoff frequency sharpness,
stopband attenuation, and step response overshoot.

Advanced Software Tools
Our custom filter example shows the easiest way to get a program running on
the SHARC DSP: editing, assembling, linking, and downloading, performed by
individual programs. This method is fine for simple tasks, but there are better
software tools available for the advanced programmer. Let's look at what is
available for when you get really serious about DSPs.

The first tool we want to examine is the C compiler. As discussed in
the last chapter, both assembly and C are commonly used to program

Chapter 29- Getting Started with DSPs 547

TABLE 29-3
C library functions. This is a partial list of the
functions available when C is used to program
the Analog Devices SHARC DSPs.

MATH OPERATIONS
abs absolute value
acos arc cosine
asin arc sine
atan arc tangent
atan2 arc tangent of quotient
cabsf complex absolute value
cexpf complex exponential
cos cosine
cosh hyperbolic cosine
cot cotangent
div division
exp exponential
fmod modulus
log natural logarithm
log10 base 10 logarithm
matadd matrix addition
matmul matrix multiplication
pow raise to a power
rand random number generator
sin sine
sinh hyperbolic sine
sqrt square root
srand random number seed
tan tangent
tanh hyperbolic tangent

PROGRAM CONTROL
abort abnormal program end
calloc allocate / initialize memory
free deallocate memory
idle processor idle instruction
interrupt define interrupt handling
poll_flag_in test input flag
set_flag sets the processor flags
timer_off disable processor timer
timer_on enable processor timer
timer_set initialize processor timer

CHARACTER & STRING MANIPULATION
atoi convert string to integer
bsearch binary search of array
isalnum detect alphanumeric character
isalpha detect alphabetic character
iscntrl detect control character
isdigit detect decimal digit
isgraph detect printable character
islower detect lowercase character
isprint detect printable character
ispunct detect punctuation character
isspace detect whitespace character
isupper detect uppercase character
isxdigit detect hexadecimal digit
memchr find first occurrence of char
memcpy copy characters
strcat concatenate strings
strcmp compare strings
strerror get error message
strlen string length
strncmp compare characters
strrchr find last occurrence of char
strstr find string within string
strtok convert string to tokens
system sent string to operating system
tolower change uppercase to lowercase
toupper change lowercase to uppercase

SIGNAL PROCESSING
a_compress A-law compressing
a_expand A-law expansion
autocorr autocorrelation
biquad biquad filter section
cfftN complex FFT
crosscorr cross-correlation
fir FIR filter
histogram histogram
iffN inverse complex FFT
iir IIR filter
mean mean of an array
mu_compress mu law compression
mu_expand mu law expansion
rfftN real FFT
rms rms value of an array

DSPs. A tremendous advantage of using C is the library of functions, both
standard C operations, as well as DSP algorithms. Table 29-3 shows a partial
list of the C library functions for the SHARC DSPs. The math group includes
many functions common in DSP, such as the trig functions (sin, cos, tan, etc.),
logarithm, and exponent. If you need these type of functions in your program,
this is probably enough motivation in itself to use C instead of assembly. Pay
special attention to the "signal processing" routines in Table 29-3. Here you
will find key DSP algorithms, including: real and complex FFTs, FIR and IIR
filters, and statistical functions such as the mean, rms value, and variance. Of
course, all these routines are written in assembly, allowing them to be very
efficient in both speed and memory usage.

The Scientist and Engineer's Guide to Digital Signal Processing548

TABLE 29-4

/* CIRCBUF.C */
/* This is an echo program written in C for the ADSP-21061 EZ-KIT Lite. The */
/* echo program takes the talkthru program and adds a circular buffering scheme. */
/* The circular buffer is defined by the functions CIRCULAR_BUFFER, BASE, */
/* and LENGTH. The echo is performed by adding the current input to the oldest */
/* input. The delay in the echo can be modified by changing BUFF_LENGTH. */
/* */
/* */
#include <21020.h> /* for the idle() command */
#include <signal.h> /* for the interrupt command */
#include <macros.h> /* for the CIRCULAR_BUFFER and segment functions */

#define BUFF_LENGTH 4000
 /* define echo as 21k DAG1 reg i1 */

CIRCULAR_BUFFER (float,1,echo) /* a DM pointer to a circular buffer */

volatile float in_port segment (hip_reg0); /* hip_reg0 and hip-reg2 are */
volatile float out_port segment (hip_reg2); /* used in the architecture file */

void process_input (int);
void main (void)

{ /* Make this a variable length array. If emulator is stopped at main */
/* and _BUFF_LENGTH in dm window is modified, the echo delay */
/* is modified. Do not make BUFF_LENGTH greater than stack size! */

float data_buff [BUFF_LENGTH];
interrupt (SIG_IRQ3, process_input);

BASE (echo) = data_buff; /* Loads b1 and i1 with buff start adr */
LENGTH (echo) = BUFF_LENGTH; /* Loads L1 with the length of the buffer */

/* as the array is filled, the nth location contains the newest value, while */
/* the nth + 1 location contains the oldest value. */

while (1)
 { /* the echo sends the sum of the most */
 float oldest, newest; /* recent value and the oldest value */
 idle();

/* Echo is pointing to the nth location after the interrupt routine. */
/* Place the new value in variable 'newest'. After the access, update */
/* the pointer by one to point at location n+1. */

 CIRC_READ (echo, 1, newest, dm);

/* Now echo is pointing to n+1. Read the location and place value in */
/* variable 'oldest'. Do not update the pointer, since it is now */
/* pointing to the new location for the interrupt handler. */

 CIR_READ (echo, 0, oldest, dm);

/* add the oldest and most recent and send out on port */
 out_port=oldest+newest;
 }
}

void process_input (int int_number)
{

/* The newest input value is written over the oldest value in the nth */
/* location and the pointer is not updated. */

 CIRC_WRITE (echo, 0, in_port, dm);
}

Chapter 29- Getting Started with DSPs 549

Table 29-4 shows an example C program, taken from the Analog Devices' "C
Compiler Guide and Reference Manual." This program generates an echo by
adding a delayed version of the signal to itself. The most recent 4000 samples
from the input signal are stored in a circular buffer. As each sample is
acquired, the circular buffer is updated, the newest sample is added to a scaled
version of the oldest sample, and the resulting sample directed to the output.

The next advanced software tool you should look for is an integrated
development environment. This is a fancy term that means everything
needed to program and test the DSP is combined into one smoothly functioning
package. Analog Devices provides an integrated development environment in
a product called VisualDSP®, running under Windows® 95 and Windows
NTTM. Figure 29-7 shows an example of the main screen, providing a seamless
way to edit, build, and debug programs.

Here are some of the key features of VisualDSP, showing why an integrated
development environment is so important for fast software development. The
editor is specialized for creating programs in C, assembly, and a mixture of
the two. For instance, it understands the syntax of the languages, allowing
it to display different types of statements in different colors. You can also

FIGURE 29-7
Example screen from VisualDSP. This provides an integrated development environment for creating
programs on the SHARC. All of the following functions can be accessed from this single interface:
editing, compiling, assembling, linking, simulating, debugging, downloading, and PROM creation.

1. Move easily between Edit, Build, and Debug activities
2. Mix Assembly and C in a common source file
3. View "build" results
4. Powerful editor understands syntax
5. Easy access through bookmarks

1

2

4

5

3

The Scientist and Engineer's Guide to Digital Signal Processing550

FIGURE 29-8
VisualDSP debugging screen. This is a common interface for both simulation and emulation. It can
view a C program interspersed with the resulting assembly code, track execution of instructions; examine
registers (hardware, software, and memory); trace bus activity; and many other tasks.

1. Profile code to identify bottlenecks
2. View mixed C and Assembly listings
3. Create custom Register window

1

2 3

edit more than one file at one. This is very convenient, since the final
program is created by linking several files together.

Figure 29-8 shows an example screen from the VisualDSP debugger. This is
an interface to two different types of tools: simulators and emulators.
Simulators test the code within the personal computer, without even needing
a DSP to be present. This is generally the first debugging step after the
program is written. The simulator mimics the architecture and operation of the
hardware, including: input data streams, interrupts and other I/O. Emulators
(such as the Analog Devices EZ-ICE®) examine the program operation on the
actual hardware. This requires the emulator software (on your PC) to be able
to monitor the electrical signals inside of the DSP. To support this, the
SHARC DSPs feature an IEEE 1140.1 JTAG Test Access Port, allowing an
external device to track the processor's internal functions.

After you have used an evaluation kit and given some thought to purchasing
advanced software tools, you should also consider attending a training class.
These are given by many DSP manufacturers. For instance, Analog Devices
offers a 3 day class, taught several time a year, at several different locations.
These are a great way of learning about DSPs from the experts. Look at the
manufacturer's websites for details.

551

CHAPTER

30

h '
&g t 2

2
% v t

Complex Numbers

Complex numbers are an extension of the ordinary numbers used in everyday math. They have
the unique property of representing and manipulating two variables as a single quantity. This fits
very naturally with Fourier analysis, where the frequency domain is composed of two signals, the
real and the imaginary parts. Complex numbers shorten the equations used in DSP, and enable
techniques that are difficult or impossible with real numbers alone. For instance, the Fast Fourier
Transform is based on complex numbers. Unfortunately, complex techniques are very
mathematical, and it requires a great deal of study and practice to use them effectively. Many
scientists and engineers regard complex techniques as the dividing line between DSP as a tool,
and DSP as a career. In this chapter, we look at the mathematics of complex numbers, and
elementary ways of using them in science and engineering. The following three chapters discuss
important techniques based on complex numbers: the complex Fourier transform, the Laplace
transform, and the z-transform. These complex transforms are the heart of theoretical DSP. Get
ready, here comes the math!

The Complex Number System
To illustrate complex numbers, consider a child throwing a ball into the air.
For example, assume that the ball is thrown straight up, with an initial
velocity of 9.8 meters per second. One second after it leaves the child's
hand, the ball has reached a height of 4.9 meters, and the acceleration of
gravity (9.8 meters per second2) has reduced its velocity to zero. The ball
then accelerates toward the ground, being caught by the child two seconds
after it was thrown. From basic physics equations, the height of the ball at
any instant of time is given by:

The Scientist and Engineer's Guide to Digital Signal Processing552

t ' 1± 1&h /4.9

where h is the height above the ground (in meters), g is the acceleration of
gravity (9.8 meters per second2), v is the initial velocity (9.8 meters per
second), and t is the time (in seconds).

Now, suppose we want to know when the ball passes a certain height.
Plugging in the known values and solving for t:

For instance, the ball is at a height of 3 meters twice: (going up)t ' 0.38
and seconds (going down). t ' 1.62

As long as we ask reasonable questions, these equations give reasonable
answers. But what happens when we ask unreasonable questions? For
example: At what time does the ball reach a height of 10 meters? This
question has no answer in reality because the ball never reaches this height.
Nevertheless, plugging the value of into the above equation gives twoh ' 10
answers: and . Both these answers containt ' 1% &1.041 t ' 1& &1.041
the square-root of a negative number, something that does not exist in the world
as we know it. This unusual property of polynomial equations was first used
by the Italian mathematician Girolamo Cardano (1501-1576). Two centuries
later, the great German mathematician Carl Friedrich Gauss (1777-1855)
coined the term complex numbers, and paved the way for the modern
understanding of the field.

Every complex number is the sum of two components: a real part and an
imaginary part. The real part is a real number, one of the ordinary
numbers we all learned in childhood. The imaginary part is an imaginary
number, that is, the square-root of a negative number. To keep things
standardized, the imaginary part is usually reduced to an ordinary number
multiplied by the square-root of negative one. As an example, the complex
number: , is first reduced to: , and then tot ' 1% &1.041 t ' 1% 1.041 &1
the final form: . The real part of this complex number is 1,t ' 1% 1.02 &1
while the imaginary part is . This notation allows the abstract term,1.02 &1

, to be given a special symbol. Mathematicians have long used i to denote&1
. In comparison, electrical engineers use the symbol, j, because i is used&1

to represent electrical current. Both symbols are common in DSP. In this book
the electrical engineering convention, j, will be used.

For example, all the following are valid complex numbers: , ,1% 2 j 1& 2 j
, , , etc. All ordinary numbers, such as:&1% 2 j 3.14159% 2.7183 j (4/3)% (19/2) j

2, 6.34, and -1.414, can be viewed as a complex number with zero for the
imaginary part, i.e., , , and .2% 0 j 6.34% 0 j &1.414% 0 j

Just as real numbers are described as having positions along a number line,
complex numbers are represented by locations in a two-dimensional display
called the complex plane. As shown in Fig. 30-1, the horizontal axis of the

Chapter 30- Complex Numbers 553

Real axis
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

2 + 6 j

-4 - 1.5 j

3 - 7 j

8j

7j

6j

5j

4j

3j

2j

1j

0j

-1j

-2j

-3j

-4j

-5j

-6j

-7j

-8j

FIGURE 30-1
The complex plane. Every complex number
has a unique location in the complex plane,
as illustrated by the three examples shown
here. The horizontal axis represents the real
part, while the vertical axis represents the
imaginary part. Im

ag
in

ar
y

ax
is

A ' 2 % 6 j
B ' &4 & 1.5 j
C ' 3 & 7 j

Re A = 2 Im A = 6
Re B = -4 Im B = -1.5
Re C = 3 Im C = -7

complex plane is the real part of the complex number, while the vertical axis
is the imaginary part. Since real numbers are those complex numbers that have
an imaginary part equal to zero, the real number line is the same as the x-axis
of the complex plane.

In mathematical equations, a complex number is represented by a single
variable, even though it is composed of two parts. For example, the three
complex variables in Fig. 30-1 could be written:

where A, B, & C are complex variables. This illustrates a strong advantage
and a strong disadvantage of using complex numbers. The advantage is the
inherent shorthand of representing two things by a single symbol. The dis-
advantage is having to remember which variables are complex and which
variables are ordinary numbers.

The mathematical notation for separating a complex number into its real and
imaginary parts uses the operators: and . For example, using theRe () Im ()
above complex numbers:

The Scientist and Engineer's Guide to Digital Signal Processing554

(a%b j) % (c%dj) ' (a% c) % j (b%d)

(a%b j) & (c%dj) ' (a& c) % j (b&d)

(a%b j) (c%dj) ' (ac& bd) % j (bc% ad)

(a%bj)
(c%d j)

'
ac% bd
c 2% d 2

% j bc & ad
c 2% d 2

EQUATION 30-1
Addition of complex numbers.

EQUATION 30-2
Subtraction of complex numbers.

EQUATION 30-3
Multiplication of complex numbers.

EQUATION 30-4
Division of complex numbers.

AB ' B AEQUATION 30-5
Commutative property.

EQUATION 30-6
Associative property.

EQUATION 30-7
Distributive property.

(A% B)% C ' A% (B% C)

A (B%C) ' AB% AC

Notice that the value returned by the mathematical operator, , does notIm ()
include the j. For example, is equal to 4, not .Im (3% 4 j) 4 j

Complex numbers follow the same algebra as ordinary numbers, treating the
quantity, j, as a constant. For instance, addition, subtraction, multiplication and
division are given by:

Two tricks are used when manipulating equations such as these. First,
whenever a term is encountered, it is replaced by -1. This follows from thej 2

definition of j, that is: . The second trick is a way toj 2 ' (&1)2 ' &1
eliminate the j term from the denominator of a fraction. For instance, the left
side of Eq. 30-4 has a denominator of . This is handled by multiplyingc % dj
the numerator and denominator by the term , cancelling all thec & jd
imaginary terms from the denominator. In the jargon of the field, switching
the sign of the imaginary part of a complex number is called taking the
complex conjugate. This is denoted by a star at the upper right corner of the
variable. For example, if , then . In other words, Eq. 30-Z' a % b j Zt ' a & b j
4 is derived by multiplying both the numerator and denominator by the complex
conjugate of the denominator.

The following properties hold even when the variables A, B, and C are
complex. These relations can be proven by breaking each variable into its real
and imaginary parts and working out the algebra.

Chapter 30- Complex Numbers 555

M ' (Re A)2 % (Im A)2

2 ' arctan Im A
Re A

Re A ' M cos (2)

Im A ' M sin(2)

EQUATION 30-8
Rectangular-to-polar conversion. The
complex variable, A, can be changed from
rectangular form: Re A & Im A, to polar
form: M & 2.

EQUATION 30-9
Polar-to-rectangular conversion. This is
changing the complex number from M &
2 to Re A & Im A.

Real axis
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

2 + 6 j or
M = % 40
2 = arctan (6/2)

3 - 7 j or
M = % 58
2 = arctan (-7/3)

-4 - 1.5 j or
M = % 18.25
2 = arctan (-1.5/-4)

8j

7j

6j

5j

4j

3j

2j

1j

0j

-1j

-2j

-3j

-4j

-5j

-6j

-7j

-8j

FIGURE 30-2
Complex numbers in polar form. Three
example points in the complex plane are
shown in polar coordinates. Figure 30-1
shows these same points in rectangular
form.

Im
ag

in
ar

y
ax

is

Polar Notation
Complex numbers can also be expressed in polar notation, besides the
rectangular notation just described. For example, Fig. 30-2 shows three
complex numbers in polar form, the same ones previously presented in Fig.
30-1. The magnitude is the length of the vector starting at the origin and
ending at the complex point, while the phase angle is measured between
this vector and the positive x-axis. Complex numbers can be converted
between rectangular and polar notation by the following equations (paying
attention to the polar notation nuisances discussed in Chapter 8):

This brings up a giant leap in the mathematics. (Yes, this means you should
pay extra attention). A complex number written in rectangular notation

The Scientist and Engineer's Guide to Digital Signal Processing556

EQUATION 30-10
Rectangular and polar complex numbers.
The left side is the rectangular form of a
complex number, while the expression on
the right is the polar representation. The
conversion between: M & 2 and a & b, is
given by Eqs. 30-8 and 30-9.

a% jb ' M (cos2 % j sin 2)

EQUATION 30-11
Euler's relation. This is a key equation
for using complex numbers in science
and engineering.

e jx
' cos x % jsin x

e jx ' j
4

n' 0

(j x)n

n !
' j

4

k' 0
(&1)k x 2k

(2k)!
% j j

4

k' 0
(&1)k x 2k%1

(2k%1)!

is in the form: . The information is carried in the variables: , buta % bj a & b
the proper complex number is the entire expression: . In polar form, thea % bj
key information is contained in M & 2, but what is the full expression for the
proper complex number?

The key to this is Eq. 30-9, the polar-to-rectangular conversion. If we start
with the proper complex number, , and apply Eq. 30-9, we obtain:a % bj

The expression on the left is the proper rectangular description of a complex
number, while the expression on the right is the proper polar description.

Before continuing with the next step, let's review how we arrived at this point.
First, we gave the rectangular form of a complex number a graphical
representation, that is, a location in a two-dimensional plane. Second, we
defined the terms M & 2 to be consistent with our previous experience about
the relationship between polar and rectangular coordinates (Eq. 30-8 and 30-9).
Third, we followed the mathematical consequences of these actions, arriving at
what the correct polar form of a complex number must be, i .e . ,

. Even though this logic is straightforward, the result isM (cos2% j sin2)
difficult to see with "intuition." Unfortunately, it gets worse.

One of the most important equations in complex mathematics is Euler's
relation, named for the clever and very prolific Swiss mathematician,
Leonhard Euler (1707-1783; Euler is pronounced: "Oiler"):

If you like such things, this relation can be proven by expanding the
exponential term into a Taylor series:

The two bracketed terms on the right of this expression are the Taylor series
for and . Don't spend too much time on this proof; we aren't goingcos(x) sin(x)
to use it for anything.

Chapter 30- Complex Numbers 557

EQUATION 30-12
Exponential form of complex numbers.
The rectangular form, on the left, is
equal to the exponential polar form, on
the right.

a%j b ' M e j 2

M1 e j21 M2 e j22 ' M1 M2 e j (21% 22)EQUATION 30-13
Multiplication of complex numbers.

EQUATION 30-14
Division of complex numbers.

M1 e j21

M2 e j22
'

M1

M2

e j(21&22)

Rewriting Eq. 30-10 using Euler's relation results in the most common way of
expressing a complex number in polar notation, a complex exponential:

Complex numbers in this exponential form are the backbone of DSP
mathematics. Start your understanding by memorizing Eqs. 30-8 through 30-
12. A strong advantage of using this exponential polar form is that it is very
simple to multiply and divide complex numbers:

That is, complex numbers in polar form are multiplied by multiplying their
magnitudes and adding their angles. The easiest way to perform addition
and subtraction in polar form is to convert the numbers to rectangular form,
perform the operation, and reconvert back into polar. Complex numbers are
usually expressed in rectangular form in computer routines, but in polar
form when writing and manipulating equations. Just as and Re () Im ()
are used to extract the rectangular components from a complex number, the
operators and are used to extract the polar components.Mag () Phase ()
For example, if , then and .A ' 5e jB /7 Mag (A) ' 5 Phase (A) ' B/7

Using Complex Numbers by Substitution
Let's summarize where we are at. Solutions to common algebraic equations
often contain the square-root of a negative number. These are called
complex numbers, and represent solutions that cannot exist in the world as
we know it. Complex numbers are expressed in one of two forms: a % bj
(rectangular), or (polar), where j is a symbol representing . UsingMe j 2 &1
either notation, a single complex number contains two separate pieces of
information, either a & b, or M & 2. In spite of their elusive nature, complex
numbers follow mathematical laws that are similar (or identical) to those
governing ordinary numbers.

This describes what complex numbers are and how they fit into the world of
pure mathematics. Our next task is to describe ways they are useful in science

The Scientist and Engineer's Guide to Digital Signal Processing558

and engineering problems. How is it possible to use a mathematics that has no
connection with our everyday experience? The answer: If the tool we have is
a hammer, make the problem look like a nail. In other words, we change the
physical problem into a complex number form, manipulate the complex
numbers, and then change back into a physical answer.

There are two ways that physical problems can be represented using complex
numbers: a simple method of substitution, and a more elegant method we will
call mathematical equivalence. Mathematical equivalence will be discussed
in the next chapter on the complex Fourier transform. The remainder of this
chapter is devoted to substitution.

Substitution takes two real physical parameters and places one in the real part
of the complex number and one in the imaginary part. This allows the two
values to be manipulated as a single entity, i.e., a single complex number.
After the desired mathematical operations, the complex number is separated
into its real and imaginary parts, which again correspond to the physical
parameters we are concerned with.

A simple example will show how this works. As you recall from elementary
physics, vectors can represent such things as: force, velocity, acceleration, etc.
For example, imagine a sailboat being pushed in one direction by the wind, and
in another direction by the ocean current. The resulting force on the boat is the
vector sum of the two individual force vectors. This example is shown in Fig.
30-3, where two vectors, A and B, are added through the parallelogram law,
resulting in C.

We can represent this problem with complex numbers by placing the east/west
coordinate into the real part of a complex number, and the north/south
coordinate into the imaginary part. This allows us to treat each vector as a
single complex number, even though it is composed of two parts. For instance,
the force of the wind, vector A, might be in the direction of 2 parts to the east
and 6 parts to the north, represented as the complex number: . Likewise,2 % 6 j
the force of the ocean current, vector B, might be in the direction of 4 parts to
the east and 3 parts to the south, represented as the complex number: .4 & 3 j
These two vectors can be added via Eq. 30-1, resulting in the complex number
representing vector C: . Converting this back into a physical meaning,6 % 3 j
the combined force on the sailboat is in the direction of 6 parts to the north and
3 parts to the east.

Could this problem be solved without complex numbers? Of course! The
complex numbers merely provide a formalized way of keeping track of the two
components that form a single vector. The idea to remember is that some
physical problems can be converted into a complex form by simply adding a j
to one of the components. Converting back to the physical problem is nothing
more than dropping the j. This is the essence of the substitution method.

Here's the rub. How do we know that the rules and laws that apply to
complex mathematics are the same rules and laws that apply to the original

Chapter 30- Complex Numbers 559

Real axis
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

B

A+B=C

North

South

8j

7j

6j

5j

4j

3j

2j

1j

0j

-1j

-2j

-3j

-4j

-5j

-6j

-7j

-8j

C

AFIGURE 30-3
Adding vectors with complex numbers. The
vectors A & B represent forces measured
with respect to north/south and east/west.
The east/west dimension is replaced by the
real part of the complex number, while the
north/south dimension is replaced by the
imaginary part. This substitution allows
complex mathematics to be used with an
entirely real problem.

Im
ag

in
ar

y
ax

is
W

es
t

Ea
st

physical problem? For instance, we used Eq. 30-1 to add the force vectors in
the sailboat problem. How do we know that the addition of complex numbers
provides the same result as the addition of force vectors? In most cases, we
know that complex mathematics can be used for a particular application
because someone else said it does. Some brilliant and well respected
mathematician or engineer worked out the details and published the results.
The point to remember is that we cannot substitute just any problem into a
complex form and expect the answer to make sense. We must stick to
applications that have been shown to be applicable to complex analysis.

Let's look at an example where complex number substitution does not work.
Imagine that you buy apples for $5 a box, and oranges for $10 a box. You
represent this by the complex number: . During a particular week, you5 % 10 j
buy 6 boxes of apples and 2 boxes of oranges, which you represent by the
complex number: . The total price you must pay for the goods is equal6 % 2 j
to number of i tems multiplied by the price of each item, that is,

. In other words, the complex math indicates you(5 % 10 j) (6 % 2 j) ' 10 % 70 j
must pay a total of $10 for the apples and $70 for the oranges. The problem
is, the answer is completely wrong! The rules of complex mathematics do not
follow the rules of this particular physical problem.

Complex Representation of Sinusoids
Complex numbers find a niche in electronics and signal processing because
they are a compact way to represent and manipulate the most useful of all
waveforms: sine and cosine waves. The conventional way to represent a
sinusoid is: or , in polar and rectangularM cos(Tt % N) Acos(Tt) % Bsin (Tt)

The Scientist and Engineer's Guide to Digital Signal Processing560

Acos (Tt) % Bsin(Tt) W a% jb

(conventional representation) (complex number)

M cos(Tt % N) W Me j 2

(conventional representation) (complex number)

notation, respectively. Notice that we are representing frequency by T, the
natural frequency in radians per second. If it makes you more comfortable,
you can replace each T with 2Bf to make the expressions in hertz. However,
most DSP mathematics is written using the shorter notation, and you should
become familiar with it. Since it requires two parameters to represent a single
sinusoid (i.e., A & B, or M & N), the use of complex numbers to represent
these important waveforms is a natural. Using substitution, the change from
the conventional sinusoid representation to a complex number is straight-
forward. In rectangular form:

where , and . Put in words, the amplitude of the cosine waveAWa B W&b
becomes the real part of the complex number, while the negative of the sine
wave's amplitude becomes the imaginary part. It is important to understand
that this is not an equation, but merely a way of letting a complex number
represent a sinusoid. This substitution also can be applied in polar form:

where , and . In words, the polar notation substitution leaves theM WM 2W&N
magnitude the same, but changes the sign of the phase angle.

Why change the sign of the imaginary part & phase angle? This is to make the
substitution appear in the same form as the complex Fourier transform
described in the next chapter. The substitution techniques of this chapter gain
nothing from this sign change, but it is almost always done to keep things
consistent with the more advanced methods.

Using complex numbers to represent sine and cosine waves is a common
technique in electrical circuit analysis and DSP. This is because many (but not
all) of the rules and laws governing complex numbers are the same as those
governing sinusoids. In other words, we can represent the sine and cosine
waves with complex numbers, manipulate the numbers in various ways, and
have the resulting answer match the way the sinusoids behave.

However, we must be careful to use only those mathematical operations that
mimic the physical problem being represented (sinusoids in this case). For
example, suppose we use the complex variables, A and B, to represent two
sinusoids of the same frequency, but with different amplitudes and phase shifts.
When the two complex numbers are added, a third complex number is
produced. Likewise, a third sinusoid is created when the two sinusoids are

Chapter 30- Complex Numbers 561

added. As you would hope, the third complex number represents the third
sinusoid. The complex addition matches the physical system.

Now, imagine multiplying the complex numbers A and B, resulting in another
complex number. Does this match what happens when the two sinusoids are
multiplied? No! Multiplying two sinusoids does not produce another sinusoid.
Complex multiplication fails to match the physical system, and therefore cannot
be used.

Fortunately, the valid operations are clearly defined. Two conditions must be
satisfied. First, all of the sinusoids must be at the same frequency. For
example, if the complex numbers: and represent sinusoids at the1%1 j 2%2 j
same frequency, then the sum of the two sinusoids is represented by the
complex number: . However, if and represent sinusoids with3%3 j 1%1 j 2%2 j
different frequencies, there is nothing that can be done with the complex
representation. In this case, the sum of the complex numbers, , is3%3 j
meaningless.

In spite of this, frequency can be left as a variable when using complex
numbers, but it must be the same frequency everywhere. For instance, it is
perfectly valid to add: and , to produce: . These2T%3Tj 3T%1 j 5T% (3T%1) j
represent sinusoids where the amplitude and phase vary as frequency changes.
While we do not know what the particular frequency is, we do know that it is
the same everywhere, i.e., T.

The second requirement is that the operations being represented must be linear,
as discussed in Chapter 5. For instance, sinusoids can be combined by addition
and subtraction, but not by multiplication or division. Likewise, systems may
be amplifiers, attenuators, high or low-pass filters, etc., but not such actions as:
squaring, clipping and thresholding. Remember, even convolution and Fourier
analysis are only valid for linear systems.

Complex Representation of Systems
Figure 30-4 shows an example of using complex numbers to represent a
sinusoid passing through a linear system. We will use continuous signals
for this example, although discrete signals are handled the same way. Since
the input signal is a sinusoid, and the system is linear, the output will also
be a sinusoid, and at the same frequency as the input. As shown, the
example input signal has a conventional representation of: ,3 cos(Tt % B/4)
or the equivalent expression: . When2.1213 cos(Tt) & 2.1213 sin(Tt)
represented by a complex number this becomes: or .3 e & jB/4 2.1213% j 2.1213
Likewise, the conventional representation of the output is: ,1.5 cos(Tt & B/8)
or in the alternate form: . This is represented1.3858 cos(Tt) % 0.5740sin (Tt)
by the complex number: or .1.5 e jB/8 1.3858& j 0.5740

The system's characteristics can also be represented by a complex number. The
magnitude of the complex number is the ratio between the magnitudes

The Scientist and Engineer's Guide to Digital Signal Processing562

Time
0 1 2 3 4 5

-4
-3
-2
-1
0
1
2
3
4

Time
0 1 2 3 4 5

-4
-3
-2
-1
0
1
2
3
4

Linear
System

Input signal Output signal

or or

or oror
1.5e jB/8

2.1213 % j 2.1213

3e & jB/4

3cos(Tt % B/4)

2.1213cos(Tt) & 2.1213sin(Tt)

1.3858 & j 0.57400.1913 & j 0.4619

0.5e j3B/8

1.5cos(Tt & B/8)

1.3858cos(Tt) % 0.5740sin(Tt)

FIGURE 30-4
Sinusoids represented by complex numbers. Complex numbers are popular in DSP and electronics because
they are a convenient way to represent and manipulate sinusoids. As shown in this example, sinusoidal input
and output signals can be represented as complex numbers, expressed in either polar or rectangular form. In
addition, the change that a linear system makes to a sinusoid can also be expressed as a complex number.

C
on

ve
nt

io
na

l
C

om
pl

ex
re

pr
es

en
ta

tio
n

A
m

pl
itu

de

A
m

pl
itu

de

of the input and output (i.e.,). Likewise, the angle of the complexMout /Min
number is the negative of the difference between the input and output angles
(i.e.,). In the example used here, the system is described by the& [Nout& Nin]
complex number, . In other words, the amplitude of the sinusoid is0.5 e j 3B/8

reduced by 0.5, while the phase angle is changed by . &3B/8

The complex number representing the system can be converted into rectangular
form as: , but we must be careful in interpreting what this0.1913& j 0.4619
means. It does not mean that a sine wave passing through the system is
changed in amplitude by 0.1913, nor that a cosine wave is changed by -0.4619.
In general, a pure sine or cosine wave entering a linear system is converted into
a mixture of sine and cosine waves.

Fortunately, the complex math automatically keeps track of these cross-terms.
When a sinusoid passes through a linear system, the complex numbers
representing the input signal and the system are multiplied, producing the
complex number representing the output. If any two of the complex numbers are
known, the third can be found. The calculations can be carried out in either
polar or rectangular form, as shown in Fig. 30-4.

In previous chapters we described how the Fourier transform decomposes a
signal into cosine and sine waves. The amplitudes of the cosine waves are
called the real part, while the amplitudes of the sine waves are called the
imaginary part. We stressed that these amplitudes are ordinary numbers, and

Chapter 30- Complex Numbers 563

I ×Z ' V

the terms real and imaginary are just names used to keep the two separate.
Now that complex numbers have been introduced, it should be quite obvious
were the names come from. For example, imagine a 1024 point signal being
decomposed into 513 cosine waves and 513 sine waves. Using substitution, we
can represent the spectrum by 513 complex numbers. However, don't be misled
into thinking that this is the complex Fourier transform, the topic of Chapter
31. This is still the real Fourier transform; the spectrum has just been placed
in a complex format by using substitution.

Electrical Circuit Analysis
This method of substituting complex numbers for cosine & sine waves is called
the Phasor transform. It is the main tool used to analyze networks composed
of resistors, capacitors and inductors. [More formally, electrical engineers
define the phasor transform as multiplying by the complex term: and takinge jTt

the real part. This allows the procedure to be written as an equation, making
it easier to deal with in mathematical work. “Substitution” achieves the same
end result, but is less elegant].

The first step is to understand the relationship between the current and voltage
for each of these devices. For the resistor, this is expressed in Ohm's law:

, where i is the instantaneous current through the device, v is thev ' iR
instantaneous voltage across the device, and R is the resistance. In contrast,
the capacitor and inductor are governed by the differential equations:

, and , where C is the capacitance and L is thei ' C dv /dt v ' L di /dt
inductance. In the most general method of circuit analysis, these nasty
differential equations are combined as dictated by the circuit configuration, and
then solved for the parameters of interest. While this will answer everything
about the circuit, the math can become a real mess.

This can be greatly simplified by restricting the signals to be sinusoids. By
representing these sinusoids with complex numbers, the difficult differential
equations can be directly replaced with much simpler algebraic equations.
Figure 30-5 illustrates how this works. We treat each of these three
components (resistor, capacitor & inductor) as a system. The input to the
system is the sinusoidal current through the device, while the output is the
sinusoidal voltage across its two terminals. This means we can represent the
input and output of the system by the two complex variables: I (for current) and
V (for voltage), respectively. The relation between the input and output can
also be expressed by a complex number. This complex number is called the
impedance, and is given the symbol: Z. This means:

In words, the complex number representing the sinusoidal voltage is equal to
the complex number representing the sinusoidal current multiplied by the
impedance (another complex number). Given any two, the third can be

The Scientist and Engineer's Guide to Digital Signal Processing564

Time

V

I

Time Time

V
V

I
I

Resistor Capacitor Inductor

V
I

V
I V

I

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 30-5
Definition of impedance. When sinusoidal voltages and currents are represented by complex numbers, the ratio
between the two is called the impedance, and is denoted by the complex variable, Z. Resistors, capacitors and
inductors have impedances of R, , and , respectively.& j/TC jTL

found. In polar form, the magnitude of the impedance is the ratio between the
amplitudes of V and I. Likewise, the phase of the impedance is the phase
difference between V and I.

This relation can be thought of as Ohm's law for sinusoids. Ohms's law
() describes how the resistance relates the instantaneous current andv ' iR
voltage in a resistor. When the signals are sinusoids represented by
complex numbers, the relation becomes: . That is, the impedanceV ' IZ
relates the current and voltage. Resistance is an ordinary number, since it
deals with two ordinary numbers. Impedance is a complex number, since
it relates two complex numbers. Impedance contains more information than
resistance, because it dictates both the amplitudes and the phase angles.

From the differential equations that govern their operation, it can be shown that
the impedance of the resistor, capacitor, and inductor are: R, , and ,& j /TC jTL
respectively. As an example, imagine that the current in each of these
components is a unity amplitude cosine wave, as shown in Fig. 30-5. Using
substitution, this is represented by the complex number: . The voltage1%0 j
across the resistor will be: . In other words, aV ' I Z ' (1%0 j)R ' R%0 j
cosine wave of amplitude R. The voltage across the capacitor is found to be:

. This reduces to: , a sine wave ofV ' IZ ' (1%0 j)(& j /TC) 0& j /TC
amplitude, . Likewise, the voltage across the inductor can be calculated:1/TC

. This reduces to: , a negative sine wave ofV ' IZ ' (1%0 j) (jTL) 0% jTL
amplitude, .TL

The beauty of this method is that RLC circuits can be analyzed without having
to resort to differential equations. The impedance of the resistors, capacitors,

Chapter 30- Complex Numbers 565

Vin

Vout

Z1

Z2

Z3

FIGURE 30-6
RLC notch filter. This circuit removes a
narrow band of frequencies from a signal.
The use of complex substitution greatly
simplifies the analysis of this and similar
circuits.

Vout
Vin

'
Z2% Z3

Z1% Z2% Z3

Vout
Vin

'

jTL &
j

TC

R % jTL &
j

TC

and inductors is treated the same as resistance in a DC circuit. This includes
all of the basic combinations, such as: resistors in series, resistors in parallel,
voltage dividers, etc.

As an example, Fig. 30-6 shows an RLC circuit called a notch filter, used to
remove a narrow band of frequencies. For instance, it could eliminate 60 hertz
interference in an audio or instrumentation signal. If this circuit were
composed of three resistors (instead of the resistor, capacitor and inductor), the
relationship between the input and output signals would be given by the voltage
divider formula: . Since the circuit containsvout /vin ' (R2%R3) /(R1%R2%R3)
capacitors and inductors, the equation is rewritten with impedances:

where: Vout, Vin, Z1, Z2, and Z3 are all complex variables. Plugging in the
impedance of each component:

Next, we crank through the algebra to separate everything containing a j,
from everything that does not contain a j. In other words, we separate the
equation into its real and imaginary parts. This algebra can be tiresome and
long, but the alternative is to write and solve differential equations, an

The Scientist and Engineer's Guide to Digital Signal Processing566

Frequency (MHz)

0.0 0.5 1.0 1.5 2.0

-2

-1

0

1

2

b. Phase

Frequency (MHz)

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

a. Magnitude

Ph
as

e
(r

ad
ia

ns
)

A
m

pl
itu

de

FIGURE 30-7
Notch filter frequency response. These curves are for the component values: R = 50S, C
= 470DF, and L = 54 µH.

Vout
Vin

'
k 2

R 2% k 2
% j Rk

R 2% k 2

where: k ' TL& 1/TC

Mag '
TL &1/TC

R 2% [TL &1/TC] 2
1/2

Phase ' arctan R
TL& 1/TC

even nastier task. When separated into the real and imaginary parts, the
complex representation of the notch filter becomes:

Lastly, the relation is converted to polar notation, and graphed in Fig. 30-7:

The key point to remember from these examples is how substitution allows
complex numbers to represent real world problems. In the next chapter we will
look at a more advanced way to use complex numbers in science and
engineering, mathematical equivalence.

567

CHAPTER

31

Re X [k] '
2
N j

N& 1

n' 0
x[n] cos(2Bkn /N)

Im X [k] '
&2

N j
N& 1

n' 0
x [n] sin(2Bkn /N)

EQUATION 31-1
The real DFT. This is the forward transform,
calculating the frequency domain from the
time domain. In spite of using the names: real
part and imaginary part, these equations
only involve ordinary numbers. The
frequency index, k, runs from 0 to N/2. These
are the same equations given in Eq. 8-4,
except that the 2/N term has been included in
the forward transform.

The Complex Fourier Transform

Although complex numbers are fundamentally disconnected from our reality, they can be used to
solve science and engineering problems in two ways. First, the parameters from a real world
problem can be substituted into a complex form, as presented in the last chapter. The second
method is much more elegant and powerful, a way of making the complex numbers
mathematically equivalent to the physical problem. This approach leads to the complex Fourier
transform, a more sophisticated version of the real Fourier transform discussed in Chapter 8.
The complex Fourier transform is important in itself, but also as a stepping stone to more
powerful complex techniques, such as the Laplace and z-transforms. These complex transforms
are the foundation of theoretical DSP.

The Real DFT
All four members of the Fourier transform family (DFT, DTFT, Fourier
Transform & Fourier Series) can be carried out with either real numbers or
complex numbers. Since DSP is mainly concerned with the DFT, we will use
it as an example. Before jumping into the complex math, let's review the real
DFT with a special emphasis on things that are awkward with the mathematics.
In Chapter 8 we defined the real version of the Discrete Fourier Transform
according to the equations:

In words, an N sample time domain signal, , is decomposed into a setx [n]
of cosine waves, and sine waves, with frequencies given by theN/2%1 N/2%1

The Scientist and Engineer's Guide to Digital Signal Processing568

index, k. The amplitudes of the cosine waves are contained in , whileReX[k]
the amplitudes of the sine waves are contained in . These equationsIm X [k]
operate by correlating the respective cosine or sine wave with the time domain
signal. In spite of using the names: real part and imaginary part, there are no
complex numbers in these equations. There isn't a j anywhere in sight! We
have also included the normalization factor, in these equations.2/N
Remember, this can be placed in front of either the synthesis or analysis
equation, or be handled as a separate step (as described by Eq. 8-3). These
equations should be very familiar from previous chapters. If they aren't, go
back and brush up on these concepts before continuing. If you don't understand
the real DFT, you will never be able to understand the complex DFT.

Even though the real DFT uses only real numbers, substitution allows the
frequency domain to be represented using complex numbers. As suggested by
the names of the arrays, becomes the real part of the complexReX[k]
frequency spectrum, and becomes the imaginary part. In other words,Im X [k]
we place a j with each value in the imaginary part, and add the result to the
real part. However, do not make the mistake of thinking that this is the
"complex DFT." This is nothing more than the real DFT with complex
substitution.

While the real DFT is adequate for many applications in science and
engineering, it is mathematically awkward in three respects. First, it can only
take advantage of complex numbers through the use of substitution. This
makes mathematicians uncomfortable; they want to say: "this equals that," not
simply: "this represents that." For instance, imagine we are given the
mathematical statement: A equals B. We immediately know countless
consequences: , , , etc. Now suppose we are5A' 5B 1%A ' 1%B A/x ' B/x
given the statement: A represents B. Without additional information, we know
absolutely nothing! When things are equal, we have access to four-thousand
years of mathematics. When things only represent each other, we must start
from scratch with new definitions. For example, when sinusoids are
represented by complex numbers, we allow addition and subtraction, but
prohibit multiplication and division.

The second thing handled poorly by the real Fourier transform is the negative
frequency portion of the spectrum. As you recall from Chapter 10, sine and
cosine waves can be described as having a positive frequency or a negative
frequency. Since the two views are identical, the real Fourier transform
ignores the negative frequencies. However, there are applications where the
negative frequencies are important. This occurs when negative frequency
components are forced to move into the positive frequency portion of the
spectrum. The ghosts take human form, so to speak. For instance, this is what
happens in aliasing, circular convolution, and amplitude modulation. Since the
real Fourier transform doesn't use negative frequencies, its ability to deal with
these situations is very limited.

Our third complaint is the special handing of and , theReX [0] ReX [N/2]
first and last points in the frequency spectrum. Suppose we start with an N

Chapter 31- The Complex Fourier Transform 569

EQUATION 31-2
Euler's relation. e jx

' cos(x) % j sin(x)

EQUATION 31-3
Euler's relation for
sine & cosine.

sin(x) '
e jx

& e & jx

2j
cos (x) '

e jx
% e & jx

2

sin(Tt) '
1
2

je j (&T)t
&

1
2

je jTt

EQUATION 31-4
Sinusoids as complex numbers. Using
complex numbers, cosine and sine waves
can be written as the sum of a positive
and a negative frequency.

cos(Tt) '
1
2

e j (&T)t
%

1
2

e jTt

point signal, . Taking the DFT provides the frequency spectrum containedx [n]
in and , where k runs from 0 to N/2. However, these are notReX [k] ImX [k]
the amplitudes needed to reconstruct the time domain waveform; samples

 and must first be divided by two. (See Eq. 8-3 to refreshReX [0] ReX [N/2]
your memory). This is easily carried out in computer programs, but
inconvenient to deal with in equations.

The complex Fourier transform is an elegant solution to these problems. It is
natural for complex numbers and negative frequencies to go hand-in-hand.
Let's see how it works.

Mathematical Equivalence
Our first step is to show how sine and cosine waves can be written in an
equation with complex numbers. The key to this is Euler's relation, presented
in the last chapter:

At first glance, this doesn't appear to be much help; one complex expression is
equal to another complex expression. Nevertheless, a little algebra can
rearrange the relation into two other forms:

This result is extremely important, we have developed a way of writing
equations between complex numbers and ordinary sinusoids. Although Eq. 31-
3 is the standard form of the identity, it will be more useful for this discussion
if we change a few terms around:

Each expression is the sum of two exponentials: one containing a positive
frequency (T), and the other containing a negative frequency (-T). In other
words, when sine and cosine waves are written as complex numbers, the

The Scientist and Engineer's Guide to Digital Signal Processing570

EQUATION 31-5
The forward complex DFT. Both the
time domain, , and the frequencyx [n]
domain, , are arrays of complexX [k]
numbers, with k and n running from 0
to N-1. This equation is in polar form,
the most common for DSP.

X [k] '
1
N j

N& 1

n' 0
x [n] e & j 2B kn /N

X [k] '
1
N j

N& 1

n' 0
x[n] cos (2Bkn /N) & j sin(2Bkn /N)

EQUATION 31-6
The forward complex DFT
(rectangular form).

negative portion of the frequency spectrum is automatically included. The
positive and negative frequencies are treated with an equal status; it requires
one-half of each to form a complete waveform.

The Complex DFT
The forward complex DFT, written in polar form, is given by:

Alternatively, Euler's relation can be used to rewrite the forward transform in
rectangular form:

To start, compare this equation of the complex Fourier transform with the
equation of the real Fourier transform, Eq. 31-1. At first glance, they appear
to be identical, with only small amount of algebra being required to turn Eq.
31-6 into Eq. 31-1. However, this is very misleading; the differences between
these two equations are very subtle and easy to overlook, but tremendously
important. Let's go through the differences in detail.

First, the real Fourier transform converts a real time domain signal, , intox [n]
two real frequency domain signals, & . By using complexReX[k] ImX[k]
substitution, the frequency domain can be represented by a single complex
array, . In the complex Fourier transform, both & are arraysX [k] x [n] X [k]
of complex numbers. A practical note: Even though the time domain is
complex, there is nothing that requires us to use the imaginary part. Suppose
we want to process a real signal, such as a series of voltage measurements
taken over time. This group of data becomes the real part of the time domain
signal, while the imaginary part is composed of zeros.

Second, the real Fourier transform only deals with positive frequencies.
That is, the frequency domain index, k , only runs from 0 to N/2. In
comparison, the complex Fourier transform includes both positive and
negative frequencies. This means k runs from 0 to N-1. The frequencies
between 0 and N/2 are positive, while the frequencies between N/2 and N-1
are negative. Remember, the frequency spectrum of a discrete signal is
periodic, making the negative frequencies between N/2 and N-1 the same as

Chapter 31- The Complex Fourier Transform 571

between -N/2 and 0. The samples at 0 and N/2 straddle the line between
positive and negative. If you need to refresh your memory on this, look
back at Chapters 10 and 12.

Third, in the real Fourier transform with substitution, a j was added to the sine
wave terms, allowing the frequency spectrum to be represented by complex
numbers. To convert back to ordinary sine and cosine waves, we can simply
drop the j. This is the sloppiness that comes when one thing only represents
another thing. In comparison, the complex DFT, Eq. 31-5, is a formal
mathematical equation with j being an integral part. In this view, we cannot
arbitrary add or remove a j any more than we can add or remove any other
variable in the equation.

Fourth, the real Fourier transform has a scaling factor of two in front, while the
complex Fourier transform does not. Say we take the real DFT of a cosine
wave with an amplitude of one. The spectral value corresponding to the cosine
wave is also one. Now, let's repeat the process using the complex DFT. In
this case, the cosine wave corresponds to two spectral values, a positive and a
negative frequency. Both these frequencies have a value of ½. In other words,
a positive frequency with an amplitude of ½, combines with a negative
frequency with an amplitude of ½, producing a cosine wave with an amplitude
of one.

Fifth, the real Fourier transform requires special handling of two frequency
domain samples: & , but the complex Fourier transform doesReX [0] ReX [N/2]
not. Suppose we start with a time domain signal, and take the DFT to find the
frequency domain signal. To reverse the process, we take the Inverse DFT of
the frequency domain signal, reconstructing the original time domain signal.
However, there is scaling required to make the reconstructed signal be identical
to the original signal. For the complex Fourier transform, a factor of 1/N must
be introduced somewhere along the way. This can be tacked-on to the forward
transform, the inverse transform, or kept as a separate step between the two.
For the real Fourier transform, an additional factor of two is required (2/N), as
described above. However, the real Fourier transform also requires an
additional scaling step: and must be divided by twoReX [0] ReX [N/2]
somewhere along the way. Put in other words, a scaling factor of 1/N is used
with these two samples, while 2/N is used for the remainder of the spectrum.
As previously stated, this awkward step is one of our complaints about the real
Fourier transform.

Why are the real and complex DFTs different in how these two points are
handled? To answer this, remember that a cosine (or sine) wave in the time
domain becomes split between a positive and a negative frequency in the
complex DFT's spectrum. However, there are two exceptions to this, the
spectral values at 0 and N/2. These correspond to zero frequency (DC) and
the Nyquist frequency (one-half the sampling rate). Since these points
straddle the positive and negative portions of the spectrum, they do not have
a matching point. Because they are not combined with another value, they
inherently have only one-half the contribution to the time domain as the
other frequencies.

The Scientist and Engineer's Guide to Digital Signal Processing572

x[n] ' j
N& 1

k' 0
X [k]e j 2B kn /N

EQUATION 31-7
The inverse complex DFT. This is
matching equation to the forward
complex DFT in Eq. 31-5.

Im X[]

Re X[]

Frequency
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1.0

-0.5

0.0

0.5

1.0

Frequency
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1.0

-0.5

0.0

0.5

1.0

12

3

4

FIGURE 31-1
Complex frequency spectrum. These
curves correspond to an entirely real
time domain signal, because the real
part of the spectrum has an even
symmetry, and the imaginary part has
an odd symmetry. The two square
markers in the real part correspond to
a cosine wave with an amplitude of
one, and a frequency of 0.23. The
two round markers in the imaginary
part correspond to a sine wave with an
amplitude of one, and a frequency of
0.23.

A
m

pl
itu

de
A

m
pl

itu
de

Figure 31-1 illustrates the complex DFT's frequency spectrum. This figure
assumes the time domain is entirely real, that is, its imaginary part is zero.
We will discuss the idea of imaginary time domain signals shortly. There
are two common ways of displaying a complex frequency spectrum. As
shown here, zero frequency can be placed in the center, with positive
frequencies to the right and negative frequencies to the left. This is the best
way to think about the complete spectrum, and is the only way that an
aperiodic spectrum can be displayed.

The problem is that the spectrum of a discrete signal is periodic (such as with
the DFT and the DTFT). This means that everything between -0.5 and 0.5
repeats itself an infinite number of times to the left and to the right. In this
case, the spectrum between 0 and 1.0 contains the same information as from -
0.5 to 0.5. When graphs are made, such as Fig. 31-1, the -0.5 to 0.5
convention is usually used. However, many equations and programs use the 0
to 1.0 form. For instance, in Eqs. 31-5 and 31-6 the frequency index, k, runs
from 0 to N-1 (coinciding with 0 to 1.0). However, we could write it to run
from -N/2 to N/2-1 (coinciding with -0.5 to 0.5), if we desired.

Using the spectrum in Fig. 31-1 as a guide, we can examine how the inverse
complex DFT reconstructs the time domain signal. The inverse complex DFT,
written in polar form, is given by:

Chapter 31- The Complex Fourier Transform 573

x[n] ' j
N& 1

k' 0
ReX [k] cos(2Bkn /N) % j sin(2Bkn /N)

EQUATION 31-8
The inverse complex DFT.
This is Eq. 31-7 rewritten to
show how each value in the
frequency spectrum affects
the time domain.

& j
N& 1

k' 0
ImX [k] sin(2Bkn /N) & j cos (2Bkn /N)

½ cos(2B0.23n) % ½ j sin(2B0.23n)

½ cos(2B (&0.23) n) % ½ j sin(2B (&0.23)n)

½ cos(2B0.23n) & ½ j sin(2B0.23n)

Using Euler's relation, this can be written in rectangular form as:

The compact form of Eq. 31-7 is how the inverse DFT is usually written,
although the expanded version in Eq. 31-9 can be easier to understand. In
words, each value in the real part of the frequency domain contributes a real
cosine wave and an imaginary sine wave to the time domain. Likewise, each
value in the imaginary part of the frequency domain contributes a real sine
wave and an imaginary cosine wave. The time domain is found by adding all
these real and imaginary sinusoids. The important concept is that each value
in the frequency domain produces both a real sinusoid and an imaginary
sinusoid in the time domain.

For example, imagine we want to reconstruct a unity amplitude cosine wave at
a frequency of . This requires a positive frequency and a negative2Bk /N
frequency, both from the real part of the frequency spectrum. The two square
markers in Fig. 31-1 are an example of this, with the frequency set at:

. The positive frequency at 0.23 (labeled 1 in Fig. 31-1) contributesk /N ' 0.23
a cosine wave and an imaginary sine wave to the time domain:

Likewise, the negative frequency at -0.23 (labeled 2 in Fig. 31-1) also
contributes a cosine and an imaginary sine wave to the time domain:

The negative sign within the cosine and sine terms can be eliminated by the
relations: and . This allows the negativecos(& x) ' cos(x) sin(& x) ' & sin(x)
frequency's contribution to be rewritten:

The Scientist and Engineer's Guide to Digital Signal Processing574

½ cos(2B0.23n) % ½ j sin(2B0.23n)

cos(2B0.23n)

contribution from positive frequency !

contribution from negative frequency !

resultant time domain signal !

½ cos(2B0.23n) & ½ j sin(2B0.23n)

& ½ sin(2B0.23n) & ½ j cos(2B0.23n)contribution from positive frequency !

& sin(2B0.23n)

contribution from negative frequency !

resultant time domain signal !

& ½ sin(2B0.23n) % ½ j cos(2B0.23n)

Adding the contributions from the positive and the negative frequencies
reconstructs the time domain signal:

In this same way, we can synthesize a sine wave in the time domain. In this
case, we need a positive and negative frequency from the imaginary part of the
frequency spectrum. This is shown by the round markers in Fig. 31-1. From
Eq. 31-8, these spectral values contribute a sine wave and an imaginary cosine
wave to the time domain. The imaginary cosine waves cancel, while the real
sine waves add:

Notice that a negative sine wave is generated, even though the positive
frequency had a value that was positive. This sign inversion is an inherent part
of the mathematics of the complex DFT. As you recall, this same sign
inversion is commonly used in the real DFT. That is, a positive value in the
imaginary part of the frequency spectrum corresponds to a negative sine wave.
Most authors include this sign inversion in the definition of the real Fourier
transform to make it consistent with its complex counterpart. The point is, this
sign inversion must be used in the complex Fourier transform, but is merely an
option in the real Fourier transform.

The symmetry of the complex Fourier transform is very important. As
illustrated in Fig. 31-1, a real time domain signal corresponds to a frequency
spectrum with an even real part, and an odd imaginary part. In other words,
the negative and positive frequencies have the same sign in the real part (such
as points 1 and 2 in Fig. 31-1), but opposite signs in the imaginary part (points
3 and 4).

This brings up another topic: the imaginary part of the time domain. Until now
we have assumed that the time domain is completely real, that is, the imaginary
part is zero. However, the complex Fourier transform does not require this.

Chapter 31- The Complex Fourier Transform 575

What is the physical meaning of an imaginary time domain signal? Usually,
there is none. This is just something allowed by the complex mathematics,
without a correspondence to the world we live in. However, there are
applications where it can be used or manipulated for a mathematical
purpose.

An example of this is presented in Chapter 12. The imaginary part of the time
domain produces a frequency spectrum with an odd real part, and an even
imaginary part. This is just the opposite of the spectrum produced by the real
part of the time domain (Fig. 31-1). When the time domain contains both a real
part and an imaginary part, the frequency spectrum is the sum of the two
spectra, had they been calculated individually. Chapter 12 describes how this
can be used to make the FFT algorithm calculate the frequency spectra of two
real signals at once. One signal is placed in the real part of the time domain,
while the other is place in the imaginary part. After the FFT calculation, the
spectra of the two signals are separated by an even/odd decomposition.

The Family of Fourier Transforms
Just as the DFT has a real and complex version, so do the other members of the
Fourier transform family. This produces the zoo of equations shown in Table
31-1. Rather than studying these equations individually, try to understand them
as a well organized and symmetrical group. The following comments describe
the organization of the Fourier transform family. It is detailed, repetitive, and
boring. Nevertheless, this is the background needed to understand theoretical
DSP. Study it well.

1. Four Fourier Transforms
A time domain signal can be either continuous or discrete, and it can be either
periodic or aperiodic. This defines four types of Fourier transforms: the
Discrete Fourier Transform (discrete, periodic), the Discrete Time
Fourier Transform (discrete, aperiodic), the Fourier Series (continuous,
periodic), and the Fourier Transform (continuous, aperiodic). Don't try to
understand the reasoning behind these names, there isn't any.

If a signal is discrete in one domain, it will be periodic in the other. Likewise,
if a signal is continuous in one domain, will be aperiodic in the other.
Continuous signals are represented by parenthesis, (), while discrete signals
are represented by brackets, []. There is no notation to indicate if a signal is
periodic or aperiodic.

2. Real versus Complex
Each of these four transforms has a complex version and a real version. The
complex versions have a complex time domain signal and a complex frequency
domain signal. The real versions have a real time domain signal and two real
frequency domain signals. Both positive and negative frequencies are used in
the complex cases, while only positive frequencies are used for the real
transforms. The complex transforms are usually written in an exponential

The Scientist and Engineer's Guide to Digital Signal Processing576

form; however, Euler's relation can be used to change them into a cosine and
sine form if needed.

3. Analysis and Synthesis
Each transform has an analysis equation (also called the forward transform)
and a synthesis equation (also called the inverse transform). The analysis
equations describe how to calculate each value in the frequency domain based
on all of the values in the time domain. The synthesis equations describe how
to calculate each value in the time domain based on all of the values in the
frequency domain.

4. Time Domain Notation
Continuous time domain signals are called , while discrete time domainx (t)
signals are called . For the complex transforms, these signals are complex.x[n]
For the real transforms, these signals are real. All of the time domain signals
extend from minus infinity to positive infinity. However, if the time domain is
periodic, we are only concerned with a single cycle, because the rest is
redundant. The variables, T and N, denote the periods of continuous and
discrete signals in the time domain, respectively.

5. Frequency Domain Notation
Continuous frequency domain signals are called if they are complex, and X (T) ReX(T)
& if they are real. Discrete frequency domain signals are called ImX(T) X[k]
if they are complex, and & if they are real. The complexReX [k] ImX [k]
transforms have negative frequencies that extend from minus infinity to zero,
and positive frequencies that extend from zero to positive infinity. The real
transforms only use positive frequencies. If the frequency domain is periodic,
we are only concerned with a single cycle, because the rest is redundant. For
continuous frequency domains, the independent variable, T, makes one complete
period from -B to B. In the discrete case, we use the period where k runs from
0 to N-1

6. The Analysis Equations
The analysis equations operate by correlation, i.e., multiplying the time
domain signal by a sinusoid and integrating (continuous time domain) or
summing (discrete time domain) over the appropriate time domain section.
If the time domain signal is aperiodic, the appropriate section is from minus
infinity to positive infinity. If the time domain signal is periodic, the
appropriate section is over any one complete period. The equations shown
here are written with the integration (or summation) over the period: 0 to
T (or 0 to N-1). However, any other complete period would give identical
results, i.e., -T to 0, -T/2 to T/2, etc.

7. The Synthesis Equations
The synthesis equations describe how an individual value in the time domain
is calculated from all the points in the frequency domain. This is done by
multiplying the frequency domain by a sinusoid, and integrating (continuous
frequency domain) or summing (discrete frequency domain) over the
appropriate frequency domain section. If the frequency domain is complex and
aperiodic, the appropriate section is negative infinity to positive infinity. If the

Chapter 31- The Complex Fourier Transform 577

‘ Using f instead of T by the relation: T' 2Bf
‘ Integrating over other periods, such as: -T to 0, -T/2 to T/2, or 0 to T
‘ Moving all or part of the scaling factor to the synthesis equation
‘ Replacing the period with the fundamental frequency, f0 ' 1/T
‘ Using other variable names, for example, T can become S in the DTFT,

and & can become ak & bk in the Fourier Series Re X [k] Im X [k]

frequency domain is complex and periodic, the appropriate section is over one
complete cycle, i.e., -B to B (continuous frequency domain), or 0 to N-1
(discrete frequency domain). If the frequency domain is real and aperiodic, the
appropriate section is zero to positive infinity, that is, only the positive
frequencies. Lastly, if the frequency domain is real and periodic, the
appropriate section is over the one-half cycle containing the positive
frequencies, either 0 to B (continuous frequency domain) or 0 to N/2 (discrete
frequency domain).

8. Scaling
To make the analysis and synthesis equations undo each other, a scaling factor
must be placed on one or the other equation. In Table 31-1, we have placed
the scaling factors with the analysis equations. In the complex case, these
scaling factors are: 1/N, 1/T, or 1/2B. Since the real transforms do not use
negative frequencies, the scaling factors are twice as large: 2/N, 2/T, or 1/B.
The real transforms also include a negative sign in the calculation of the
imaginary part of the frequency spectrum (an option used to make the real
transforms more consistent with the complex transforms). Lastly, the synthesis
equations for the real DFT and the real Fourier Series have special scaling
instructions involving and .Re X (0) Re X [N /2]

9. Variations
These equations may look different in other publications. Here are a few
variations to watch out for:

Why the Complex Fourier Transform is Used
It is painfully obvious from this chapter that the complex DFT is much more
complicated than the real DFT. Are the benefits of the complex DFT really
worth the effort to learn the intricate mathematics? The answer to this
question depends on who you are, and what you plan on using DSP for. A
basic premise of this book is that most practical DSP techniques can be
understood and used without resorting to complex transforms. If you are
learning DSP to assist in your non-DSP research or engineering, the
complex DFT is probably overkill.

Nevertheless, complex mathematics is the primary language of those that
specialize in DSP. If you do not understand this language, you cannot
communicate with professionals in the field. This includes the ability to
understand the DSP literature: books, papers, technical articles, etc. Why are
complex techniques so popular with the professional DSP crowd?

The Scientist and Engineer's Guide to Digital Signal Processing578

Discrete Fourier Transform (DFT)

x[n] ' j
N&1

k' 0
X [k] e j 2Bk n /N x[n] ' j

N /2

k' 0
ReX [k] cos(2Bkn /N)

X [k] '
1
N j

N&1

n' 0
x[n] e & j 2Bkn /N

ImX [k] '
&2
N j

N&1

n' 0
x[n] sin(2Bkn /N)

& ImX [k] sin(2Bkn /N)

ReX [k] '
2
N j

N&1

n' 0
x[n] cos(2Bkn /N)

complex transform real transform

synthesis

analysis

synthesis

analysis

Time domain:
x[n] is complex, discrete and periodic
n runs over one period, from 0 to N-1

Frequency domain:
X[k] is complex, discrete and periodic
k runs over one period, from 0 to N-1
k = 0 to N/2 are positive frequencies
k = N/2 to N-1 are negative frequencies

Time domain:
x[n] is real, discrete and periodic
n runs over one period, from 0 to N-1

Frequency domain:
Re X[k] is real, discrete and periodic
Im X[k] is real, discrete and periodic
k runs over one-half period, from 0 to N/2

Note: Before using the synthesis equation, the values
for Re X[0] and Re X[N/2] must be divided by two.

Discrete Time Fourier Transform (DTFT)

x[n] ' m
2B

0

X (T) e jTn dT x[n] ' m
B

0

ReX (T) cos(Tn)

X (T) '
1

2B j
%4

n '&4
x[n] e & jTn

ImX (T) '
&1
B j

%4

n'&4
x[n]sin(Tn)

& ImX (T) sin(Tn)dT

ReX (T) '
1
B j

%4

n'&4
x[n]cos(Tn)

complex transform real transform

synthesis

analysis

synthesis

analysis

Time domain:
x[n] is complex, discrete and aperiodic
n runs from negative to positive infinity

Frequency domain:
X(T) is complex, continuous, and periodic
T runs over a single period, from 0 to 2B
T = 0 to B are positive frequencies
T = B to 2B are negative frequencies

Time domain:
x[n] is real, discrete and aperiodic
n runs from negative to positive infinity

Frequency domain:
Re X(T) is real, continuous and periodic
Im X(T) is real, continuous and periodic
T runs over one-half period, from 0 to B

TABLE 31-1 The Fourier Transforms

Chapter 31- The Complex Fourier Transform 579

Fourier Series

x(t) ' j
%4

k' &4
X [k] e j 2Bkt /T x(t) ' j

%4

k' 0
ReX [k] cos(2Bkt /T)

X [k] '
1
T m

T

0

x(t) e & j 2Bkt /Tdt

& ImX [k] sin(2Bkt /T)

ReX [k] '
2
T m

T

0

x(t) cos(2Bkt /T)dt

complex transform real transform

synthesis

analysis

synthesis

analysis

Time domain:
x(t) is complex, continuous and periodic
t runs over one period, from 0 to T

Frequency domain:
X[k] is complex, discrete, and aperiodic
k runs from negative to positive infinity
k > 0 are positive frequencies
k < 0 are negative frequencies

Time domain:
x(t) is real, continuous, and periodic
t runs over one period, from 0 to T

Frequency domain:
Re X[k] is real, discrete and aperiodic
Im X[k] is real, discrete and aperiodic
k runs from zero to positive infinity

Note: Before using the synthesis equation, the value for
Re X[0] must be divided by two.

ImX [k] '
&2
T m

T

0

x(t) sin(2Bkt /T)dt

Fourier Transform

x(t) ' m
%4

&4

X (T) e jTt dT x(t) ' m
%4

0

ReX (T) cos(Tt)

X (T) '
1

2B m
%4

&4

x(t) e & jTt dt

& ImX (T) sin(Tt)dt

ReX (T) '
1
B m

%4

&4

x(t) cos(Tt)dt

complex transform real transform

synthesis

analysis

synthesis

analysis

Time domain:
x(t) is complex, continious and aperiodic
t runs from negative to positive infinity

Frequency domain:
X(T) is complex, continious, and aperiodic
T runs from negative to positive infinity
T > 0 are positive frequencies
T < 0 are negative frequencies

Time domain:
x(t) is real, continuous, and aperiodic
t runs from negative to positive infinity

Frequency domain:
Re X[T] is real, continuous and aperiodic
Im X[T] is real, continuous and aperiodic
T runs from zero to positive infinity

TABLE 31-1 The Fourier Transforms

ImX (T) '
&1
B m

%4

&4

x(t) sin(Tt)dt

The Scientist and Engineer's Guide to Digital Signal Processing580

There are several reasons we have already mentioned: compact equations,
symmetry between the analysis and synthesis equations, symmetry between the
time and frequency domains, inclusion of negative frequencies, a stepping stone
to the Laplace and z-transforms, etc.

There is also a more philosophical reason we have not discussed, something
called truth. We started this chapter by listing several ways that the real
Fourier transform is awkward. When the complex Fourier transform was
introduced, the problems vanished. Wonderful, we said, the complex Fourier
transform has solved the difficulties.

While this is true, it does not give the complex Fourier transform its proper
due. Look at this situation this way. In spite of its abstract nature, the complex
Fourier transform properly describes how physical systems behave. When we
restrict the mathematics to be real numbers, problems arise. In other words,
these problems are not solved by the complex Fourier transform, they are
introduced by the real Fourier transform. In the world of mathematics, the
complex Fourier transform is a greater truth than the real Fourier transform.
This holds great appeal to mathematicians and academicians, a group that
strives to expand human knowledge, rather than simply solving a particular
problem at hand.

581

CHAPTER

32 The Laplace Transform

The two main techniques in signal processing, convolution and Fourier analysis, teach that a
linear system can be completely understood from its impulse or frequency response. This is a
very generalized approach, since the impulse and frequency responses can be of nearly any shape
or form. In fact, it is too general for many applications in science and engineering. Many of the
parameters in our universe interact through differential equations. For example, the voltage
across an inductor is proportional to the derivative of the current through the device. Likewise,
the force applied to a mass is proportional to the derivative of its velocity. Physics is filled with
these kinds of relations. The frequency and impulse responses of these systems cannot be
arbitrary, but must be consistent with the solution of these differential equations. This means that
their impulse responses can only consist of exponentials and sinusoids. The Laplace transform
is a technique for analyzing these special systems when the signals are continuous. The z-
transform is a similar technique used in the discrete case.

The Nature of the s-Domain
The Laplace transform is a well established mathematical technique for solving
differential equations. It is named in honor of the great French mathematician,
Pierre Simon De Laplace (1749-1827). Like all transforms, the Laplace
transform changes one signal into another according to some fixed set of rules
or equations. As illustrated in Fig. 32-1, the Laplace transform changes a
signal in the time domain into a signal in the s-domain, also called the s-
plane. The time domain signal is continuous, extends to both positive and
negative infinity, and may be either periodic or aperiodic. The Laplace
transform allows the time domain to be complex; however, this is seldom
needed in signal processing. In this discussion, and nearly all practical
applications, the time domain signal is completely real.

As shown in Fig. 32-1, the s-domain is a complex plane, i.e., there are real
numbers along the horizontal axis and imaginary numbers along the vertical
axis. The distance along the real axis is expressed by the variable, F, a lower

The Scientist and Engineer's Guide to Digital Signal Processing582

X (T) ' m
4

&4

x(t) e & jT t d t

X (F,T) ' m
4

&4

[x (t) e &F t] e & jT t d t

case Greek sigma. Likewise, the imaginary axis uses the variable, T, the
natural frequency. This coordinate system allows the location of any point to
be specified by providing values for F and T. Using complex notation, each
location is represented by the complex variable, s, where: . Just ass ' F% jT
with the Fourier transform, signals in the s-domain are represented by capital
letters. For example, a time domain signal, , is transformed into an s-x (t)
domain signal, , or alternatively, . The s-plane is continuous, andX (s) X (F,T)
extends to infinity in all four directions.

In addition to having a location defined by a complex number, each point in the
s-domain has a value that is a complex number. In other words, each location
in the s-plane has a real part and an imaginary part. As with all complex
numbers, the real & imaginary parts can alternatively be expressed as the
magnitude & phase.

Just as the Fourier transform analyzes signals in terms of sinusoids, the Laplace
transform analyzes signals in terms of sinusoids and exponentials. From a
mathematical standpoint, this makes the Fourier transform a subset of the more
elaborate Laplace transform. Figure 32-1 shows a graphical description of how
the s-domain is related to the time domain. To find the values along a vertical
line in the s-plane (the values at a particular F), the time domain signal is first
multiplied by the exponential curve: . The left half of the s-planee & F t

multiplies the time domain with exponentials that increase with time (),F < 0
while in the right half the exponentials decrease with time (). Next, takeF > 0
the complex Fourier transform of the exponentially weighted signal. The
resulting spectrum is placed along a vertical line in the s-plane, with the top
half of the s-plane containing the positive frequencies and the bottom half
containing the negative frequencies. Take special note that the values on the
y-axis of the s-plane () are exactly equal to the Fourier transform of theF' 0
time domain signal.

As discussed in the last chapter, the complex Fourier Transform is given by:

This can be expanded into the Laplace transform by first multiplying the time
domain signal by the exponential term:

While this is not the simplest form of the Laplace transform, it is probably
the best description of the strategy and operation of the technique. To

Chapter 32- The Laplace Transform 583

Real axis (F)
-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

F.T. F.T. F.T. F.T. F.T. F.T. F.T.

Time
-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

Positive
Frequencies

Negative
Frequencies

DecreasingIncreasing
Exponentials Exponentials

x(t)

X(s)

F = -3 F = -2 F = -1 F = 0 F = 1 F = 2 F = 3

spectrum
for F = 3

Im
ag

in
ar

y
ax

is
 (

jT
)

A
m

pl
itu

de

STEP 4
Arrange each spectrum along a
vertical line in the s-plane. The
positive frequencies are in the
upper half of the s-plane while the
negative frequencies are in the
lower half.

m
4

&4

[x (t) e &Ft] e & jTt d t

STEP 2
Multiply the time domain signal by
an infinite number of exponential
curves, each with a different decay
constant, F. That is, calculate the
signal: for each value of Fx(t) e &Ft

from negative to positive infinity.

STEP 1
Start with the time domain signal
called x(t)

STEP 3
Take the complex Fourier Transform
of each exponentially weighted time
domain signal. That is, calculate:

for each value of F from negative to
positive infinity.

FIGURE 32-1
The Laplace transform. The Laplace transform converts a signal in the time domain, , into a signal in the s-domain,x(t)

. The values along each vertical line in the s-domain can be found by multiplying the time domain signalX (s) or X(F,T)
by an exponential curve with a decay constant F, and taking the complex Fourier transform. When the time domain is
entirely real, the upper half of the s-plane is a mirror image of the lower half.

The Scientist and Engineer's Guide to Digital Signal Processing584

X (F,T) ' m
4

&4

x (t) e &(F% jT) t d t

EQUATION 32-1
The Laplace transform. This equation
defines how a time domain signal, , isx (t)
related to an s-domain signal, . The s-X (s)
domain variables, s, and , are complex.X()
While the time domain may be complex, it is
usually real.

X (s) ' m
4

&4

x(t) e &s t d t

place the equation in a shorter form, the two exponential terms can be
combined:

Finally, the location in the complex plane can be represented by the complex
variable, s, where . This allows the equation to be reduced to an evens ' F%jT
more compact expression:

This is the final form of the Laplace transform, one of the most
important equations in signal processing and electronics. Pay special
attention to the term: , called a complex exponential. As shown by thee & st

above derivation, complex exponentials are a compact way of representing both
sinusoids and exponentials in a single expression.

Although we have explained the Laplace transform as a two stage process
(multiplication by an exponential curve followed by the Fourier transform),
keep in mind that this is only a teaching aid, a way of breaking Eq. 32-1 into
simpler components. The Laplace transform is a single equation relating x (t)
and , not a step-by-step procedure. Equation 32-1 describes how toX (s)
calculate each point in the s-plane (identified by its values for F and T) based
on the values of , T, and the time domain signal, . Using the FourierF x (t)
transform to simultaneously calculate all the points along a vertical line is
merely a convenience, not a requirement. However, it is very important to
remember that the values in the s-plane along the y-axis () are exactlyF ' 0
equal to the Fourier transform. As explained later in this chapter, this is a key
part of why the Laplace transform is useful.

To explore the nature of Eq. 32-1 further, let's look at several individual points
in the s-domain and examine how the values at these locations are related to the
time domain signal. To start, recall how individual points in the frequency
domain are related to the time domain signal. Each point in the frequency
domain, identified by a specific value of T, corresponds to two sinusoids,

 and . The real part is found by multiplying the time domaincos(T t) sin (T t)
signal by the cosine wave, and then integrating from -4 to 4. The imaginary
part is found in the same way, except the sine wave is used. If we are dealing
with the complex Fourier transform, the values at the corresponding negative
frequency, -T, will be the complex conjugate (same real part, negative
imaginary part) of the values at T. The Laplace transform is just an extension
of these same concepts.

Chapter 32- The Laplace Transform 585

Time1 2 30-1-2-3
Real value (F)

C

CN

B

BN

A

AN

cos(40t)e-1.5t

B+BN

C+CN

Time

s-Domain

Time

A+AN

cos(40t)e0t

cos(40t)e1.5t

Associated Waveforms

60j

40j

20j

0j

-20j

-40j

-60j

A
m

pl
itu

de

Im
ag

in
ar

y
va

lu
e

(j
T

)

FIGURE 32-2
Waveforms associated with the s-domain. Each location
in the s-domain is identified by two parameters: F and T.
These parameters also define two waveforms associated
with each location. If we only consider pairs of points
(such as: A&AN, B&BN, and C&CN), the two waveforms
associated with each location are sine and cosine waves of
frequency T, with an exponentially changing amplitude
controlled by F.

A
m

pl
itu

de
A

m
pl

itu
de

Figure 32-2 shows three pairs of points in the s-plane: A&AN, B&BN, and
C&CN. Just as in the complex frequency spectrum, the points at A, B, & C (the
positive frequencies) are the complex conjugates of the points at AN, BN, & CN
(the negative frequencies). The top half of the s-plane is a mirror image of the
lower half, and both halves are needed to correspond with a real time domain
signal. In other words, treating these points in pairs bypasses the complex
math, allowing us to operate in the time domain with only real numbers.

Since each of these pairs has specific values for F and ±T, there are two
waveforms associated with each pair: and . Forcos(T t) e &Ft sin (T t) e &Ft

instance, points A&AN are at a location of and , and thereforeF'1.5 T ' ±40
correspond to the waveforms: and . As shown incos(40 t) e &1.5 t sin (40 t) e &1.5 t

Fig. 32-2, these are sinusoids that exponentially decreases in amplitude as time
progresses. In this same way, the sine and cosine waves associated with B&BN
have a constant amplitude, resulting from the value of F being zero. Likewise,
the sine and cosine waves that are associated with locations C&CN
exponentially increases in amplitude, since F is negative.

The Scientist and Engineer's Guide to Digital Signal Processing586

ReX (F'1.5,T'±40) ' m
4

&4

x (t) cos (40 t) e &1.5 t d t

X (s) ' m
4

&4

x(t) e &st d t ' m
1

&1

1 e &st d t

X (s) '
e s & e &s

s

ReX (F,T) '
F cos(T) [e F&e &F] % T sin(T) [e F%e &F]

F 2 % T 2

Im X (F,T) '
F sin(T) [e F%e &F] & T cos(T) [e F&e &F]

F 2 % T 2

The value at each location in the s-plane consists of a real part and an
imaginary part. The real part is found by multiplying the time domain signal
by the exponentially weighted cosine wave and then integrated from -4 to 4.
The imaginary part is found in the same way, except the exponentially weighted
sine wave is used instead. It looks like this in equation form, using the real
part of A&AN as an example:

Figure 32-3 shows an example of a time domain waveform, its frequency
spectrum, and its s-domain representation. The example time domain signal is
a rectangular pulse of width two and height one. As shown, the complex
Fourier transform of this signal is a sinc function in the real part, and an
entirely zero signal in the imaginary part. The s-domain is an undulating two-
dimensional signal, displayed here as topographical surfaces of the real and
imaginary parts. The mathematics works like this:

In words, we start with the definition of the Laplace transform (Eq. 32-1), plug
in the unity value for , and change the limits to match the length of thex (t)
nonzero portion of the time domain signal. Evaluating this integral provides
the s-domain signal, expressed in terms of the complex location, s, and the
complex value, :X (s)

While this is the most compact form of the answer, the use of complex
variables makes it difficult to understand, and impossible to generate a visual
display, such as Fig. 32-3. The solution is to replace the complex variable, s,
with , and then separate the real and imaginary parts:F% jT

Chapter 32- The Laplace Transform 587

-4

-2

0

2

4 -16

-8

0

8

16

0

-15

Real axis (F) Imaginary axis (jT)

15

-4

-2

0

2

4 -16

-8

0

8

16

15

0

-15

Real axis (F) Imaginary axis (jT)

Real Part

Imaginary
Part

Frequency
-16 -12 -8 -4 0 4 8 12 16

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

Frequency
-16 -12 -8 -4 0 4 8 12 16

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

Real Part

Imaginary Part

 Frequency Domain s-Domain

Time
-4 -3 -2 -1 0 1 2 3 4

-0.5

0.0

0.5

1.0

1.5

 Time Domain

Laplace
Transform

Fourier
Transform

FIGURE 32-3
Time, frequency and s-domains. A time
domain signal (the rectangular pulse) is
transformed into the frequency domain
using the Fourier transform, and into the
s-domain using the Laplace transform.

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

The topographical surfaces in Fig. 32-3 are graphs of these equations. These
equations are quite long and the mathematics to derive them is very tedious.
This brings up a practical issue: with algebra of this complexity, how do we
know that we haven't made an error in the calculations? One check is to verify

The Scientist and Engineer's Guide to Digital Signal Processing588

ImX (F,T) /0
F' 0

' 0ReX (F,T) /0
F' 0

'
2 sin(T)

T

that these equations reduce to the Fourier transform along the y-axis. This is
done by setting F to zero in the equations, and simplifying:

As illustrated in Fig. 32-3, these are the correct frequency domain signals, the
same as found by directly taking the Fourier transform of the time domain
waveform.

Strategy of the Laplace Transform
An analogy will help in explaining how the Laplace transform is used in signal
processing. Imagine you are traveling by train at night between two cities.
Your map indicates that the path is very straight, but the night is so dark you
cannot see any of the surrounding countryside. With nothing better to do, you
notice an altimeter on the wall of the passenger car and decide to keep track of
the elevation changes along the route.

Being bored after a few hours, you strike up a conversation with the conductor:
"Interesting terrain," you say. "It seems we are generally increasing in
elevation, but there are a few interesting irregularities that I have observed."
Ignoring the conductor's obvious disinterest, you continue: "Near the start of
our journey, we passed through some sort of abrupt rise, followed by an equally
abrupt descent. Later we encountered a shallow depression." Thinking you
might be dangerous or demented, the conductor decides to respond: "Yes, I
guess that is true. Our destination is located at the base of a large mountain
range, accounting for the general increase in elevation. However, along the
way we pass on the outskirts of a large mountain and through the center of a
valley."

Now, think about how you understand the relationship between elevation and
distance along the train route, compared to that of the conductor. Since you
have directly measured the elevation along the way, you can rightly claim that
you know everything about the relationship. In comparison, the conductor
knows this same complete information, but in a simpler and more intuitive
form: the location of the hills and valleys that cause the dips and humps along
the path. While your description of the signal might consist of thousands of
individual measurements, the conductor's description of the signal will contain
only a few parameters.

To show how this is analogous to signal processing, imagine we are trying
to understand the characteristics of some electric circuit. To aid in our
investigation, we carefully measure the impulse response and/or the
frequency response. As discussed in previous chapters, the impulse and
frequency responses contain complete information about this linear system.

Chapter 32- The Laplace Transform 589

However, this does not mean that you know the information in the simplest
way. In particular, you understand the frequency response as a set of values
that change with frequency. Just as in our train analogy, the frequency
response can be more easily understood in terms of the terrain surrounding the
frequency response. That is, by the characteristics of the s-plane.

With the train analogy in mind, look back at Fig. 32-3, and ask: how does
the shape of this s-domain aid in understanding the frequency response?
The answer is, it doesn't! The s-plane in this example makes a nice graph,
but it provides no insight into why the frequency domain behaves as it does.
This is because the Laplace transform is designed to analyze a specific class
of time domain signals: impulse responses that consist of sinusoids and
exponentials. If the Laplace transform is taken of some other waveform
(such as the rectangular pulse in Fig. 32-3), the resulting s-domain is
meaningless.

As mentioned in the introduction, systems that belong to this class are
extremely common in science and engineering. This is because sinusoids and
exponentials are solutions to differential equations, the mathematics that
controls much of our physical world. For example, all of the following systems
are governed by differential equations: electric circuits, wave propagation,
linear and rotational motion, electric and magnetic fields, heat flow, etc.

Imagine we are trying to understand some linear system that is controlled by
differential equations, such as an electric circuit. Solving the differential
equations provides a mathematical way to find the impulse response.
Alternatively, we could measure the impulse response using suitable pulse
generators, oscilloscopes, data recorders, etc. Before we inspect the newly
found impulse response, we ask ourselves what we expect to find. There are
several characteristics of the waveform that we know without even looking.
First, the impulse response must be causal. In other words, the impulse
response must have a value of zero until the input becomes nonzero at .t ' 0
This is the cause and effect that our universe is based upon.

The second thing we know about the impulse response is that it will be
composed of sinusoids and exponentials, because these are the solutions to
the differential equations that govern the system. Try as we might, we will
never find this type of system having an impulse response that is, for
example, a square pulse or triangular waveform. Third, the impulse
response will be infinite in length. That is, it has nonzero values that
extend from to . This is because sine and cosine waves have at ' 0 t ' %4
constant amplitude, and exponentials decay toward zero without ever
actually reaching it. If the system we are investigating is stable, the
amplitude of the impulse response will become smaller as time increases,
reaching a value of zero at . There is also the possibility that thet ' %4
system is unstable, for example, an amplifier that spontaneously oscillates
due to an excessive amount of feedback. In this case, the impulse response
will increase in amplitude as time increases, becoming infinitely large.
Even the smallest disturbance to this system will produce an unbounded
output.

The Scientist and Engineer's Guide to Digital Signal Processing590

FIGURE 32-4
Pole-zero example. The notch filter has two
poles (represented by ×) and two zeros
(represented by è). This s-plane diagram
shows the five locations we will "probe" in
this example to analyze this system. (Figure
32-5 is a continuation of this example).

F

jT

abcde

a!b!c!d!e!

s-plane diagram

OX

OX

The general mathematics of the Laplace transform is very similar to that of the
Fourier transform. In both cases, predetermined waveforms are multiplied by
the time domain signal, and the result integrated. At first glance, it would
appear that the strategy of the Laplace transform is the same as the Fourier
transform: correlate the time domain signal with a set of basis functions to
decompose the waveform. Not true! Even though the mathematics is much the
same, the rationale behind the two techniques is very different. The Laplace
transform probes the time domain waveform to identify its key features: the
frequencies of the sinusoids, and the decay constants of the exponentials. An
example will show how this works.

The center column in Fig. 32-5 shows the impulse response of the RLC notch
filter discussed in Chapter 30. It contains an impulse at , followed by ant ' 0
exponentially decaying sinusoid. As illustrated in (a) through (e), we will
probe this impulse response with various exponentially decaying sinusoids.
Each of these probing waveforms is characterized by two parameters: T, that
determines the sinusoidal frequency, and F, that determines the decay rate. In
other words, each probing waveform corresponds to a different location in the
s-plane, as shown by the s-plane diagram in Fig. 32-4. The impulse response
is probed by multiplying it with these waveforms, and then integrating the
result from . This action is shown in the right column. Our goalt ' &4 to %4
is to find combinations of F and T that exactly cancel the impulse response
being investigated. This cancellation can occur in two forms: the area under
the curve can be either zero, or just barely infinite. All other results are
uninteresting and can be ignored. Locations in the s-plane that produce a zero
cancellation are called zeros of the system. Likewise, locations that produce
the "just barely infinite" type of cancellation are called poles. Poles and zeros
are analogous to the mountains and valleys in our train story, representing the
terrain "around" the frequency response.

To start, consider what happens when the probing waveform decreases in
amplitude as time advances, as shown in (a). This will occur whenever

 (the right half of the s-plane). Since both the impulse response andF> 0
the probe becomes smaller with increasing time, the product of the two will
also have this same characteristic. When the product of the two waveforms
is integrated from negative to positive infinity, the result will be some
number that is not especially interesting. In particular, a decreasing probe

Chapter 32- The Laplace Transform 591

Time (µsec)
-4 -2 0 2 4 6 8

-3

-2

-1

0

1

2

3

Time (µsec)
-4 -2 0 2 4 6 8

-3

-2

-1

0

1

2

3

Time (µsec)
-4 -2 0 2 4 6 8

-12

-8

-4

0

4

8

12

Time (µsec)
-4 -2 0 2 4 6 8

-3

-2

-1

0

1

2

3

Time (µsec)
-4 -2 0 2 4 6 8

-3

-2

-1

0

1

2

3

Time (µsec)
-4 -2 0 2 4 6 8

-12

-8

-4

0

4

8

12

Time (µsec)
-4 -2 0 2 4 6 8

-3

-2

-1

0

1

2

3

Time (µsec)
-4 -2 0 2 4 6 8

-3

-2

-1

0

1

2

3

Time (µsec)
-4 -2 0 2 4 6 8

-12

-8

-4

0

4

8

12

Time (µsec)
-4 -2 0 2 4 6 8

-3

-2

-1

0

1

2

3

Time (µsec)
-4 -2 0 2 4 6 8

-3

-2

-1

0

1

2

3

Time (µsec)
-4 -2 0 2 4 6 8

-12

-8

-4

0

4

8

12

Time (µsec)
-4 -2 0 2 4 6 8

-3

-2

-1

0

1

2

3

Time (µsec)
-4 -2 0 2 4 6 8

-3

-2

-1

0

1

2

3

Time (µsec)
-4 -2 0 2 4 6 8

-12

-8

-4

0

4

8

12
a. Decreasing with time

b. Exact cancellation (zero)

c. Too slow of increase

d. Exact cancellation (pole)

e. Too fast of increase

area is
finite

area is
exactly zero

area is
finite

area is
infinite

area is
undefined

FIGURE 32-5
Probing the impulse response. The Laplace transform can be viewed as probing the system's impulse response with
various exponentially decaying sinusoids. Probing waveforms that produce a cancellation are called poles and zeros.
This illustration shows five probing waveforms (left column) being applied to the impulse response of a notch filter
(center column). The locations in the s-plane that correspond to these five waveforms are shown in Fig. 32-4.

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

Impulse response, h(t) Multiply: p(t) × h(t)Probing waveform, p(t)

The Scientist and Engineer's Guide to Digital Signal Processing592

cannot cancel a decreasing impulse response. This means that a stable system
will not have any poles with . In other words, all of the poles in a stableF > 0
system are confined to the left half of the s-plane. In fact, poles in the right
half of the s-place show that the system is unstable (i.e., an impulse response
that increases with time).

Figure (b) shows one of the special cases we have been looking for. When this
waveform is multiplied by the impulse response, the resulting integral has a
value of zero. This occurs because the area above the x-axis (from the delta
function) is exactly equal to the area below (from the rectified sinusoid). The
values for F and T that produce this type of cancellation are called a zero of
the system. As shown in the s-plane diagram of Fig. 32-4, zeros are indicated
by small circles (è).

Figure (c) shows the next probe we can try. Here we are using a sinusoid that
exponentially increases with time, but at a rate slower than the impulse
response is decreasing with time. This results in the product of the two
waveforms also decreasing as time advances. As in (a), this makes the integral
of the product some uninteresting real number. The important point being that
no type of exact cancellation occurs.

Jumping out of order, look at (e), a probing waveform that increases at a
faster rate than the impulse response decays. When multiplied, the resulting
signal increases in amplitude as time advances. This means that the area under
the curve becomes larger with increasing time, and the total area from

 is not defined. In mathematical jargon, the integral does nott ' &4 to %4
converge. In other words, not all areas of the s-plane have a defined value.
The portion of the s-plane where the integral is defined is called the region-of-
convergence. In some mathematical techniques it is important to know what
portions of the s-plane are within the region-of-convergence. However, this
information is not needed for the applications in this book. Only the exact
cancellations are of interest for this discussion.

In (d), the probing waveform increases at exactly the same rate that the impulse
response decreases. This makes the product of the two waveforms have a
constant amplitude. In other words, this is the dividing line between (c) and
(e), resulting in a total area that is just barely undefined (if the mathematicians
will forgive this loose description). In more exact terms, this point is on the
borderline of the region of convergence. As mentioned, values for F and T that
produce this type of exact cancellation are called poles of the system. Poles
are indicated in the s-plane by crosses (×).

Analysis of Electric Circuits
We have introduced the Laplace transform in graphical terms, describing what
the waveforms look like and how they are manipulated. This is the most
intuitive way of understanding the approach, but is very different from how it
is actually used. The Laplace transform is inherently a mathematical technique;
it is used by writing and manipulating equations. The problem is, it is easy to

Chapter 32- The Laplace Transform 593

v (t) ' L d
dt

i (t) ' L d
dt

cos (T0 t) ' T0 L sin(T0 t)

I (s) ' m
4

0

cos (T0 t) e &st d t '
T0

T2
0 % s 2

V (s) ' m
4

0

T0 L sin(T0 t) e &s td t '
T0 Ls

T2
0 % s 2

become lost in the abstract nature of the complex algebra and loose all
connection to the real world. Your task is to merge the two views together.
The Laplace transform is the primary method for analyzing electric circuits.
Keep in mind that any system governed by differential equations can be
handled the same way; electric circuits are just an example we are using.

The brute force approach is to solve the differential equations controlling the
system, providing the system's impulse response. The impulse response can
then be converted into the s-domain via Eq. 32-1. Fortunately, there is a better
way: transform each of the individual components into the s-domain, and then
account for how they interact. This is very similar to the phasor transform
presented in Chapter 30, where resistors, inductors and capacitors are
represented by R, , and , respectively. In the Laplace transform,jTL 1 / jTC
resistors, inductors and capacitors become the complex variables: R, , andsL

. Notice that the phasor transform is a subset of the Laplace transform.1/sC
That is, when F is set to zero in , R becomes R, becomes ,s ' F% jT sL jTL
and becomes . 1/sC 1 / jTC

Just as in Chapter 30, we will treat each of the three components as an
individual system, with the current waveform being the input signal, and the
voltage waveform being the output signal. When we say that resistors,
inductors and capacitors become R, , and in the s-domain, this referssL 1/sC
to the output divided by the input. In other words, the Laplace transform of the
voltage waveform divided by the Laplace transform of the current waveform
is equal to these expressions.

As an example of this, imagine we force the current through an inductor to be
a unity amplitude cosine wave with a frequency given by T0. The resulting
voltage waveform across the inductor can be found by solving the differential
equation that governs its operation:

If we start the current waveform at , the voltage waveform will also startt ' 0
at this same time (i.e., and for). These voltage andi (t) ' 0 v (t) ' 0 t < 0
current waveforms are converted into the s-domain by Eq. 32-1:

The Scientist and Engineer's Guide to Digital Signal Processing594

V(s)
I (s)

'

T0 Ls

T2
0 % s 2

T0

T2
0 % s 2

' sL

H(s) '
Vout (s)
Vin (s)

'
sL % 1/sC

R % sL % 1/sC
'

sL % 1/sC
R % sL % 1/sC

s
s

'
Ls 2 % 1/C

Ls 2 % Rs % 1/C

To complete this example, we will divide the s-domain voltage by the s-domain
current, just as if we were using Ohm's law ():R ' V / I

We find that the s-domain representation of the voltage across the inductor,
divided by the s-domain representation of the current through the inductor, is
equal to sL. This is always the case, regardless of the current waveform we
start with. In a similar way, the ratio of s-domain voltage to s-domain current
is always equal to R for resistors, and 1/sC for capacitors.

Figure 32-6 shows an example circuit we will analyze with the Laplace
transform, the RLC notch filter discussed in Chapter 30. Since this analysis
is the same for all electric circuits, we will outline it in steps.

Step 1. Transform each of the components into the s-domain. In other words,
replace the value of each resistor with R, each inductor with , and eachsL
capacitor with . This is shown in Fig. 32-6.1/sC

Step 2: Find , the output divided by the input. As described in ChapterH (s)
30, this is done by treating each of the components as if they obey Ohm's law,
with the "resistances" given by: R, , and . This allows us to use thesL 1/sC
standard equations for resistors in series, resistors in parallel, voltage dividers,
etc. Treating the RLC circuit in this example as a voltage divider (just as in
Chapter 30), is found:H (s)

As you recall from Fourier analysis, the frequency spectrum of the output
signal divided by the frequency spectrum of the input signal is equal to the
system's frequency response, given the symbol, . The above equation isH (T)
an extension of this into the s-domain. The signal, , is called the system'sH (s)
transfer function, and is equal to the s-domain representation of the output
signal divided by the s-domain representation of the input signal. Further, H (s)
is equal to the Laplace transform of the impulse response, just the same as

 is equal to the Fourier transform of the impulse response.H (T)

Chapter 32- The Laplace Transform 595

Vin

Vout

R

1/sC

sL

FIGURE 32-6
Notch filter analysis in the s-domain. The
first step in this procedure is to replace the
resistor, inductor & capacitor values with
their s-domain equivalents.

H (s) '
as 2 % bs % c
as 2 % bs % c

EQUATION 32-2
Transfer function in polynomial form.

H (s) '
as 2 % bs % c
as 2 % bs % c

'
Ls 2 % 1/C

Ls 2 % R s % 1/C

where: a ' L , b ' 0, c ' 1/C ; and a ' L , b ' R, c ' 1/C

So far, this is identical to the techniques of the last chapter, except for using
s instead of . The difference between the two methods is what happens fromjT
this point on. This is as far as we can go with . We might graph thejT
frequency response, or examining it in some other way; however, this is a
mathematical dead end. In comparison, the interesting aspects of the Laplace
transform have just begun. Finding is the key to Laplace analysis;H (s)
however, it must be expressed in a particular form to be useful. This requires
the algebraic manipulation of the next two steps.

Step 3: Arrange to be one polynomial over another. This makes theH (s)
transfer function written as:

It is always possible to express the transfer function in this form if the
system is controlled by differential equations. For example, the rectangular
pulse shown in Fig. 32-3 is not the solution to a differential equation and its
Laplace transform cannot be written in this way. In comparison, any electric
circuit composed of resistors, capacitors, and inductors can be written in this
form. For the RLC notch filter used in this example, the algebra shown in step
2 has already placed the transfer function in the correct form, that is:

Step 4: Factor the numerator and denominator polynomials. That is, break
the numerator and denominator polynomials into components that each contain

The Scientist and Engineer's Guide to Digital Signal Processing596

H (s) '
(s & z1) (s & z2) (s & z3)˛
(s &p1) (s &p2) (s &p3)˛

EQUATION 32-3
The factored s-domain. This form
allows the s-domain to be expressed as
poles and zeros.

H (s) '
(s & z1) (s & z2)
(s &p1) (s &p2)

p1 '
&R % R 2 & 4L /C

2L

p2 '
&R & R 2 & 4L /C

2L

z1 ' j / LC

z2 ' & j / LC

 where:

a single s. When the components are multiplied together, they must equal the
original numerator and denominator. In other words, the equation is placed into
the form:

The roots of the numerator, , are the zeros of the equation, while thez1, z2, z3 ˛
roots of the denominator, , are the poles. These are the same zerosp1, p2, p3 ˛
and poles we encountered earlier in this chapter, and we will discuss how they
are used in the next section.

Factoring an s-domain expression is straightforward if the numerator and
denominator are second-order polynomials, or less. In other words, we can
easily handle the terms: s and , but not: This is because thes 2 s 3, s 4, s 5, ˛.
roots of a second-order polynomial, , can be found by using thea x 2 % bx % c
quadratic equation: . With this method, the transferx ' &b ± b 2 & 4a c / 2a
function of the example notch filter is factored into:

As in this example, a second-order system has a maximum of two zeros and
two poles. The number of poles in a system is equal to the number of
independent energy storing components. For instance, inductors and capacitors
store energy, while resistors do not. The number of zeros will be equal to, or
less than, the number of poles.

Polynomials greater than second order cannot generally be factored using
algebra, requiring more complicated numerical methods. As an alternative,
circuits can be constructed as a cascade of second-order stages. A good
example is the family of analog filters presented in Chapter 3. For instance,
an eight pole filter is designed by cascading four stages of two poles each. The
important point is that this multistage approach is used to overcome limitations
in the mathematics, not limitations in the electronics.

Chapter 32- The Laplace Transform 597

Real axis (F × 10)
-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

Frequency (T × 10)
0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

pole-zero plot

frequency response

s-domain

6
6

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8
-6

-4
-2

0
2

4
6

8
10

4

3

2

1

0

Real axis (F × 106)

Imaginary axis
(T × 106)

O

O

A
m

pl
itu

de

A
m

pl
itu

de

Im
ag

in
ar

y
ax

is
 (

T
 ×

 1
06

)

FIGURE 32-7
Poles and zeros in the s-domain. These illustrations show the relationship between the pole-zero plot, the
s-domain, and the frequency response. The notch filter component values used in these graphs are:
R=220 S, C=470 DF, and L = 54 µH. These values place the center of the notch at T = 6.277 million, i.e.,
a frequency of approximately 1 MHz.

z1 ' 0 % j 6.277×106

z2 ' 0 & j 6.277×106

p1 ' &2.037×106 % j 5.937×106

p2 ' &2.037×106 & j 5.937×106

The Importance of Poles and Zeros
To make this less abstract, we will use actual component values for the notch
filter we just analyzed: . Plugging theseR ' 220S, L ' 54 µH, C ' 470DF
values into the above equations, places the poles and zeros at:

These pole and zero locations are shown in Fig. 32-7. Each zero is
represented by a circle, while each pole is represented by a cross. This is
called a pole-zero diagram, and is the most common way that s-domain data
are displayed. Figure 32-7 also shows a topographical display of the s-
plane. For simplicity, only the magnitude is shown, but don't forget that

The Scientist and Engineer's Guide to Digital Signal Processing598

there is a corresponding phase. Just as mountains and valleys determine the
shape of the surface of the earth, the poles and zeros determine the shape of the
s-plane. Unlike mountains and valleys, every pole and zero is exactly the same
shape and size as every other pole and zero. The only unique characteristic a
pole or zero has is its location. Poles and zeros are important because they
provide a concise representation of the value at any point in the s-plane. That
is, we can completely describe the characteristics of the system using only
a few parameters. In the case of the RLC notch filter, we only need to specify
four complex parameters to represent the system: (each consistingz1, z2, p1, p2
of a real and an imaginary part).

To better understand poles and zeros, imagine an ant crawling around the s-
plane. At any particular location the ant happens to be (i.e., some value of s),
there is a corresponding value of the transfer function, . This value is aH (s)
complex number that can be expressed as the magnitude & phase, or as the
real & imaginary parts. Now, let the ant carry us to one of the zeros in the s-
plane. The value we measure for the real and imaginary parts will be zero at
this location. This can be understood by examining the mathematical
equation for in Eq. 32-3. If the location, s, is equal to any of the zeros,H (s)
one of the terms in the numerator will be zero. This makes the entire expression
equal to zero, regardless of the other values.

Next, our ant journey takes us to one of the poles, where we again measure the
value of the real and imaginary parts of . The measured value becomesH (s)
larger and larger as we come close to the exact location of the pole (hence the
name). This can also be understood from Eq. 32-3. If the location, s, is equal
to any of the p's, the denominator will be equal to zero, and the division by
zero makes the entire expression infinity large.

Having explored the unique locations, our ant journey now moves randomly
throughout the s-plane. The value of at each location depends entirely onH (s)
the positioning of the poles and the zeros, because there are no other types of
features allowed in this strange terrain. If we are near a pole, the value will
be large; if we are near a zero, the value will be small.

Equation 32-3 also describes how multiple poles and zeros interact to form the
s-domain signal. Remember, subtracting two complex numbers provides the
distance between them in the complex plane. For example, is the(s & z1)
distance between the arbitrary location, s, and the zero located at .z1
Therefore, Eq. 32-3 specifies that the value at each location, s, is equal to the
distance to all of the zeros multiplied, divided by the distance to all of the
poles multiplied.

This brings us to the heart of this chapter: how the location of the poles &
zeros provides a deeper understanding of the system's frequency response.
The frequency response is equal to the values of along the imaginaryH (s)
axis, signified by the dark line in the topographical plot of Fig. 32-7.
Imagine our ant starting at the origin and crawling along this path. Near
the origin, the distance to the zeros is approximately equal to the distance
to the poles. This makes the numerator and denominator in Eq. 32-3

Chapter 32- The Laplace Transform 599

Pole-Zero Diagram

Frequency ResponsePhysical System

L

R C

Real value

Phasor transform

Laplace Evaluate
transform at F=0

o

o

Frequency

FIGURE 32-8
Strategy for using the Laplace transform. The phasor transform presented in Chapter 30 (the method using
R, , &) allows the frequency response to be directly calculated from the parameters of thejTL & j /TC
physical system. In comparison, the Laplace transform calculates an s-domain representation from the
physical system, usually displayed in the form of a pole-zero diagram. In turn, the frequency response can
be obtained from the s-domain by evaluating the transfer function along the imaginary axis. While both
methods provide the same end result, the intermediate step of the s-domain provides insight into why the
frequency response behaves as it does.

Im
ag

in
ar

y
va

lu
e

A
m

pl
itu

de

cancel, providing a unity frequency response at low frequencies. The situation
doesn't change significantly until the ant moves near the pole and zero location.
When approaching the zero, the value of drops suddenly, becoming zeroH (s)
when the ant is upon the zero. As the ant moves past the pole and zero pair,
the value of again returns to unity. Using this type of visualization, it canH (s)
be seen that the width of the notch depends on the distance between the pole
and zero.

Figure 32-8 summarizes how the Laplace transform is used. We start with a
physical system, such as an electric circuit. If we desire, the phasor transform
can directly provide the frequency response of the system, as described in
Chapter 30. An alternative is to take the Laplace transform using the four step
method previously outlined. This results in a mathematical expression for the
transfer function, , which can be represented in a pole-zero diagram.H (s)
The frequency response can then be found by evaluating the transfer
function along the imaginary axis, that is, by replacing each s with .jT
While both methods provide the same result, the intermediate pole-zero
diagram provides an understanding of why the system behaves as it does,
and how it can be changed.

The Scientist and Engineer's Guide to Digital Signal Processing600

T '
± &A 2 % 6A &5

2RC

F '
A&3
2RCEQUATION 32-4

Sallen-Key pole locations. These
equations relate the pole position, T
and F, to the amplifier gain, A, the
resistor, R, and capacitor, C.

Filter Design in the s-Domain
The most powerful application of the Laplace transform is the design of
systems directly in the s-domain. This involves two steps: First, the s-
domain is designed by specifying the number and location of the poles and
zeros. This is a pure mathematical problem, with the goal of obtaining the
best frequency response. In the second step, an electronic circuit is derived
that provides this s-domain representation. This is something of an art,
since there are many circuit configurations that have a given pole-zero
diagram.

As previously mentioned, step 4 of the Laplace transform method is very
difficult if the system contains more than two poles or two zeros. A
common solution is to implement multiple poles and zeros in successive
stages. For example, a 6 pole filter is implemented as three successive
stages, with each stage containing up to two poles and two zeros. Since
each of these stages can be represented in the s-domain by a quadratic
numerator divided by a quadratic denominator, this approach is called
designing with biquads.

Figure 32-9 shows a common biquad circuit, the one used in the filter
design method of Chapter 3. This is called the Sallen-Key circuit, after
R.P. Sallen and E.L. Key, authors of a paper that described this technique
in the mid 1950s. While there are several variations, the most common
circuit uses two resistors of equal value, two capacitors of equal value, and
an amplifier with an amplification of between 1 and 3. Although not
available to Sallen and Key, the amplifiers can now be made with low-cost
op amps with appropriate feedback resistors. Going through the four step
circuit analysis procedure, the location of this circuit's two poles can be
related to the component values:

These equations show that the two poles always lie somewhere on a circle of
radius: . The exact position along the circle depends on the gain of the1/RC
amplifier. As shown in (a), an amplification of 1 places both of the poles on
the real axis. The frequency response of this configuration is a low-pass filter
with a relatively smooth transition between the passband and stopband. The
-3dB (0.707) cutoff frequency of this circuit, denoted by , is where the circleT0
intersects the imaginary axis, i.e., .T0 ' 1/RC

Chapter 32- The Laplace Transform 601

FIGURE 32-9
Sallen-Key characteristics. This circuit
produces two poles on a circle of radius
1/RC. As the gain of the amplifier is
increased, the poles move from the real
axis, as in (a), toward the imaginary axis,
as in (d).

R R

C

C

AVin

Vout

F

jT

Frequency

T0

F

jT

Frequency

T0

F

jT

Frequency

T0

F

jT

Frequency

T0

2 poles

a. A = 1.0

b. A = 1.586

c. A = 2.5

d. A = 3.0

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

As the amplification is increased, the poles move along the circle, with a
corresponding change in the frequency response. As shown in (b), an
amplification of 1.586 places the poles at 45 degree angles, resulting in the
frequency response having a sharper transition. Increasing the amplification
further moves the poles even closer to the imaginary axis, resulting in the
frequency response showing a peaked curve. This condition is illustrated in (c),
where the amplification is set at 2.5. The amplitude of the peak continues to
grow as the amplification is increased, until a gain of 3 is reached. As shown
in (d), this is a special case that places the poles directly on the imaginary axis.
The corresponding frequency response now has an infinity large value at the
peak. In practical terms, this means the circuit has turned into an oscillator.
Increasing the gain further pushes the poles deeper into the right half of the s-
plane. As mentioned before, this correspond to the system being unstable
(spontaneous oscillation).

Using the Sallen-Key circuit as a building block, a wide variety of filter types
can be constructed. For example, a low-pass Butterworth filter is designed
by placing a selected number of poles evenly around the left-half of the circle,
as shown in Fig. 32-10. Each two poles in this configuration requires one

The Scientist and Engineer's Guide to Digital Signal Processing602

F

jT

F

jT

F

jT

F

jT1 pole 2 pole

3 pole 6 pole

FIGURE 32-10
The Butterworth s-plane. The low-pass
Butterworth filter is created by placing
poles equally around the left-half of a
circle. The more poles used in the filter,
the faster the roll-off.

Sallen-Key stage. As described in Chapter 3, the Butterworth filter is
maximally flat, that is, it has the sharpest transition between the passband and
stopband without peaking in the frequency response. The more poles used, the
faster the transition. Since all the poles in the Butterworth filter lie on the
same circle, all the cascaded stages use the same values for R and C. The only
thing different between the stages is the amplification. Why does this circular
pattern of poles provide the optimally flat response? Don't look for an obvious
or intuitive answer to this question; it just falls out of the mathematics.

Figure 32-11 shows how the pole positions of the Butterworth filter can be
modified to produce the Chebyshev filter. As discussed in Chapter 3, the
Chebyshev filter achieves a sharper transition than the Butterworth at the
expense of ripple being allowed into the passband. In the s-domain, this
corresponds to the circle of poles being flattened into an ellipse. The more
flattened the ellipse, the more ripple in the passband, and the sharper the
transition. When formed from a cascade of Sallen-Key stages, this requires
different values of resistors and capacitors in each stage.

Figure 32-11 also shows the next level of sophistication in filter design
strategy: the elliptic filter. The elliptic filter achieves the sharpest possible
transition by allowing ripple in both the passband and the stopband. In the s-
domain, this corresponds to placing zeros on the imaginary axis, with the
first one near the cutoff frequency. Elliptic filters come in several varieties and
are significantly more difficult to design than Butterworth and Chebyshev
configurations. This is because the poles and zeros of the elliptic filter do not
lie in a simple geometric pattern, but in a mathematical arrangement involving
elliptic functions and integrals (hence the name).

Chapter 32- The Laplace Transform 603

F

jT

Elliptic

Butterworth

F

jTChebyshev

Frequency

T0

Frequency

T0

Frequency

T0

FIGURE 32-11
Classic pole-zero patterns. These are the
three classic pole-zero patterns in filter
design. Butterworth filters have poles
equally spaced around a circle, resulting in
a maximally flat response. Chebyshev
filters have poles placed on an ellipse,
providing a sharper transition, but at the
cost of ripple in the passband. Elliptic
filters add zeros to the stopband. This
results in a faster transition, but with
ripple in the passband and stopband.

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

deF

jT

o
o

o
o

Since each biquad produces two poles, even order filters (2 pole, 4 pole, 6
pole, etc.) can be constructed by cascading biquad stages. However, odd
order filters (1 pole, 3 pole, 5 pole, etc.) require something that the biquad
just cannot provide: a single pole on the real axis. This turns out to be
nothing more than a simple RC circuit added to the cascade. For example, a
9 pole filter can be constructed from 5 stages: 4 Sallen-Key biquads, plus one
stage consisting of a single capacitor and resistor.

These classic pole-zero patterns are for low-pass filters; however, they can be
modified for other frequency responses. This is done by designing a low-pass
filter, and then performing a mathematical transformation in the s-domain. We
start by calculating the low-pass filter pole locations, and then writing the
transfer function, , in the form of Eq. 32-3. The transfer function of theH (s)
corresponding high-pass filter is found by replacing each "s" with "1/s", and
then rearranging the expression to again be in the pole-zero form of Eq. 32-3.
This defines new pole and zero locations that implement the high-pass filter.
More complicated s-domain transforms can create band-pass and band-reject
filters from an initial low-pass design. This type of mathematical manipulation
in the s-domain is the central theme of filter design, and entire books are

The Scientist and Engineer's Guide to Digital Signal Processing604

devoted to the subject. Analog filter design is 90% mathematics, and only
10% electronics.

Fortunately, the design of high-pass filters using Sallen-Key stages doesn't
require this mathematical manipulation. The "1/s" for "s" replacement in the
s-domain corresponds to swapping the resistors and capacitors in the circuit.
In the s-plane, this swap places the poles at a new position, and adds two zeros
directly at the origin. This results in the frequency response having a value of
zero at DC (zero frequency), just as you would expect for a high-pass filter.
This brings the Sallen-Key circuit to its full potential: the implementation of
two poles and two zeros.

605

CHAPTER

33

X (s) ' m
4

t ' &4

x (t) e & s t d t

The z-Transform

Just as analog filters are designed using the Laplace transform, recursive digital filters are
developed with a parallel technique called the z-transform. The overall strategy of these two
transforms is the same: probe the impulse response with sinusoids and exponentials to find the
system's poles and zeros. The Laplace transform deals with differential equations, the s-domain,
and the s-plane. Correspondingly, the z-transform deals with difference equations, the z-domain,
and the z-plane. However, the two techniques are not a mirror image of each other; the s-plane
is arranged in a rectangular coordinate system, while the z-plane uses a polar format. Recursive
digital filters are often designed by starting with one of the classic analog filters, such as the
Butterworth, Chebyshev, or elliptic. A series of mathematical conversions are then used to obtain
the desired digital filter. The z-transform provides the framework for this mathematics. The
Chebyshev filter design program presented in Chapter 20 uses this approach, and is discussed in
detail in this chapter.

The Nature of the z-Domain
To reinforce that the Laplace and z-transforms are parallel techniques, we will
start with the Laplace transform and show how it can be changed into the z-
transform. From the last chapter, the Laplace transform is defined by the
relationship between the time domain and s-domain signals:

where and are the time domain and s-domain representation of thex (t) X (s)
signal, respectively. As discussed in the last chapter, this equation analyzes the
time domain signal in terms of sine and cosine waves that have an
exponentially changing amplitude. This can be understood by replacing the

The Scientist and Engineer's Guide to Digital Signal Processing606

X (F,T) ' m
4

t ' &4

x (t) e &F t e & jTt d t

X (F,T) ' j
4

n ' &4
x [n] e &Fn e & jTn

y [n] ' e

&F n y [n] ' r

-nor

complex variable, s, with its equivalent expression, . Using this alternateF% jT
notation, the Laplace transform becomes:

If we are only concerned with real time domain signals (the usual case), the top
and bottom halves of the s-plane are mirror images of each other, and the term,

, reduces to simple cosine and sine waves. This equation identifies eache & jTt

location in the s-plane by the two parameters, F and T. The value at each
location is a complex number, consisting of a real part and an imaginary part.
To find the real part, the time domain signal is multiplied by a cosine wave
with a frequency of T , and an amplitude that changes exponentially
according to the decay parameter, F. The value of the real part of X (F,T)
is then equal to the integral of the resulting waveform. The value of the
imaginary part of is found in a similar way, except using a sineX (F,T)
wave. If this doesn't sound very familiar, you need to review the previous
chapter before continuing.

The Laplace transform can be changed into the z-transform in three steps. The
first step is the most obvious: change from continuous to discrete signals. This
is done by replacing the time variable, t, with the sample number, n, and
changing the integral into a summation:

Notice that uses parentheses, indicating it is continuous, not discrete.X (F,T)
Even though we are now dealing with a discrete time domain signal, , thex[n]
parameters F and T can still take on a continuous range of values. The second
step is to rewrite the exponential term. An exponential signal can be
mathematically represented in either of two ways:

As illustrated in Fig. 33-1, both these equations generate an exponential
curve. The first expression controls the decay of the signal through the
parameter, F. If F is positive, the waveform will decrease in value as the
sample number, n, becomes larger. Likewise, the curve will progressively
increase if F is negative. If F is exactly zero, the signal will have a
constant value of one.

Chapter 33- The z-Transform 607

n
-10 -5 0 5 10

0

1

2

3

n
-10 -5 0 5 10

0

1

2

3

n
-10 -5 0 5 10

0

1

2

3

or

a. Decreasing

b. Constant

c. Increasing

or

or

FIGURE 33-1
Exponential signals. Exponentials
can be represented in two different
mathematical forms. The Laplace
transform uses one way, while the
z-transform uses the other.

y [n] ' e &Fn, F' 0.105

y [n] ' r-n, r ' 1.1

y [n] ' e &Fn, F' 0.000

y [n] ' r-n, r ' 1.0

y [n] ' e &Fn, F' &0.095

y [n] ' r-n, r ' 0.9
y[

n]
y[

n]
y[

n]

r-n ' [e

ln (r)]-n ' e-n ln (r) ' e

&F n

 where: F ' ln (r)

X (r, T) ' j
4

n ' &4
x [n] r-n e

& j T n

The second expression uses the parameter, r, to control the decay of the
waveform. The waveform will decrease if , and increase if . Ther > 1 r < 1
signal will have a constant value when . These two equations are justr '1
different ways of expressing the same thing. One method can be swapped for
the other by using the relation:

The second step of converting the Laplace transform into the z-transform is
completed by using the other exponential form:

While this is a perfectly correct expression of the z-transform, it is not in
the most compact form for complex notation. This problem was overcome

The Scientist and Engineer's Guide to Digital Signal Processing608

z ' r e

j T

EQUATION 33-1
The z-transform. The z-transform defines
the relationship between the time domain
signal, , and the z-domain signal, .x [n] X (z)

X (z) ' j
4

n ' &4
x [n] z &n

in the Laplace transform by introducing a new complex variable, s, defined to
be: . In this same way, we will define a new variable for the z-s ' F% jT
transform:

This is defining the complex variable, z, as the polar notation combination of
the two real variables, r and T. The third step in deriving the z-transform is
to replace: r and T, with z. This produces the standard form of the z-
transform:

Why does the z-transform use instead of , and z instead of s? Asr n e &Fn

described in Chapter 19, recursive filters are implemented by a set of recursion
coefficients. To analyze these systems in the z-domain, we must be able to
convert these recursion coefficients into the z-domain transfer function, and
back again. As we will show shortly, defining the z-transform in this manner
(and z) provides the simplest means of moving between these two importantr n

representations. In fact, defining the z-domain in this way makes it trivial to
move from one representation to the other.

Figure 33-2 illustrates the difference between the Laplace transform's s-plane,
and the z-transform's z-plane. Locations in the s-plane are identified by two
parameters: F, the exponential decay variable along the horizontal axis, and T,
the frequency variable along the vertical axis. In other words, these two real
parameters are arranged in a rectangular coordinate system. This geometry
results from defining s, the complex variable representing position in the s-
plane, by the relation: .s ' F% jT

In comparison, the z-domain uses the variables: r and T, arranged in polar
coordinates. The distance from the origin, r, is the value of the exponential
decay. The angular distance measured from the positive horizontal axis, T, is
the frequency. This geometry results from defining z by: . In otherz ' re & jT

words, the complex variable representing position in the z-plane is formed by
combining the two real parameters in a polar form.

These differences result in vertical lines in the s-plane matching circles in
the z-plane. For example, the s-plane in Fig. 33-2 shows a pole-zero pattern
where all of the poles & zeros lie on vertical lines. The equivalent poles &
zeros in the z-plane lie on circles concentric with the origin. This can be
understood by examining the relation presented earlier: . ForF' & ln(r)
instance, the s-plane's vertical axis (i.e.,) corresponds to the z-plane'sF' 0

Chapter 33- The z-Transform 609

Re

Im Im

Re

T

F

s - Plane

r

DC

z - Plane

T

DC
(F' 0, T' 0) (r ' 1, T' 0)

r ' 1

FIGURE 33-2
Relationship between the s-plane and the z-plane. The s-plane is a rectangular coordinate system with F
expressing the distance along the real (horizontal) axis, and T the distance along the imaginary (vertical) axis.
In comparison, the z-plane is in polar form, with r being the distance to the origin, and T the angle measured
to the positive horizontal axis. Vertical lines in the s-plane, such as illustrated by the example poles and zeros
in this figure, correspond to circles in the z-plane.

unit circle (that is,). Vertical lines in the left half of the s-planer ' 1
correspond to circles inside the z-plane's unit circle. Likewise, vertical
lines in the right half of the s-plane match with circles on the outside of the
z-plane's unit circle. In other words, the left and right sides of the s-plane
correspond to the interior and the exterior of the unit circle, respectively.
For instance, a continuous system is unstable when poles occupy the right
half of the s-plane. In this same way, a discrete system is unstable when
poles are outside the unit circle in the z-plane. When the time domain
signal is completely real (the most common case), the upper and lower
halves of the z-plane are mirror images of each other, just as with the s-
domain.

Pay particular attention to how the frequency variable, T, is used in the two
transforms. A continuous sinusoid can have any frequency between DC and
infinity. This means that the s-plane must allow T to run from negative to
positive infinity. In comparison, a discrete sinusoid can only have a
frequency between DC and one-half the sampling rate. That is, the
frequency must be between 0 and 0.5 when expressed as a fraction of the
sampling rate, or between 0 and B when expressed as a natural frequency
(i.e.,). This matches the geometry of the z-plane when we interpretT ' 2B f
T to be an angle expressed in radians. That is, the positive frequencies
correspond to angles of 0 to B radians, while the negative frequencies
correspond to 0 to -B radians. Since the z-plane express frequency in a
different way than the s-plane, some authors use different symbols to

The Scientist and Engineer's Guide to Digital Signal Processing610

y[n] ' a0 x [n] % a1 x[n&1] % a2 x[n&2] % ˛% b1 y[n&1] % b2y [n&2] % b3y[n&3] % ˛

EQUATION 33-2
Difference equation. See Chapter
19 for details.

distinguish the two. A common notation is to use S (an upper case omega)
to represent frequency in the z-domain, and T (a lower case omega) for
frequency in the s-domain. In this book we will use T to represent both
types of frequency, but look for this in other DSP material.

In the s-plane, the values that lie along the vertical axis are equal to the
frequency response of the system. That is, the Laplace transform, evaluated at

, is equal to the Fourier transform. In an analogous manner, theF' 0
frequency response in the z-domain is found along the unit circle. This can be
seen by evaluating the z-transform (Eq. 33-1) at , resulting in the equationr ' 1
reducing to the Discrete Time Fourier Transform (DTFT). This places zero
frequency (DC) at a value of one on the horizontal axis in the s-plane. The
spectrum's positive frequencies are positioned in a counter-clockwise pattern
from this DC position, occupying the upper semicircle. Likewise the negative
frequencies are arranged from the DC position along the clockwise path,
forming the lower semicircle. The positive and negative frequencies in the
spectrum meet at the common point of and . This circularT ' B T ' &B
geometry also corresponds to the frequency spectrum of a discrete signal being
periodic. That is, when the frequency angle is increased beyond B, the same
values are encountered as between 0 and B. When you run around in a circle,
you see the same scenery over and over.

Analysis of Recursive Systems

As outlined in Chapter 19, a recursive filter is described by a difference
equation:

where and are the input and output signals, respectively, and the "a"x [] y []
and "b" terms are the recursion coefficients. An obvious use of this equation
is to describe how a programmer would implement the filter. An equally
important aspect is that it represents a mathematical relationship between the
input and output that must be continually satisfied. Just as continuous systems
are controlled by differential equations, recursive discrete systems operate in
accordance with this difference equation. From this relationship we can derive
the key characteristics of the system: the impulse response, step response,
frequency response, pole-zero plot, etc.

We start the analysis by taking the z-transform (Eq. 33-1) of both sides of Eq.
33-2. In other words, we want to see what this controlling relationship looks
like in the z-domain. With a fair amount of algebra, we can separate the
relation into: , that is, the z-domain representation of the outputY[z] / X [z]
signal divided by the z-domain representation of the input signal. Just as with

Chapter 33- The z-Transform 611

H [z] '
a0 % a1 z &1 % a2 z &2 % a3 z &3 % ˛

1 & b1 z &1 & b2 z &2 & b3 z &3 & ˛

EQUATION 33-3
Transfer function in polynomial form.
The recursion coefficients are directly
identifiable in this relation.

a0 = 0.389
a1 = -1.558 b1 = 2.161
a2 = 2.338 b2 = -2.033
a3 = -1.558 b3 = 0.878
a4 = 0.389 b4 = -0.161

H [z] '
0.389 & 1.558 z &1 % 2.338z &2 & 1.558 z &3 % 0.389z &4

1 & 2.161 z &1 % 2.033z &2 & 0.878 z &3 % 0.161z &4

H [z] '
0.389 z 4 & 1.558z 3 % 2.338 z 2 & 1.558z % 0.389

z 4 & 2.161 z 3 % 2.033z 2 & 0.878 z % 0.161

the Laplace transform, this is called the system's transfer function, and
designate it by . Here is what we find:H [z]

This is one of two ways that the transfer function can be written. This form is
important because it directly contains the recursion coefficients. For example,
suppose we know the recursion coefficients of a digital filter, such as might be
provided from a design table:

Without having to worry about nasty complex algebra, we can directly write
down the system's transfer function:

Notice that the "b" coefficients enter the transfer function with a negative sign
in front of them. Alternatively, some authors write this equation using
additions, but change the sign of all the "b" coefficients. Here's the problem.
If you are given a set of recursion coefficients (such as from a table or filter
design program), there is a 50-50 chance that the "b" coefficients will have the
opposite sign from what you expect. If you don't catch this discrepancy, the
filter will be grossly unstable.

Equation 33-3 expresses the transfer function using negative powers of z, such
as: etc. After an actual set of recursion coefficients have beenz &1, z & 2, z &3,
plugged in, we can convert the transfer function into a more conventional form
that uses positive powers: i.e., . By multiplying both the numeratorz, z 2, z 3, ˛
and denominator of our example by , we obtain:z 4

The Scientist and Engineer's Guide to Digital Signal Processing612

H [z] '
(z & z1) (z & z2) (z & z3)˛
(z &p1) (z &p2) (z &p3)˛

EQUATION 33-4
Transfer function in pole-zero form.

Positive powers are often easier to use, and they are required by some z-
domain techniques. Why not just rewrite Eq. 33-3 using positive powers and
forget about negative powers entirely? We can't! The trick of multiplying the
numerator and denominator by the highest power of z (such as in ourz 4

example) can only be used if the number of recursion coefficients is already
known. Equation 33-3 is written for an arbitrary number of coefficients. The
point is, both positive and negative powers are routinely used in DSP and you
need to know how to convert between the two forms.

The transfer function of a recursive system is useful because it can be
manipulated in ways that the recursion coefficients cannot. This includes such
tasks as: combining cascade and parallel stages into a single system, designing
filters by specifying the pole and zero locations, converting analog filters into
digital, etc. These operations are carried out by algebra performed in the z-
domain, such as: multiplication, addition, and factoring. After these operations
are completed, the transfer function is placed in the form of Eq. 33-3, allowing
the new recursion coefficients to be identified.

Just as with the s-domain, an important feature of the z-domain is that the
transfer function can be expressed as poles and zeros. This provides the
second general form of the z-domain:

Each of the poles () and zeros () is a complex number. Top1, p2, p3,˛ z1, z2, z3˛
move from Eq. 33-4 to 33-3, multiply out the expressions and collect like
terms. While this can involve a tremendous amount of algebra, it is
straightforward in principle and can easily be written into a computer routine.
Moving from Eq. 33-3 to 33-4 is more difficult because it requires factoring
of the polynomials. As discussed in Chapter 32, the quadratic equation can be
used for the factoring if the transfer function is second order or less (i.e., there
are no powers of z higher than). Algebraic methods cannot generally bez 2

used to factor systems greater than second order and numerical methods must
be employed. Fortunately, this is seldom needed; digital filter design starts with
the pole-zero locations (Eq. 33-4) and ends with the recursion coefficients (Eq.
33-3), not the other way around.

As with all complex numbers, the pole and zero locations can be represented
in either polar or rectangular form. Polar notation has the advantage of being
more consistent with the natural organization of the z-plane. In comparison,
rectangular form is generally preferred for mathematical work, that is, it is
usually easier to manipulate: , as compared with: .F% jT re jT

As an example of using these equations, we will design a notch filter by the
following steps: (1) specify the pole-zero placement in the z-plane, (2)

Chapter 33- The z-Transform 613

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

c. Frequency response

Sample number
0 5 10 15 20 25 30 35 40

-0.5

0.0

0.5

1.0

1.5

b. Impulse response

Im

Re

a. Pole-zero plot

FIGURE 33-3
Notch filter designed in the z-domain. The
design starts by locating two poles and two
zeros in the z-plane, as shown in (a). The
resulting impulse and frequency response
are shown in (b) and (c), respectively. The
sharpness of the notch is controlled by the
distance of the poles from the zeros.

A
m

pl
itu

de

A
m

pl
itu

de

r ' 1

B/4

r ' 0.9

In rectangular form:In polar form:

z1 ' 1.00e j (B/4)

z2 ' 1.00e j (&B/4)

p1 ' 0.90e j (B/4)

p2 ' 0.90e j (&B/4)

z1 ' 0.7071 % j 0.7071
z2 ' 0.7071 & j 0.7071
p1 ' 0.6364 % j 0.6364
p2 ' 0.6364 & j 0.6364

write down the transfer function in the form of Eq. 33-4, (3) rearrange the
transfer function into the form of Eq. 33-3, and (4) identify the recursion
coefficients needed to implement the filter. Fig. 33-3 shows the example we
will use: a notch filter formed from two poles and two zeros located at

To understand why this is a notch filter, compare this pole-zero plot with Fig.
32-6, a notch filter in the s-plane. The only difference is that we are moving
along the unit circle to find the frequency response from the z-plane, as
opposed to moving along the vertical axis to find the frequency response from
the s-plane. From the polar form of the poles and zeros, it can be seen that the
notch will occur at a natural frequency of , corresponding to 0.125 of theB/4
sampling rate.

The Scientist and Engineer's Guide to Digital Signal Processing614

H (z) '
[z & (0.7071% j 0.7071)] [z & (0.7071& j 0.7071)]
[z & (0.6364% j 0.6364)] [z & (0.6364& j 0.6364)]

H(z) '
z 2& 0.7071z % j 0.7071z & 0.7071z % 0.70712 & j 0.70712 & j 0.7071z % j 0.70712 & j 2 0.70712

z 2& 0.6364z % j 0.6364z & 0.6364z % 0.63642 & j 0.63642 & j 0.6364z % j 0.63642 & j 2 0.63642

H [z] '
1.000 & 1.414 z % 1.000z 2

0.810 & 1.273 z % 1.000z 2

H [z] '
1.000 & 1.414 z &1 % 1.000z &2

1.000 & 1.273 z &1 % 0.810z &2

a0 = 1.000
a1 = -1.414 b1 = 1.273
a2 = 1.000 b2 = -0.810

Since the pole and zero locations are known, the transfer function can be
written in the form of Eq. 33-4 by simply plugging in the values:

To find the recursion coefficients that implement this filter, the transfer
function must be rearranged into the form of Eq. 33-3. To start, expand the
expression by multiplying out the terms:

Next, we collect like terms and reduce. As long as the upper half of the z-
plane is a mirror image of the lower half (which is always the case if we are
dealing with a real impulse response), all of the terms containing a will" j"
cancel out of the expression:

While this is in the form of one polynomial divided by another, it does not use
negative exponents of z, as required by Eq. 33-3. This can be changed by
dividing both the numerator and denominator by the highest power of z in the
expression, in this case, :z 2

Since the transfer function is now in the form of Eq. 33-3, the recursive
coefficients can be directly extracted by inspection:

This example provides the general strategy for obtaining the recursion
coefficients from a pole-zero plot. In specific cases, it is possible to derive

Chapter 33- The z-Transform 615

EQUATION 33-5
Biquad design equations. These equations give
the recursion coefficients, , froma0, a1, a2, b1, b2
the position of the poles: , and therp & Tp
zeros: .r0 & T0

a0 ' 1
a1 ' &2r0 cos(T0)
a2 ' r 2

0

b1 ' 2rp cos(Tp)
b2 ' & r 2

p

simpler equations directly relating the pole-zero positions to the recursion
coefficients. For example, a system containing two poles and two zeros, called
as biquad, has the following relations:

After the transfer function has been specified, how do we find the frequency
response? There are three methods: one is mathematical and two are
computational (programming). The mathematical method is based on finding
the values in the z-plane that lie on the unit circle. This is done by evaluating
the transfer function, . Specifically, we start by writing down theH (z), at r ' 1
transfer function in the form of either Eq. 33-3 or 33-4. We then replace each
z with (that is,). This provides a mathematical equatione & jT re & jT with r' 1
of the frequency response, . The problem is, the resulting expression isH (T)
in a very inconvenient form. A significant amount of algebra is usually
required to obtain something recognizable, such as the magnitude and phase.
While this method provides an exact equation for the frequency response, it is
difficult to automate in computer programs, such as needed in filter design
packages.

The second method for finding the frequency response also uses the approach
of evaluating the z-plane on the unit circle. The difference is that we only
calculate samples of the frequency response, not a mathematical solution for
the entire curve. A computer program loops through, perhaps, 1000 equally
spaced frequencies between and . Think of an ant moving betweenT' 0 T' B
1000 discrete points on the upper half of the z-plane's unit circle. The
magnitude and phase of the frequency response are found at each of these
location by evaluating the transfer function.

This method works well and is often used in filter design packages. Its major
limitation is that it does not account for round-off noise affecting the system's
characteristics. Even if the frequency response found by this method looks
perfect, the implemented system can be completely unstable!

This brings up the third method: find the frequency response from the recursion
coefficients that are actually used to implement the filter. To start, we find the
impulse response of the filter by passing an impulse through the system. In the
second step, we take the DFT of the impulse response (using the FFT, of
course) to find the system's frequency response. The only critical item to
remember with this procedure is that enough samples must be taken of the
impulse response so that the discarded samples are insignificant. While books

The Scientist and Engineer's Guide to Digital Signal Processing616

H [z] '
a0 % a1z

&1 % a2 z &2

1 & b1z
&1 & b2 z &2

×
A0 % A1z

&1 % A2 z &2

1 & B1z
&1 & B2 z &2

H [z] '
a0 A0 % (a0 A1% a1A0) z &1 % (a0 A2% a1 A1% a2 A0) z &2 % (a1A2% a2 A1)z &3 % (a2 A2) z &4

1 & (b1% B1)z &1 & (b2% B2& b1 B1) z &2 & (&b1 B2& b2B1) z &3 & (&b2 B2)z &4

could be written on the theoretical criteria for this, the practical rules are much
simpler. Use as many samples as you think are necessary. After finding the
frequency response, go back and repeat the procedure using twice as many
samples. If the two frequency responses are adequately similar, you can be
assured that the truncation of the impulse response hasn't fooled you in some
way.

Cascade and Parallel Stages
Sophisticated recursive filters are usually designed in stages to simplify the
tedious algebra of the z-domain. Figure 33-4 illustrates the two common ways
that individual stages can be arranged: cascaded stages and parallel stages with
added outputs. For example, a low-pass and high-pass stage can be cascaded
to form a band-pass filter. Likewise, a parallel combination of low-pass and
high-pass stages can form a band-reject filter. We will call the two stages
being combined system 1 and system 2, with their recursion coefficients being
called: and , respectively. Our goal is toa0, a1, a2, b1, b2 A0, A1, A2, B1, B2
combine these stages (in cascade or parallel) into a single recursive filter,
which we will call system 3 , with recursion coefficients given by:

.a0, a1, a2, a3, a4, b1, b2, b3, b4

As you recall from previous chapters, the frequency responses of systems in a
cascade are combined by multiplication. Also, the frequency responses of
systems in parallel are combined by addition. These same rules are followed
by the z-domain transfer functions. This allows recursive systems to be
combined by moving the problem into the z-domain, performing the required
multiplication or addition, and then returning to the recursion coefficients of the
final system.

As an example of this method, we will work out the algebra for combining two
biquad stages in a cascade. The transfer function of each stage is found by
writing Eq. 33-3 using the appropriate recursion coefficients. The transfer
function of the entire system, , is then found by multiplying the transferH [z]
functions of the two stage:

Multiplying out the polynomials and collecting like terms:

Chapter 33- The z-Transform 617

System 1 System 2
x[n] y[n]

System 1

x[n] y[n]

System 2

System 3
x[n] y[n]

a. Cascade

b. Parallel

c. Replacement

FIGURE 33-4
Combining cascade and parallel stages.
The z-domain allows recursive stages in a
cascade, (a), or in parallel, (b), to be
combined into a single system, (c).

a0, a1, a2
b1, b2

A0, A1, A2
B1, B2

a0, a1, a2
b1, b2

A0, A1, A2
B1, B2

a0, a1, a2, a3, a4
b1, b2, b3, b4

a0 ' a0 A0
a1 ' a0 A1% a1A0
a2 ' a0 A2% a1A1% a2 A0
a3 ' a1 A2% a2A1
a4 ' a2 A2

b1 ' b1% B1
b2 ' b2% B2& b1 B1
b3 ' &b1 B2& b2B1
b4 ' &b2 B2

Since this is in the form of Eq. 33-3, we can directly extract the recursion
coefficients that implement the cascaded system:

The obvious problem with this technique is the large amount of algebra needed
to multiply and rearrange the polynomial terms. Fortunately, the entire
algorithm can be expressed in a short computer program, shown in Table 33-1.
Although the cascade and parallel combinations require different mathematics,
they use nearly the same program. In particular, only one line of code is
different between the two algorithms, allowing both to be combined into a
single program.

The Scientist and Engineer's Guide to Digital Signal Processing618

TABLE 33-1
Combining cascade and parallel stages. This program combines the recursion coefficients of stages in
cascade or parallel. The recursive coefficients for the two stages being combined enter the program in the
arrays: A1[], B1[], & A2[], B2[]. The recursion coefficients that implement the entire system leave the
program in the arrays: A3[], B3[].

100 'COMBINING RECURSION COEFFICIENTS OF CASCADE AND PARALLEL STAGES
110 '
120 ' 'INITIALIZE VARIABLES
130 DIM A1[8], B1[8] 'a and b coefficients for system 1, one of the stages
140 DIM A2[8], B2[8] 'a and b coefficients for system 2, one of the stages
150 DIM A3[16], B3[16] 'a and b coefficients for system 3, the combined system
160 '
170 'Indicate cascade or parallel combination
180 INPUT "Enter 0 for cascade, 1 for parallel: ", CP%
190 '
200 GOSUB XXXX 'Mythical subroutine to load: A1[], B1[], A2[], B2[]
210 '
220 FOR I% = 0 TO 8 'Convert the recursion coefficients into transfer functions
230 B2[I%] = -B2[I%]
240 B1[I%] = -B1[I%]
250 NEXT I%
260 B1[0] = 1
270 B2[0] = 1
280 '
290 FOR I% = 0 TO 16 'Multiply the polynomials by convolving
300 A3[I%] = 0
310 B3[I%] = 0
320 FOR J% = 0 TO 8
330 IF I%-J% < 0 OR I%-J% > 8 THEN GOTO 370
340 IF CP% = 0 THEN A3[I%] = A3[I%] + A1[J%] * A2[I%-J%]
350 IF CP% = 1 THEN A3[I%] = A3[I%] + A1[J%] * B2[I%-J%] + A2[J%] * B1[I%-J%]
360 B3[I%] = B3[I%] + B1[J%] * B2[I%-J%]
370 NEXT J%
380 NEXT I%
390 '
400 FOR I% = 0 TO 16 'Convert the transfer function into recursion coefficients.
410 B3[I%] = -B3[I%]
420 NEXT I%
430 B3[0] = 0
440 ' 'The recursion coefficients of the combined system now
450 END 'reside in A3[] & B3[]

This program operates by changing the recursive coefficients from each of the
individual stages into transfer functions in the form of Eq. 33-3 (lines 220-
270). After combining these transfer functions in the appropriate manner (lines
290-380), the information is moved back to being recursive coefficients (lines
400 to 430).

The heart of this program is how the transfer function polynomials are
represented and combined. For example, the numerator of the first stage
being combined is: . This polynomial is representeda0% a1 z & 1% a2 z &2% a3z &3˛
in the program by storing the coefficients: , in the array:a0, a1, a2, a3 ˛

. Likewise, the numerator for the second stage isA1[0], A1[1], A1[2], A1[3]˛
represented by the values stored in: , and theA2[0], A2[1], A2[2], A2[3]˛
numerator for the combined system in: . TheA3[0], A3[1], A3[2], A3[3]˛

Chapter 33- The z-Transform 619

w
x
%

y
z

'
w @ z % x @ y

x @z

Original
System

x[n] y[n]

FIGURE 33-5
Spectral inversion. This procedure is
the same as subtracting the output of
the system from the original signal.

idea is to represent and manipulate polynomials by only referring to their
coefficients. The question is, how do we calculate A3[], given that A1[],
A2[], and A3[] all represent polynomials? The answer is that when two
polynomials are multiplied, their coefficients are convolved. In equation form:

. This allows a standard convolution algorithm to find theA1[] (A2[] ' A3[]
transfer function of cascaded stages by convolving the two numerator arrays
and the two denominator arrays.

The procedure for combining parallel stages is slightly more complicated. In
algebra, fractions are added according to:

Since each of the transfer functions is a fraction (one polynomial divided by
another polynomial), we combine stages in parallel by multiplying the
denominators, and adding the cross products in the numerators. This means
that the denominator is calculated in the same way as for cascaded stages,
but the numerator calculation is more elaborate. In line 340, the numerators
of cascaded stages are convolved to find the numerator of the combined
transfer function. In line 350, the numerator of the parallel stage
combination is calculated as the sum of the two numerators convolved with
the two denominators. Line 360 handles the denominator calculation for
both cases.

Spectral Inversion

Chapter 14 describes an FIR filter technique called spectral inversion. This
is a way of changing the filter kernel such that the frequency response is
flipped top-for-bottom. All the passbands are changed into stopbands, and vice
versa. For example, a low-pass filter is changed into high-pass, a band-pass
filter into band-reject, etc. A similar procedure can be done with recursive
filters, although it is far less successful.

As illustrated in Fig. 33-5, spectral inversion is accomplished by subtracting
the output of the system from the original signal. This procedure can be

The Scientist and Engineer's Guide to Digital Signal Processing620

a0 ' 1& a0
a1 ' &a1& b1
a2 ' &a2& b2
a3 ' &a3& b3

!

EQUATION 33-6
Spectral inversion. The frequency response
of a recursive filter can be flipped top-for-
bottom by modifying the "a" coefficients
according to these equations. The original
coefficients are shown in italics, and the
modified coefficients in roman. The "b"
coefficients are not changed. This method
usually provides poor results.

Frequency

0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

a. Original LP

Frequency

0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

b. Inverted LP

Frequency

0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

c. Original notch

A
m

pl
itu

de

Frequency

0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

d. Inverted notch

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

FIGURE 33-6
Examples of spectral inversion. Figure (a) shows the frequency response of a 6 pole low-pass Butterworth filter.
Figure (b) shows the corresponding high-pass filter obtained by spectral inversion; its a mess! A more successful
case is shown in (c) and (d) where a notch filter is transformed in to a band-pass frequency response.

A
m

pl
itu

de

viewed as combining two stages in parallel, where one of the stages happens
to be the identity system (the output is identical to the input). Using this
approach, it can be shown that the "b" coefficients are left unchanged, and the
modified "a" coefficients are given by:

Figure 33-6 shows spectral inversion for two common frequency responses:
a low-pass filter, (a), and a notch filter, (c). This results in a high-pass
filter, (b), and a band-pass filter, (d), respectively. How do the resulting
frequency responses look? The high-pass filter is absolutely terrible! While

Chapter 33- The z-Transform 621

the band-pass is better, the peak is not as sharp as the notch filter from which
it was derived. These mediocre results are especially disappointing in
comparison to the excellent performance seen in Chapter 14. Why the
difference? The answer lies in something that is often forgotten in filter design:
the phase response.

To illustrate how phase is the culprit, consider a system called the Hilbert
transformer. The Hilbert transformer is not a specific device, but any system
that has the frequency response: Magnitude = 1 and phase = 90 degrees, for all
frequencies. This means that any sinusoid passing through a Hilbert
transformer will be unaffected in amplitude, but changed in phase by one-
quarter of a cycle. Hilbert transformers can be analog or discrete (that is,
hardware or software), and are commonly used in communications for various
modulation and demodulation techniques.

Now, suppose we spectrally invert the Hilbert transformer by subtracting its
output from the original signal. Looking only at the magnitude of the
frequency responses, we would conclude that the entire system would have an
output of zero. That is, the magnitude of the Hilbert transformer's output is
identical to the magnitude of the original signal, and the two will cancel. This,
of course, is completely incorrect. Two sinusoids will exactly cancel only if
they have the same magnitude and phase. In reality, the frequency response of
this composite system has a magnitude of , and a phase shift of -45 degrees.2
Rather than being zero (our naive guess), the output is larger in amplitude than
the input!

Spectral inversion works well in Chapter 14 because of the specific kind of
filter used: zero phase. That is, the filter kernels have a left-right symmetry.
When there is no phase shift introduced by a system, the subtraction of the
output from the input is dictated solely by the magnitudes. Since recursive
filters are plagued with phase shift, spectral inversion generally produces
unsatisfactory filters.

Gain Changes
Suppose we have a recursive filter and need to modify the recursion
coefficients such that the output signal is changed in amplitude. This might
be needed, for example, to insure that a filter has unity gain in the
passband. The method to achieve this is very simple: multiply the "a"
coefficients by whatever factor we want the gain to change by, and leave
the "b" coefficients alone.

Before adjusting the gain, we would probably like to know its current
value. Since the gain must be specified at a frequency in the passband, the
procedure depends on the type of filter being used. Low-pass filters have
their gain measured at a frequency of zero, while high-pass filters use a
frequency of 0.5, the maximum frequency allowable. It is quite simple to
derive expressions for the gain at both these special frequencies. Here's
how it is done.

The Scientist and Engineer's Guide to Digital Signal Processing622

y[n] ' a0 x[n] % a1 x[n&1] % a2 x[n&2] % ˛% b1 y[n&1] % b2 y[n&2] % b3 y[n&3] % ˛

G ' a0 % a1 % a2 % a3 % ˛% b1 G % b2 G % b3 G % b4 G ˛

G '
a0 % a1 % a2 % a3˛

1 & (b1 % b2 % b3)̨

EQUATION 33-7
DC gain of recursive filters. This
relation provides the DC gain from
the recursion coefficients.

G ' a0 & a1 % a2 & a3 % ˛& b1 G % b2 G & b3 G % b4 G ˛

G '
a0 & a1 % a2 & a3 % a4˛

1 & (& b1 % b2 & b3 % b4)̨

EQUATION 33-8
Gain at maximum frequency. This
relation gives the recursive filter's
gain at a frequency of 0.5, based on
the system's recursion coefficients.

First, we will derive an equation for the gain at zero frequency. The idea is to
force each of the input samples to have a value of one, resulting in each of the
output samples having a value of G, the gain of the system we are trying to
find. We will start by writing the recursion equation, the mathematical
relationship between the input and output signals:

Next, we plug in one for each input sample, and G for each output sample. In
other words, we force the system to operate at zero frequency. The equation
becomes:

Solving for G provides the gain of the system at zero frequency, based on its
recursion coefficients:

To make a filter have a gain of one at DC, calculate the existing gain by using
this relation, and then divide all the "a" coefficients by G.

The gain at a frequency of 0.5 is found in a similar way: we force the input and
output signals to operate at this frequency, and see how the system responds.
At a frequency of 0.5, the samples in the input signal alternate between -1 and
1. That is, successive samples are: 1, -1, 1, -1, 1, -1, 1, etc. The
corresponding output signal also alternates in sign, with an amplitude equal to
the gain of the system: G, -G, G, -G, G, -G, etc. Plugging these signals into
the recursion equation:

Solving for G provides the gain of the system at a frequency of 0.5, using its
recursion coefficients:

Chapter 33- The z-Transform 623

Just as before, a filter can be normalized for unity gain by dividing all of
the "a" coefficients by this calculated value of G. Calculation of Eq. 33-8
in a computer program requires a method for generating negative signs for
the odd coefficients, and positive signs for the even coefficients. The most
common method is to multiply each coefficient by , where k is the(&1)k

index of the coefficient being worked on. That is, as k runs through the
values: 0, 1, 2, 3, 4, 5, 6 etc., the expression, , takes on the values: 1,(&1)k

-1, 1, -1, 1, -1, 1 etc.

Chebyshev-Butterworth Filter Design
A common method of designing recursive digital filters is shown by the
Chebyshev-Butterworth program presented in Chapter 20. It starts with a pole-
zero diagram of an analog filter in the s-plane, and converts it into the desired
digital filter through several mathematical transforms. To reduce the
complexity of the algebra, the filter is designed as a cascade of several stages,
with each stage implementing one pair of poles. The recursive coefficients for
each stage are then combined into the recursive coefficients for the entire filter.
This is a very sophisticated and complicated algorithm; a fitting way to end this
book. Here's how it works.

Loop Control
Figure 33-7 shows the program and flowchart for the method, duplicated from
Chapter 20. After initialization and parameter entry, the main portion of the
program is a loop that runs through each pole-pair in the filter. This loop is
controlled by block 11 in the flowchart, and the FOR-NEXT loop in lines 320
& 460 of the program. For example, the loop will be executed three times for
a 6 pole filter, with the loop index, P%, taking on the values 1,2,3. That is, a
6 pole filter is implemented in three stages, with two poles per stage.

Combining Coefficients
During each loop, subroutine 1000 (listed in Fig. 33-8) calculates the recursive
coefficients for that stage. These are returned from the subroutine in the five
variables: . In step 10 of the flowchart (lines 360-440),A0, A1, A2, B1, B2
these coefficients are combined with the coefficients of all the previous stages,
held in the arrays: A[] and B[]. At the end of the first loop, A[] and B[]
hold the coefficients for stage one. At the end of the second loop, A[] and B[
] hold the coefficients of the cascade of stage one and stage two. When all the
loops have been completed, A[] and B[] hold the coefficients needed to
implement the entire filter.

The coefficients are combined as previously outlined in Table 33-1, with a few
modifications to make the code more compact. First, the index of the arrays,
A[] and B[], is shifted by two during the loop. For example, is held ina0
A[2], are held in A[3] & B[3], etc. This is done to prevent thea1 & b1
program from trying to access values outside the defined arrays. This shift is
removed in block 12 (lines 480-520), such that the final recursion coefficients
reside in A[] and B[] without an index offset.

The Scientist and Engineer's Guide to Digital Signal Processing624

EQUATION 33-9
Circular to elliptical transform. These
equations change the pole location on a
circle to a corresponding location on an
ellipse. The variables, NP and PR, are
the number of poles in the filter, and the
pe rcen t r i pp l e i n t he pas sband ,
respectively. The location on the circle
is given by F and T, and the location on
the ellipse by F3 and T3. The variables ,,
v, and k, are used only to make the
equations shorter.

Fr ' F sinh(v) /k

Tr ' T cosh(v) /k

v '
sinh&1(1/,)

NP

k ' cosh 1
NP

cosh&1 1
,

, '
100

100 & PR

2
& 1

1/2

where:

Second, A[] and B[] must be initialized with coefficients corresponding to the
identity system, not all zeros. This is done in lines 180 to 240. During the
first loop, the coefficients for the first stage are combined with the information
initially present in these arrays. If all zeros were initially present, the arrays
would always remain zero. Third, two temporary arrays are used, TA[] and
TB[]. These hold the old values of A[] and B[] during the convolution,
freeing A[] and B[] to hold the new values.

To finish the program, block 13 (lines 540-670) adjusts the filter to have a
unity gain in the passband. This operates as previously described: calculate
the existing gain with Eq. 33-7 or 33-8, and divide all the "a" coefficients to
normalize. The intermediate variables, SA and SB, are the sums of the "a" and
"b" coefficients, respectively.

Calculate Pole Locations in the s-Plane
Regardless of the type of filter being designed, this program begins with a
Butterworth low-pass filter in the s-plane, with a cutoff frequency of .T ' 1
As described in the last chapter, Butterworth filters have poles that are equally
spaced around a circle in the s-plane. Since the filter is low-pass, no zeros are
used. The radius of the circle is one, corresponding to the cutoff frequency of

. Block 3 of the flowchart (lines 1080 & 1090) calculate the location ofT ' 1
each pole-pair in rectangular coordinates. The program variables, RP and IP,
are the real and imaginary parts of the pole location, respectively. These
program variables correspond to F and T, where the pole-pair is located at

. This pole location is calculated from the number of poles in the filterF ± jT
and the stage being worked on, the program variables: NP and P%,
respectively.

Warp from Circle to Ellipse
To implement a Chebyshev filter, this circular pattern of poles must be
transformed into an elliptical pattern. The relative flatness of the ellipse
determines how much ripple will be present in the passband of the filter. If the
pole location on the circle is given by: F and T, the corresponding location on
the ellipse, , is given by:Fr and Tr

Chapter 33- The z-Transform 625

FIGURE 33-7
Chebyshev-Butterworth filter design. This program was previously presented as Table 20-4 and
Table 20-5 in Chapter 20. Figure 33-8 shows the program and flowchart for subroutine 1000,
called from line 340 of this main program.

START

END

print final
coefficients

finish combining
coefficients

more
pole pairs

?

add coefficients
to cascade

enter filter
parameters

initialize
variables

no

yes

normalize
gain

1

2

10

11

12

13

14

tocalculate
coefficients

for this
pole-pair

(see Fig. 33-8)
SUB 1000 3

9

100 'CHEBYSHEV FILTER- COEFFICIENT CALCULATION
110 '
120 'INITIALIZE VARIABLES
130 DIM A[22] 'holds the "a" coefficients
140 DIM B[22] 'holds the "b" coefficients
150 DIM TA[22] 'internal use for combining stages
160 DIM TB[22] 'internal use for combining stages
170 '
180 FOR I% = 0 TO 22
190 A[I%] = 0
200 B[I%] = 0
210 NEXT I%
220 '
230 A[2] = 1
240 B[2] = 1
250 PI = 3.14159265
260 'ENTER THE FILTER PARAMETERS
270 INPUT "Enter cutoff frequency (0 to .5): ", FC
280 INPUT "Enter 0 for LP, 1 for HP filter: ", LH
290 INPUT "Enter percent ripple (0 to 29): ", PR
300 INPUT "Enter number of poles (2,4,...20): ", NP
310 '
320 FOR P% = 1 TO NP/2 'LOOP FOR EACH POLE-ZERO PAIR
330 '
340 GOSUB 1000 'The subroutine in Fig. 33-8
350 '
360 FOR I% = 0 TO 22 'Add coefficients to the cascade
370 TA[I%] = A[I%]
380 TB[I%] = B[I%]
390 NEXT I%
400 '
410 FOR I% = 2 TO 22
420 A[I%] = A0*TA[I%] + A1*TA[I%-1] + A2*TA[I%-2]
430 B[I%] = TB[I%] - B1*TB[I%-1] - B2*TB[I%-2]
440 NEXT I%
450 '
460 NEXT P%
470 '
480 B[2] = 0 'Finish combining coefficients
490 FOR I% = 0 TO 20
500 A[I%] = A[I%+2]
510 B[I%] = -B[I%+2]
520 NEXT I%
530 '
540 SA = 0 'NORMALIZE THE GAIN
550 SB = 0
560 FOR I% = 0 TO 20
570 IF LH = 0 THEN SA = SA + A[I%]
580 IF LH = 0 THEN SB = SB + B[I%]
590 IF LH = 1 THEN SA = SA + A[I%] * (-1)^I%
600 IF LH = 1 THEN SB = SB + B[I%] * (-1)^I%
610 NEXT I%
620 '
630 GAIN = SA / (1 - SB)
640 '
650 FOR I% = 0 TO 20
660 A[I%] = A[I%] / GAIN
670 NEXT I%
680 ' 'The final recursion coefficients are
690 END 'in A[] and B[]

L
o
o
p
 f

o
r
 e

a
c
h
 o

f
th

e
 p

o
le

-p
a
ir

s

The Scientist and Engineer's Guide to Digital Signal Processing626

sinh(x) '
e x & e &x

2

cosh&1(x) ' loge [x % (x 2& 1)1/2]

sinh&1(x) ' loge [x % (x 2% 1)1/2]

cosh(x) '
e x % e &x

2

EQUATION 33-10
The Bilinear transform. This substitution
maps every point in the s-plane into a
corresponding piont in the z-plane.

s 6 2 (1 & z &1)
T (1 % z &1)

These equations use hyperbolic sine and cosine functions to define the
ellipse, just as ordinary sine and cosine functions operate on a circle. The
flatness of the ellipse is controlled by the variable: PR , which is
numerically equal to the percentage of ripple in the filter's passband. The
variables: ,, < and k are used to reduce the complexity of the equations, and
are represented in the program by: ES, VX and KX, respectively. In
addition to converting from a circle to an ellipse, these equations correct the
pole locations to keep a unity cutoff frequency. Since many programming
languages do not support hyperbolic functions, the following identities are
used:

These equations produce illegal operations for and . To use thisPR $ 30 PR ' 0
program to calculate Butterworth filters (i.e., zero ripple, PR = 0), the program
lines that implement these equations must be bypassed (line 1120).

Continuous to Discrete Conversion
The most common method of converting a pole-zero pattern from the s-domain
into the z-domain is the bilinear transform. This is a mathematical technique
of conformal mapping, where one complex plane is algebraically distorted or
warped into another complex plane. The bilinear transform changes , intoH (s)

, by the substitution:H (z)

That is, we write an equation for , and then replaced each s with theH (s)
above expression. In most cases, is used. This resultsT ' 2 tan(1/2) ' 1.093
in the s-domain's frequency range of 0 to B radians/second, being mapped
to the z-domain's frequency range of 0 to infinity radians. Without going into
more detail, the bilinear transform has the desired properties to convert

Chapter 33- The z-Transform 627

FIGURE 33-8
Subroutine called from Figure 33-7.

HP or LP
filter?

HPLP

s to z-domain
conversion

warp from circle
to ellipse

Chebyshev
filter?

yes

no

calculate pole
location on circle

LP to LP
transform

LP to HP
transform

3

4

5

6

7

8 9

1000 'THIS SUBROUTINE IS CALLED FROM FIG. 33-7, LINE 340
1010 '
1020 'Variables entering subroutine: PI, FC, LH, PR, HP, P%
1030 'Variables exiting subroutine: A0, A1, A2, B1, B2
1040 'Variables used internally: RP, IP, ES, VX, KX, T, W, M, D, K,
1050 ' X0, X1, X2, Y1, Y2
1060 '
1070 ' 'Calculate pole location on unit circle
1080 RP = -COS(PI/(NP*2) + (P%-1) * PI/NP)
1090 IP = SIN(PI/(NP*2) + (P%-1) * PI/NP)
1100 '
1110 ' 'Warp from a circle to an ellipse
1120 IF PR = 0 THEN GOTO 1210
1130 ES = SQR((100 / (100-PR))^2 -1)
1140 VX = (1/NP) * LOG((1/ES) + SQR((1/ES^2) + 1))
1150 KX = (1/NP) * LOG((1/ES) + SQR((1/ES^2) - 1))
1160 KX = (EXP(KX) + EXP(-KX))/2
1170 RP = RP * ((EXP(VX) - EXP(-VX)) /2) / KX
1180 IP = IP * ((EXP(VX) + EXP(-VX)) /2) / KX
1190 '
1200 ' 's-domain to z-domain conversion
1210 T = 2 * TAN(1/2)
1220 W = 2*PI*FC
1230 M = RP^2 + IP^2
1240 D = 4 - 4*RP*T + M*T^2
1250 X0 = T^2/D
1260 X1 = 2*T^2/D
1270 X2 = T^2/D
1280 Y1 = (8 - 2*M*T^2)/D
1290 Y2 = (-4 - 4*RP*T - M*T^2)/D
1300 '
1310 ' 'LP TO LP, or LP TO HP
1320 IF LH = 1 THEN K = -COS(W/2 + 1/2) / COS(W/2 - 1/2)
1330 IF LH = 0 THEN K = SIN(1/2 - W/2) / SIN(1/2 + W/2)
1340 D = 1 + Y1*K - Y2*K^2
1350 A0 = (X0 - X1*K + X2*K^2)/D
1360 A1 = (-2*X0*K + X1 + X1*K^2 - 2*X2*K)/D
1370 A2 = (X0*K^2 - X1*K + X2)/D
1380 B1 = (2*K + Y1 + Y1*K^2 - 2*Y2*K)/D
1390 B2 = (-K^2 - Y1*K + Y2)/D
1400 IF LH = 1 THEN A1 = -A1
1410 IF LH = 1 THEN B1 = -B1
1420 '
1430 RETURN

H (s) '
1

(s & p1) (s & p2)

from the s-plane to the z-plane, such as vertical lines being mapped into circles.
Here is an example of how it works. For a continuous system with a single
pole-pair located at and , the s-domain transfer functionp1 ' F % jT p2 ' F & jT
is given by:

The bilinear transform converts this into a discrete system by replacing each
s with the expression given in Eq. 33-10. This creates a z-domain transfer

The Scientist and Engineer's Guide to Digital Signal Processing628

H (z) '
1

2(1& z &1)
T (1% z &1)

& (F% jT) 2(1& z &1)
T (1% z &1)

& (F& jT)

a0 ' T 2/D

a1 ' 2T 2/D

a2 ' T 2/D

b2 ' (&4 & 4FT & M T 2) /D

b1 ' (8 & 2MT 2) /D

where:
M ' F2 % T2

T ' 2 tan (1/2)
D ' 4 & 4FT % MT 2

EQUATION 33-11
Bilinear transform for two poles.
The pole-pair is located at F ± T in
the s-plane, and a0, a1, a2, b1, b2 are
the recursion coefficients for the
discrete system.

function also containing two poles. The problem is, the substitution leaves the
transfer function in a very unfriendly form:

Working through the long and tedious algebra, this expression can be
placed in the standard form of Eq. 33-3, and the recursion coefficients
identified as:

The variables M, T, and D have no physical meaning; they are simply used to
make the equations shorter.

Lines 1200-1290 use these equations to convert the location of the s-domain
pole-pair, held in the variables, RP and IP, directly into the recursive
coefficients, held in the variables, X0, X1, X2, Y1, Y2. In other words, we
have calculated an intermediate result: the recursion coefficients for one stage
of a low-pass filter with a cutoff frequency of one.

Low-pass to Low-pass Frequency Change
Changing the frequency of the recursive filter is also accomplished with a
conformal mapping technique. Suppose we know the transfer function of a
recursive low-pass filter with a unity cutoff frequency. The transfer
function of a similar low-pass filter with a new cutoff frequency, W, is
obtained by using a low-pass to low-pass transform. This is also carried

Chapter 33- The z-Transform 629

EQUATION 33-12
Low-pass to low-pass transform. This
is a method of changing the cutoff
frequency of low-pass filters. The
original filter has a cutoff frequency of
unity, while the new filter has a cutoff
frequency of W, in the range of 0 to B.

z &1 6 z &1 & k
1& kz &1

k '
sin(1/2&W /2)
sin(1/2%W /2)

where:

a0 ' (a0 & a1k % a2k
2) /D

a1 ' (&2a0k % a1 % a1k
2 & 2a2k) /D

b1 ' (2k % b1 % b1k
2 & 2b2k) /D

EQUATION 33-13
Low-pass to low-pass conversion. The
recursion coefficients of the filter with
unity cutoff are shown in italics. The
coefficients of the low-pass filter with
a cutoff frequency of W are in roman.

b2 ' (& k 2 & b1k % b2) /D

a2 ' (a0k
2 & a1k % a2) /D

D ' 1 % b1k & b2 k 2

k '
sin (1/2&W/2)
sin (1/2%W/2)

where:

z &1 6 & z &1 & k
1% kz &1

EQUATION 33-14
Low-pass to high-pass transform. This
substitution changes a low-pass filter
into a high-pass filter. The cutoff
frequency of the low-pass filter is one,
while the cutoff frequency of the high-
pass filter is W. k ' &

cos(W/2%1/2)
cos(W/2& 1/2)

where:

out by substituting variables, just as with the bilinear transform. We start
by writing the transfer function of the unity cutoff filter, and then replace
each z-1 with the following:

This provides the transfer function of the filter with the new cutoff frequency.
The following design equations result from applying this substitution to the
biquad, i.e., no more than two poles and two zeros:

Low-pass to High-pass Frequency Change
The above transform can be modified to change the response of the system from
low-pass to high-pass while simultaneously changing the cutoff frequency. This
is accomplished by using a low-pass to high-pass transform, via the
substitution:

As before, this can be reduced to design equations for changing the
coefficients of a biquad stage. As it turns out, the equations are identical

The Scientist and Engineer's Guide to Digital Signal Processing630

to those of Eq. 33-13, with only two minor changes. The value of k is different
(as given in Eq. 33-14), and two coefficients, and , are negated in value.a1 b1
These equations are carried out in lines 1330 to 1410 in the program, providing
the desired cutoff frequency, and the choice of a high-pass or low-pass
response.

The Best and Worst of DSP
This book is based on a simple premise: most DSP techniques can be used
and understood with a minimum of mathematics. The idea is to provide
scientists and engineers tools for solving the DSP problems that arise in their
non-DSP research or design activities.

These last four chapters are the other side of the coin: DSP techniques that can
only be understood through extensive math. For example, consider the
Chebyshev-Butterworth filter just described. This is the best of DSP, a series
of elegant mathematical steps leading to an optimal solution. However, it is
also the worst of DSP, a design method so complicated that most scientists and
engineers will look for another alternative.

Where do you fit into this scheme? This depends on who your are and what
you plan on using DSP for. The material in the last four chapters provides the
theoretical basis for signal processing. If you plan on pursuing a career in
DSP, you need to have a detailed understanding of this mathematics. On the
other hand, specialists in other areas of science and engineering only need to
know how DSP is used, not how it is derived. To this group, the theoretical
material is more of a background, rather than a central topic.

701

CHAPTER

34
Explaining Benford’s Law

Digital Signal Processing usually involves signals with either time or space as the
independent parameter, such as audio and images, respectively. However, the power of
DSP can also be applied to signals represented in other domains. This chapter provides
an example of this, where the independent parameter is the number line. The particular
example we will use is Benford’s Law, a mathematical puzzle that has caused people to
scratch their heads for decades. The techniques of signal processing provide an elegant
solution to this problem, succeeding where other mathematical approaches have failed.

Frank Benford’s Discovery
Frank Benford was a research physicist at General Electric in the 1930s
when he noticed something unusual about a book of logarithmic tables.
The first pages showed more wear than the last pages, indicating that
numbers beginning with the digit 1 were being looked up more often than
numbers beginning with 2 through 9. Benford seized upon this idea and
spent years collecting data to show that this pattern was widespread in
nature. In 1938, Benford published his results, citing more than 20,000
values such as atomic weights, numbers in magazine articles, baseball
statistics, and the areas of rivers.

This pattern of numbers is unexpected and counterintuitive. In fact, many
do not believe it is real until they conduct an experiment for themselves.
I didn’t! For instance, go through several pages of today’s newspaper
and examine the leading digit of each number. That is, start from the left
of each number and ignore the sign, the decimal point and any zeros. The
first digit you come to, between 1 and 9, is the leading digit . For
example, 3 is the leading digit of 37.3447, and 6 is the leading digit of
-0.06345. Since there are nine possible digits, you would expect that
one-ninth (11.11%) of the numbers would have 1 in the leading digit
position. However, this is not what you will find– about 30.1% of the
numbers will start with 1. It gets even stranger from here.

The Scientist and Engineer's Guide to Digital Signal Processing702

FIGURE 34-1
Frank Albert Benford, Jr., (1883-1948) was an
American electrical engineer and physicist. In
1938 he published a paper entitled “The Law of
Anomalous Numbers.” This is now commonly
called Benford’s Law.

Figure 34-2 shows two examples of Benford’s law. The histogram on the
left is for 14,414 numbers taken from the income tax returns of U.S.
corporations. The pattern here is obvious and very repeatable. The
leading digit in these numbers is a 1 about 30.1% of the time, a 2 about
17.6% of the time, and so on. Mathematicians immediately recognize that
these values correspond to the spacing on the logarithmic number line.
That is, the distance between 1 and 2 on the log scale is log(2) - log(1)
= 0.301. The distance between 2 and 3 is log(3) - log(2) = 0.176, and so
on. Benford showed us that this logarithmic pattern of leading digits is
extremely common in nature and human activities. In fact, even the
physical constants of the universe follow this pattern– just look at the
tables in a physics textbook.

On the other hand, not all sets of numbers follow Benford’s law. For
example, the histogram in Fig. 34-2b was generated by taking a large
number of samples from a computer random number generator. These
particular numbers follow a normal distribution with a mean of five and
a standard deviation of three. Changing any of these parameters will
drastically change the shape of this histogram, with little apparent rhyme
or reason. Obviously, these numbers do not follow the logarithmic
leading-digit distribution. Likewise, most of the common distributions
you learned about in statistics classes do not follow Benford’s law. One
of the primary mysteries of Benford’s law has been this seemingly
unpredictable behavior. Why does one set of numbers fol low the
logarithmic pattern, while another set of numbers does not?

As if this wasn’t mysterious enough, Benford’s law has another property
that is certain to keep you up at night. Figure 34-2a was created from
numbers that appear in U.S. tax returns, and therefore each of these
numbers is a dollar value. But what is so special about the U.S. dollar?
Suppose that you are a financial expert in India and want to examine this
set of data. To make it easier you convert all of the dollar values to
Indian rupees by multiplying each number by the current conversion rate.
It is likely that the leading digit of all 14,414 numbers will be changed

Chapter 34- Explaining Benford’s Law 703

FIGURE 34-2
Two examples of leading-digit histograms. The left figure shows the leading-digit distribution for
14,414 numbers taken from U.S. Federal income tax returns. The figure on the right is for numbers
produced by a computer random number generator (RNG). This shows one of the longstanding
mysteries of Benford’s law– Why do some sets of numbers follow the law (such as tax returns), while
others (such as this RNG) do not? Many have claimed that this is some sort of secret code hidden in
the fabric of Nature.

by this conversion. Nevertheless, about 30.1% of the converted numbers
will still have a leading digit of 1. In other words, if a set of numbers
follows Benford’s law, multiplying the numbers by any possible constant
will create another set of numbers that also follows Benford’s law. A
system that remains unchanged when multiplied by a constant is called
scale invariant. Specifically, groups of numbers that follow Benford’s
law are scale invariant. Likewise, groups of numbers that do not follow
Benford’s law are not. For instance, this procedure would scramble the
shape of the histogram in Fig. 34-2b.

Now suppose that this tax return data is being examined by an alien from
another planet. Since he has eight fingers, he converts all of his numbers
to base 8. Like before, most or all of the leading digits will change in
this procedure. In spite of this, the new group of numbers also follows
Benford’s law (taking into account that there are no 8's or 9's in base 8).
This property is called base invariance. In general, if a group of numbers
follows Benford’s law in one base, it will also follow Benford’s law if
converted to another base. However, there are some exceptions to this
that we will look at later.

The Scientist and Engineer's Guide to Digital Signal Processing704

What does this all mean? Over the last seven decades Benford’s law has
achieved almost a cult following. It has been widely claimed to be evidence
of some mysterious or paranormal property of our universe. For instance,
Benford himself tried to connect the mathematics with Nature, claiming
that mere Man counts arithmetically, 1,2,3,4..., while Nature counts e0, ex,
e2x, e3x, and so on. In another popular version, suppose that nature contains
some underlying and universal distribution of numbers. Since it is universal,
it should look the same regardless of how we choose to examine it. In
particular, it should not make any difference what units we associate with the
numbers. The distribution should appear the same if we express it in dollars
or rupees, feet or meters, Fahrenheit or Celsius, and so on. Likewise, the
appearance should not change when we examine the numbers in different
bases. It has been mathematically proven that the logarithmic leading-digit
pattern is the only distribution that fulfils these invariance requirements.
Therefore, if there is an underlying universal distribution, Benford’s law
must be it. Based on this logic, it is very common to hear that Benford’s law
only applies to numbers that have units associated with them. On the other
end of the spectrum, crackpots abound that associate Benford’s law with
psychic and other paranormal claims.

Don’t waste your time trying to understand the above ideas; they are
completely on the wrong track. There is no “universal distribution” and this
phenomenon is unrelated to “units.” In the end, we will find that Benford’s
law looks more like a well-executed magic trick than a hidden property of
the universe.

Homomorphic Processing
Enjoy learning about Benford’s law, but don’t lose sight of the purpose of
this chapter. Focus on the overall method:

 “If the tool you have is a hammer,
 make the problem look like a nail.”

In DSP this approach is called homomorphic processing, meaning “the
same structure.” In science and engineering it is common to encounter
signals that are difficult to understand or analyze. The strategy of
homomorphic processing is to convert this unmanageable situation into
a conventional linear system, where the analysis techniques are well
understood. This is done by applying whatever mathematical transforms
or tricks are needed for the particular application.

For instance, the classic use of homomorphic processing is to separate
signals that have been multiplied, such as: a(t) = b(t) × c(t). This can be
converted into a linear system, i.e., signals that are added together, by
taking the logarithm: log[a(t)] = log[b(t)] + log[c(t)]. Notice that this is
taking the log of the dependent parameter. In our analysis of Benford’s
law we will take the log of the independent parameter. Two different

Chapter 34- Explaining Benford’s Law 705

techniques to keep in your bag of DSP tricks. In the next section several
other tricks will be presented, such as inventing the Ones Scaling Test,
and evoking a sampling function.

It this sounds complicated, you’re right; it certainly can be. There is no
guarantee that it is even possible to convert an arbitrary problem into the
form of a linear system. Even if it is possible, it may require a series of
nasty steps that take considerable time to develop. However, if you are
successful in applying the homomorphic approach the rewards will
immediately flow. You can say goodbye to a difficult problem, and hello
to a representation that is simple and straightforward.

The following analysis of Benford’s law is conducted in three steps. In
step one we will define a statistical procedure for determining how well a set
of numbers follows Benford’s law, called the Ones Scaling Test. In step two
we will move from statistics to probability, expressing the problem in the
form of a convolution. In step three we use the Fourier Transform to solve
the convolution, giving us the explanation we are looking for.

The Ones Scaling Test
Given a set of numbers, the simplest test for Benford’s law is to count
how many of the numbers have 1 as the leading digit. This fraction will
be about 0.301 if Benford’s law is being followed. However, even finding
this value exactly is not sufficient to conclude that the numbers are
obeying the law. For instance, the set might have 30.1% of the numbers
with a value of 1.00, and 69.9% with a value of 2.00. We can overcome
this problem by including a test for scale invariance. That is, we multiply
each number in the set by some constant, and then recounting how many
numbers have 1 as their leading digit. If Benford’s law is truly being
followed, the percentage of numbers beginning with the digit 1 will
remain about 30.1%, regardless of the constant we use.

A computer program can make this procedure more systematic, such as
the example in Table 34-1. This program loops through the evaluation
696 times, with each loop multiplying all numbers in the group by 1.01.
On the first loop each of the original numbers will be multiplied by 1.01.
On the second loop each number will be multiplied by 1.01 again, in
addition to the multiplication that took place on the first loop. By the
time we reach the 80th loop, each number will have been multiplied by
1.01 a total of 80 times. Therefore, the numbers on the 80th loop are the
same as multiplying each of the original numbers by 1.0180, or 2.217. At
the completion of the program the numbers will have been multiplied 696
times, equivalent to multiplying the original numbers by a constant of
1.01696 . 1,000. In other words, this computer program systematically
scales the data in small increments over about three orders of magnitude.

The fraction of numbers having 1 as the leading digit is tallied on each
of these 696 steps and stored in an array, which we will call the Ones
Scaling Test. Figure 34-3 shows the values in this array for the two

The Scientist and Engineer's Guide to Digital Signal Processing706

FIGURE 34-3
The Ones Scaling Test for the examples in Fig. 34-2. The Ones Scaling Test determines the fraction
of numbers having a leading digit of one, as the set of number is repeatedly multiplied by a constant
slightly greater than unity, such as 1.01. If the set of numbers follows Benford’s law, the fraction will
remain close to 0.301, as shown in (a). The fraction departing from 0.301 proves that the numbers do
not follow Benford’s law, such as in (b).

examples in Fig. 34-2. As expected, the Ones Scaling Test for the income
tax numbers is a relatively constant value around 30.1%, proving that it
follows Benford’s law very closely. As also expected, the Ones Scaling
Test for the random number generator shows wild fluctuations, as high
as 51% and as low as 12%.

An important point to notice in Fig. 34-3 is that the Ones Scaling Test is
periodic, repeating itself when the multiplication constant reaches a factor
of ten. In this example the period is 232 entries in the array, since 1.01232

. 10. Say you start with the number 3.12345 and multiply it by 10 to get
31.2345. These two numbers, 3.12345 and 31.2345, are exactly the same
when you are only concerned with the leading digit, and the entire pattern
repeats.

Pay particular attention to the operations in lines 400 to 430 of Table 34-
1. This is where the program determines the leading digit of the number
being evaluated. In line 310, one of the 10,000 numbers being tested is
t ransferred to the variable: TESTX . The leading digi t of TESTX ,
eventually held in the variable LD, is calculated in four steps. In line 400
we eliminate the sign of the number by taking the absolute value. Lines
410 and 420 repeatedly multiply or divide the number by a factor a ten,
as needed, until the number is between 1 and 9.999999. For instance,
line 410 tests the number for being less than 1. If it is, the number is
multiplied by 10, and the line is repeated. When the number finally
exceeds 1, the program moves to the next line. In line 430 we extract the
integer portion of the number, which is the leading digit. Make sure you
understand these steps; they are key to understanding what is really going
on in Benford’s law.

Chapter 34- Explaining Benford’s Law 707

100 ' INVESTIGATING BENFORD’S LAW: THE ONES SCALING TEST
110 '
120 ' 'DIMENSION THE ARRAYS
130 DIM OST(696) 'The "Ones Scaling Test" array.
140 DIM X(9999) 'The 10,000 numbers being tested.
150 '
160 FOR I = 0 TO 9999 'GENERATE 10,000 NUMBERS FOR TESTING
170 X(I) = RND ' RND returns a random number uniformly
180 NEXT I ' distributed between 0 and 1.
190 '
200 ' 'CALCULATE THE ONE SCALING TEST ARRAY
210 FOR K = 0 to 696 'Loop for each entry in the OST array.
220 NRONES = 0 'NRONES counts how many leading digits are one.
230 '
300 FOR I = 0 TO 9999 'Loop through all 10,000 numbers being tested.
310 TESTX = X(I) 'Load number being tested into variable, TESTX.
320 '
330 ' 'Find the leading digit, LD, of TESTX.
400 TESTX = ABS(TESTX)
410 IF TESTX < 1 THEN TESTX = TESTX * 10: GOTO 410
420 IF TESTX >= 10 THEN TESTX = TESTX / 10: GOTO 420
430 LD = INT(TESTX)
440 '
500 ' 'If leading digit is 1, increment counter.
510 IF LD = 1 THEN NRONES = NRONES + 1
520 NEXT I
530 '
540 OST(K) = NRONES / 10000 'Store the calculated fraction in the array.
550 '
600 FOR I = 0 TO 9999 'Multiply test numbers by 1.01, for next loop.
610 X(I) = X(I) * 1.01
620 NEXT I
630 '
700 NEXT K
710 ' 'The Ones Scaling Test now resides in OST().

TABLE 34-1

Writing Benford’s Law as a Convolution
The previous section describes the Ones Scaling Test in terms of statistics,
i.e., the analysis of actual numbers. Our task now is to rewrite this test
in terms of probability, the underlying mathematics that govern how the
numbers are generated.

As discussed in Chapter 2, the mathematical description of a process that
generates numbers is called the probability density function, or pdf. In
general, there are two ways that the shape of a particular pdf can be
known. First, we can understand the physical process that generates the
numbers. For instance, the random number generator of a computer falls
in this category. We know what the pdf is, because it was specifically
designed to have this pdf by the programer that developed the routine.

The Scientist and Engineer's Guide to Digital Signal Processing708

EQUATION 34-1
Correction needed when converting a
pdf from the linear to the base ten
logarithmic number line.

Second, we can estimate the pdf by examining the generated values. The
income tax return numbers are an example of this. It seems unlikely that
anyone could mathematically understand or predict the pdf of these
numbers; the processes involved are just too complicated. However, we
can take a large group of these numbers and form a histogram of their
values. This histogram gives us an estimate of the underlying pdf, but
isn’t exact because of random statistical variations. As the number of
samples in the histogram becomes larger, and the width of the bins is
made smaller, the accuracy of the estimate becomes better.

The statistical version of the Ones Scaling Test analyzes a group of
numbers. Moving into the world of probability, we will replace this group
of numbers with its probability density function. The pdf we will use as
an example is shown in Fig. 34-4a. The mathematical name we will give
this example curve is pdf(g). However, there is an important catch here;
we are representing this probability density function along the base-ten
logarithmic number line, rather than the conventional linear number line.
The position along the logarithmic axis will be denoted by the variable,
g. For instance, g = -2 corresponds to a value of 0.01 on the linear scale,
since log(0.01) = -2. Likewise, g = 0 corresponds to 1, g = 1 corresponds
to 10, and so on.

Many science and engineering graphs are presented with a logarithmic x-
axis, so this probably isn’t a new concept for you. However, a special
problem arises when converting a probability density function from the
linear to the logarithmic number line. The usual way of moving between
these domains is simple point-to-point mapping. That is, whatever value
is at 0.01 on the linear scale becomes the value at -2 on the log scale;
whatever value is at 10 on the linear scale becomes the value at 1 on the
log scale, and so on. However, the pdf has a special property that must
be taken into account. For instance, suppose we know the shape of a pdf
and want to determine how many of the numbers it generates are greater
than 3 but less than 4. From basic probability, this fraction is equal to
the area under the curve between the values of 3 and 4. Now look at
what happens in a point-to-point mapping. The locations of 3 and 4 on
the linear scale become log(3) = 0.477 and log(4) = 0.602, respectively,
on the log scale. That is, the distance between the two points is 1.00 on
the linear scale, but only 0.125 on the logarithmic number line. This
changes the area under the curve between the two points, which is simply
not acceptable for a pdf.

Fortunately, this is quite simple to correct. First, transfer the pdf from
the linear scale to the log scale by using a point-to-point mapping.
Second, multiply this mapped curve by the following exponential function
to correct the area problem:

Chapter 34- Explaining Benford’s Law 709

There is also another way to look at this issue. A histogram is created for
a group of number by breaking the linear number line into equally spaced
bins. But how would this histogram be created on the logarithmic scale?
There are two choices. First, you could calculate the histogram on the
linear scale, and then transfer the value of the bins to the log scale.
However, the equally spaced bins on the linear scale become unequally
spaced on the log scale, and Eq. 34-1 would be needed as a correction.
Second, you could break the logarithmic number line in equally spaced
bins, and directly f i l l up these bins with the data. This procedure
accurately estimates the pdf on the log scale without any additional
corrections.

Now back to Fig. 34-4a. The example shown is a Gaussian (normal)
curve with a mean of -0.25 and a standard deviation of 0.25, measured on
the base ten logarithmic number line. Since it is a normal distribution
when displayed on the logarithmic scale, it is given the special name: log-
normal. When this pdf is displayed on the linear scale it looks entirely
different, as we will see shortly. About 95% of the numbers generated
from a normal distribution lie within +/- 2 standard deviations of the
mean , o r in th i s example , f rom -0 .75 to 0 .250, on the log sca le .
Converting back to the linear scale, this particular random process will
generate 95% of its samples between 10-0.75 and 100.25, that is, between
0.178 and 1.778.

The important point is that this is a single process that generates
numbers, but we can look at those numbers on either the linear or the
logarithmic scale. For instance, on the linear scale the numbers might
look like: 1.2034, 0.3456, 0.9643, 1.8567, and so on. On the log scale
these same numbers would be log(1.2034) = 0.0804, -0.4614, -0.0158,
0.2687, respectively. When we ask if this distribution follows Benford’s
law, we are referring to the numbers on the linear scale. That is, we are
looking at the leading digits of 1.2034, 0.3456, 0.9643, 1.8567, etc.
However, to understand why Benford’s law is being followed or not
followed, we will find it necessary to work with their logari thmic
counterparts.

The next step is to determine what fraction of samples produced by this
pdf have 1 as their leading digit. On the linear number line there are only
certain regions where a leading digit of 1 is produced, such as: 0.1 to
0.199999; 1 to 1.99999; 10 to 19.9999; and so on. The corresponding
locations on the base ten log scale are: -1.000 to -0.699; 0.000 to 0.301;
and 1.000 to 1.301, respectively. In Fig. 34-4b these regions have been
marked with a value of one, while all other sections of the logarithmic
number line are given a value of zero. This allows the waveform in Fig.
(b) to be used as a sampling function, and therefore we will call it, sf(g).

Here is how it works. We multiply pdf(g) by sf(g) and display the result
in Fig. (c). As shown, this isolates those sections of the pdf where 1 is
the leading digi t . We then f ind the total area of these regions by
integrating from negative to positive infinity. Now you can see one

The Scientist and Engineer's Guide to Digital Signal Processing710

EQUATION 34-2
Calculating the Ones Scaling Test from
the probability density function, by use
of a scaling function. This equation also
appears in Fig. 34i.

reason this analysis is carried out on the logarithmic number line: the
sampling function is a simple periodic pattern of pulses. In comparison,
think about how this sampling function would appear on the linear scale–
far too complicated to even consider.

The above procedure is expressed by the equation in (d), which calculates
the fraction of number produced by the distribution with 1 as the leading
digit. However, as before, even if this number is exactly 0.301, it would
not be conclusive proof that the pdf follows Benford’s law. To show this
we must conduct the Ones Scaling Test. That is, we will adjust pdf(g)
such that the numbers it produces are multiplied by a constant that is
slightly above unity. We then recalculate the fraction of ones in the
leading digit position, and repeat the process many times.

Here we find a second reason to use the logarithmic scale: multiplication
on the linear number line becomes addition in the logarithmic domain. On
the linear scale we calculate: n x 1.01, while on the logarithmic scale this
becomes: log(n) + log(1.01). In other words, on the logarithmic number
line we scale the distribution by adding a small constant to each number
that is produced. This has the effect of shifting the entire pdf(g) curve to
the right a small distance, which we represent by the variable, s. This is
shown in Fig. (f). Mathematically, shifting the signal pdf(g) to the right
a distance, s, is written pdf(g-s).

The sampling function in Fig. (g) is the same as before; however, it now
isolates a different section of the pdf, shown in (h). The integration also
goes on as before, with the addition of the shift, s, represented in the
equation. In short , we have derived an equation that provides the
probability that a number produced by pdf(g) will have 1 in the leading
digit position, for any scaling factor, s. As before, we will call this the
Ones Scaling Test, and denote it by ost(s). This equation is given in (i),
and reprinted below:

The signal ost(s) is nothing more than a continuous version of the graphs
shown in Fig. 34-3. If pdf(g) follows Benford’s law, then ost(s) will be
approximately a constant value of 0.301. If ost(s) deviates from this key
value, Benford’s law is not being followed. For instance, we can easily
see from Fig. (e) that the example pdf in (a) does not follow the law.

These last steps and Eq. 34-2 should look very familiar: shift, multiply,
integrate. That’s convolution! Comparing Eq. 34-2 with the definition

Chapter 34- Explaining Benford’s Law 711

FIGURE 34-4
Expressing Benford’s law as a convolution. Figures a-e show how to calculate the probability that
a sample produced by pdf(g) will have a leading digit of 1. Figures f-i extend this calculation into
the complete Ones Scaling Test. This shows that the Ones Scaling Test, ost(g), is equal to the
convolution of the probability density function, pdf(g), and the scaling function, sf(g).

EQUATION 34-3
Benford’s law written as a convolution.
The negative sign in pdf(-g) is an artifact
of how the equation is derived and is not
important

of convolution (Eq. 13-1 in chapter 13), we have succeeded in expressing
Benford’s law as a straightforward linear system:

 There are two small issues that need to be mentioned in this equation.
First, the negative sign in pdf(-g). As you recall, convolution requires
that one of the two original signals be flipped left-or-right before the
shift, multiply, integrate operations. This is needed for convolution to
properly represent linear system theory. On the other hand, this flip not
needed in examining Benford’s law; it’s just a nuisance. Nevertheless,
we need to account for it somewhere. In Eq. 34-3 we account for it by

The Scientist and Engineer's Guide to Digital Signal Processing712

EQUATION 34-4
The Fourier transform converts the
difficult operation of convolution
into a simple multiplication.

pre-flipping pdf(g) by making it pdf(-g). This pre-flip cancels the flip
inherent in convolution, keeping the math straight. However, the whole
issue of using pdf(-g) instead of pdf(g) is unimportant for Benford’s law;
it disappears completely in the next step.

The second small issue is a signal processing notation, the elimination of
the variable, s. In Fig. 3-4 we write pdf(g) and sf(g), meaning that these
two signals have the logarithmic number l ine as their independent
variable, g. However, the Ones Scaling Test is written ost(s), where s is
a shift along the logarithmic number line. This distinction between g and
s is needed in the derivation to understand how the three signals are
related. However, when we get to the shorthand notation of Eq. 34-3, we
eliminate s by changing ost(s) to ost(g). This places the three signals,
pdf(g), sf(g) and ost(g) all on equal footing, each running along the
logarithmic number line.

Solving in the Frequency Domain

Figure 34-5 is what we have been working toward, a systematic way of
understanding the operation of Benford’s law. The left three signals, the
logarithmic domain, are pdf(g), sf(g) and ost(g). The particular examples
in this figure are the same ones we used previously (i.e., Fig. 34-4).
These three signals are related by convolution (Eq. 34-3), a mathematical
operation that is not especially easy to deal with. To overcome this we
move the problem into the frequency domain by taking the Fourier
transform of each signal. Using standard DSP notation, we will represent
the Fourier transforms of pdf(g), sf(g), and ost(g), as PDF(f), SF(f), and
OST(f), respectively. These are shown on the right side of Fig. 34-5.

By moving the problem into the frequency domain we replace the
d i f f i cu l t opera t ion o f convo lu t ion wi th the s imple opera t ion o f
multiplication. That is, the six signals in Fig. 34-5 are related as follows:

A small detail: The Fourier transform of pdf(g) is PDF(f), while the
Fourier transform of pdf(-g) is PDF*(f). The star in PDF*(f) means it is
the complex conjugate of PDF(f), indicating that all of the phase values
are changed in sign. However, notice that Fig. 34-5 only shows the
magnitudes; we are completely ignoring the phases. The reason for this
is simple– the phase does not contain information we are interested in for
this particular problem. This makes it unimportant if we use pdf(g) vs.
pdf(-g), or PDF(f) vs. PDF*(f).

Chapter 34- Explaining Benford’s Law 713

Notice how these signals represent the key components of Benford’s law.
First, there is a group of numbers or a probability density function that
can generate a group of numbers. This is represented by pdf(g) and
PDF(f). Second, we modify each number in this group or distribution by
taking its leading digit. This action is represented by convolving pdf(g)
with sf(g), or by multiplying PDF(f) by SF(f). Third, we observe that the
leading digits often have an unusual property. This unusual characteristic
is seen in ost(g) and OST(f).

All six of these signals have specific characteristics that are fixed by the
definition of the problem. For instance, the value at f=0 in the frequency
domain always corresponds to the average value of the signal in the
logarithmic domain. In particular, this means that PDF(0) will always be
equal to one, since the area under pdf(g) is unity. In this example we are
using a Gaussian curve for pdf(g). One of the interesting properties of the
Gaussian is that its Fourier Transform is also a Gaussian, one-sided in
this case, as shown in Fig. (d). These are related by Ff = 1/(2BFg).

Since sf(g) is periodic with a period of one, SF(f) consists of a series of
spikes at f = 0, 1, 2, 3, ..., with all other values being zero. This is a
standard transform pair, given by Fig. 13-10 in chapter 13. The zeroth
spike, SF(0), is the average value of sf(g). This is equal to the fraction of
the time that the signal is in the high state, or log(2) - log(1) = 0.301.
The remaining spikes have amplitudes: SF(1) = 0.516, SF(2) = 0.302,
SF(3) = 0.064, and so on, as calculated from the above reference.

Lastly we come to ost(g) and OST(f). If Benford’s law is being followed,
ost(g) will be a flat line with a value of 0.301. This corresponds to
OST(0) = 0.301, with all other values in OST(f) being zero. However, if
Benford’s law is not being followed, then ost(g) will be periodic with a
period of one, as show in Fig. (c). Therefore, OST(f) will be a series of
spikes at f = 0, 1, 2, 3, ..., with the space between being zero.

Solving Mystery #1

There are two main mysteries in Benford’s law. The first is this: Where
does the logarithmic pattern of leading digits come from? Is it some hidden
property of Nature? We know that ost(g) is a constant value of 0.301 if
Benford’s law is being followed. Using Fig. 34-5 we can find where this
number originates. By definition, the average value of ost(g) is OST(0);
likewise, the average value of sf(g) is SF(0). However, OST(0) is always
equal to SF(0), since PDF(0) has a constant value of one. That is, the
average value of ost(g) is equal to the average value of sf(g), and does not
depend on the characteristics of pdf(g). As shown above, the average
value of sf(g) is log(2) - log(1) = 0.301, which dictates that the average
value of ost(g) is also 0.301. If we repeated this procedure looking for
2 as the leading digit, the average value of sf(g) would be log(3) - log(2)
= 0.176. The remaining digits, 3-9, are handled in the same way. In
answer to our question, the logarithmic pattern of leading digits derives

The Scientist and Engineer's Guide to Digital Signal Processing714

solely from sf(g) and the convolution, and not at all from pdf(g). In short,
the logarithmic pattern of leading digits comes from the manipulation
of the data, and has nothing to do with patterns in the numbers being
investigated.

This result can be understood in a simple way, showing how Benford's
law resembles a magician’s slight of hand. Say you tabulate a list of
numbers appearing in a newspaper. You tally the histogram of leading
digits and find that they follow the logarithmic pattern. You then wonder
how this pattern could be hidden in the numbers. The key to this is
realizing that something has been concealed— a big something.

Recall the program in Table 34-1, where lines 400-430 extract the leading
digit of each number. This is done by multiplying or dividing each
number repeatedly by a factor of ten until it is between 1 and 9.999999.
This manipulation of the data is far from trivial or benign. You don't
notice this procedure when manually tabulating the numbers because your
brain is so efficient. But look at what this manipulation involves. For
example, successive numbers might be multiplied by: 0.01, 100, 0.1, 1,
10, 1000, 0.001, and so on.

This changes the numbers in a pattern based on powers of ten, i.e., the
anti-logarithm. You then examine the processed data and marvel that it
looks logarithmic. Not realizing that your brain has secretly manipulated
the data, you attribute this logarithmic pattern to some hidden feature of
the original numbers. Voila! The mystery of Benford's law!

Solving Mystery #2

The second mystery is: Why does one set of numbers follow Benford’s law,
while another set of numbers does not? Again we can answer this
question by examining Fig. 34-5. Our goal is to find the characteristics
of pdf(g) that result in ost(g) having a constant value of 0.301. As shown
above, the average value of ost(g) will always be 0.301, regardless if
Benford’s law is being followed or not. So our only concern is whether
ost(g) has oscillations, or is a flat line.

For ost(g) to be a flat line it must have no sinusoidal components. In the
frequency domain this means that OST(f) must be equal to zero at all
frequencies above f=0. However, OST(f) is equal to SF(f) × PSF(f), and
SF(f) is nonzero only at the integer frequencies, f = 0, 1, 2, 3, 4, and so
on. Therefore, ost(g) will be flat, if and only if, PSF(f) has a value of
zero at the integer frequencies. The particular example in Fig. 34-5
clearly does not meet this condition, and therefore does not follow
Benford’s law. In Fig. (d), PDF(1) has a value of 0.349. Multiplying this
by the value of SF(1) = 0.516, we find OST(1) = 0.18. Therefore, ost(g)
has a sinusoidal component with a period of one, and an amplitude of
0.18. This is a key result, describing what criterion a distribution must

Chapter 34- Explaining Benford’s Law 715

FIGURE 34-5
Benford's law analyzed in the frequency domain. In the logarithmic domain Benford's law is
represented as a convolution, ost(g) = sf(g) t pdf(-g). In the frequency domain this becomes the
much simpler operation of multiplication, OST(f) = SF(f) × PDF*(f).

meet to follow Benford’s law. This is important enough that we will
express it as a theorem.

Benford’s Law Compliance Theorem
 Let P be a random process generating numbers in base B on
the linear number line, pdf(g) its probability density function
expressed on the base B logarithmic number line, and PDF(f) the
Fourier transform of pdf(g). The numbers generated by P will
follow Benford’s law, if and only if, PDF(f) = 0 at all nonzero
integer frequencies.

Our next step is to examine what type of distributions comply with this
theorem. There are two distinct ways that PDF(f) can have a value of
zero at the nonzero integer frequencies. As shown in Fig. 34-6b, PDF(f)
can be oscillatory, periodically hitting zero at frequencies that include the
integers. In the logarithmic domain this corresponds to two or more
discontinuities spaced an integer distance apart, such as sharp edges or
abrupt changes in the slope. Figure (a) shows an example of this, a
rectangular pulse with edges at -1 and 1. These discontinuities can easily

The Scientist and Engineer's Guide to Digital Signal Processing716

be created by human manipulation, but seldom occur in natural or
unforced processes. This type of distribution does follow Benford’s law,
but it is mainly just a footnote, not the bulk of the mystery.

Figure (d) shows a far more important situation, where PDF(f) smoothly
decreases in value with increasing frequency. This behavior is more than
common, it is the rule. It is what you would find for most any set of
random numbers you examine. The key parameter we want to examine is
how fast the curve drops to zero. For instance, the curve in Fig. 34-6d
drops so rapidly that it has a negligible value at f=1 and all higher
frequencies. Therefore, this distribution will follow Benford's law to a
very high degree. Now compare this with Fig. 34-5d, an example where
PDF(f) drops much slower. Since it has a significant value at f=1, this
distribution follows Benford's law very poorly.

Now look at pdf(g) for the above two examples, Figs. 34-6c and 34-5a.
Both of these are normal distributions on the logarithmic scale; the only
difference between them is their width. A key property of the Fourier
transform is the compression/expansion between the domains. If you
need to refresh your memory, look at Figure 10-12 in chapter 10. In
short, if the signal in one domain is made narrower, the signal in the
other domain will become wider, and vice versa. For example, in Fig.
34-5a the standard deviation of pdf(g) is Fg = 0.25. This results in PDF(f)
having a standard deviation of: Ff = 1/(2BFg) = 0.637. In Fig. 34-6 the
log domain is twice as wide, Fg = 0.50, making the frequency domain
twice as narrow, Ff = 0.318. In these figures the width of the distribution
is indicated as 2F, that is, -F to F. This is common, but certainly not the
only way to measure the width.

In short, if pdf(g) is narrow, then PDF(f) will be wide. This results in
PDF(f) having a significant amplitude at f=1, and possibly at higher
frequencies. Therefore, the distribution will not follow Benford's law.
However, if pdf(g) is wide, then PDF(f) will be narrow. This results in
PDF(f) falling near zero before f=1, and Benford's law is followed.

A key issue is how wide or narrow pdf(g) needs to be to toggle between
the two behaviors. To follow Benford law, PDF(f) must drop to near zero
by f=1. Further, f=1 in the frequency domain corresponds to a sinusoid
with a period of one on the log scale, making this the critical distance.
This gives us the answer to our question. With a few caveats, Benford's
law is followed by distributions that are wide compared with unit
distance along the logarithmic scale. Likewise, the law is not followed
by distributions that are narrow compared with unit distance.

To be clear, one exception occurs when PDF(f) is oscillatory such as in
Fig. 34-6b. The other exception is when PDF(f) does not smoothly
decreases in value with increasing frequency. Also, the definition of
“width” used here is slightly fuzzy. We will improve upon this in the next
section. However, these are minor issues and details; do not let them
distract from your understanding of the mainstream phenomenon.

Chapter 34- Explaining Benford’s Law 717

FIGURE 34-6
Two ways of obeying Benford's law. The Benford’s Law Compliance Theorem shows that a
distribution will obey the law only if PDF(f) has a value of zero at f = 1, 2, 3, This can be
achieved in two different ways. In (b) the oscillations hit zero at these frequencies, while in (d)
the curve has dropped to zero before f=1.

More on Following Benford’s law

This last result is very surprising; the mystery of Benford’s law turns out
to be nothing more than distribution width. Figure 34-7 demonstrates this
using our previous examples. Figures (a) and (c) are the histograms of
the income tax return and the RNG numbers, respectively, on the
logarithmic scale. Figure (b) and (d) are their Fourier Transforms. The
Benford’s Law Compliance Theorem te l l s us that (b) wil l fol low
Benford’s law very closely, while (d) will follow it very poorly. That is,
PDF(f) falls to near zero before f=1 for the income tax numbers, but does
not for the RNG numbers. The next step of this is less rigorous, but still
perfectly clear. Figure (b) falls to zero quickly because (a) is broad.
Likewise, (d) falls to zero more slowly because (c) is narrow.

This also tells us something about the magic trick. If the distribution is
wide compared with unit distance on the log axis, it means that the spread
in the set of numbers being examined is much greater than ten . For
instance, look back at the income tax numbers shown in Fig. 34-2a. The
largest numbers in this set are about a million times greater in value than
the smallest numbers. This extensive spread is a key part of stamping the
logarithmic pattern into the data. That is, 543,923,100 must be divided by
100,000,000 to place it between 1 and 9.99999, while 1,221 only needs to
be divided by 1,000. In other words, different numbers are being treated
differently, all according to an anti-logarithmic pattern.

The Scientist and Engineer's Guide to Digital Signal Processing718

Now look at the RNG numbers in Fig. 34-2, a group that does not obey
Benford’s law. The largest numbers in this set are about four times the
smallest numbers (measured from -F to +F). That is, they are grouped
relatively close together in value. When we extract the leading digits
from these numbers, most of them are treated exactly the same. For
instance, both 7.844026 and 1.230605 are divided by 1 to place them
between 1 and 9.999999. Likewise, numbers clustered around 5,000
would all be divided by 1,000 to extract the leading digits. Since the vast
majority of the numbers are being treated the same, or nearly the same,
the distortion of the data is relatively weak. That is, the logarithmic
pattern cannot be introduced into the data, and the magic trick fails.

How does Benford’s law behave in other bases? Suppose you repeat the
previous derivation in base 4 instead of base 10. The base 4 logarithmic
number line is used and the Benford’s Law Compliance Theorem still
holds. The difference comes in when we compare the width of our test
distribution with one unit of distance on the logarithmic scale. One unit
of distance in base 4 is only log10(4) = 0.602 the length of one unit in
base 10, making it easier for the distribution to comply with Benford’s
law. In terms of the magic trick, the spread in the numbers being
examined only needs to be much greater than four, rather than ten. In the
common case where PDF(f) smoothly decreases, Benford’s law will
always be followed better when converted to a lower base, and worse if
converted to a higher base. For instance, the income tax numbers will not
follow Benford’s law if converted to base 10,000 or above (making the
unit distance on the log scale four times greater). Likewise, the RND
number will follow Benford’s law if converted to base 2 (shortening the
unit distance to log10(2) = 0.301).

A note for advanced readers: You may have noticed a problem with this
last statement, that is: all numbers in base 2 have a leading digit of 1.
However, a more sophisticated definition of Benford’s law can be used
to eliminate issues of this sort. The leading digit of a number can be
found by repeatedly multiplying/dividing the number by ten until it is
between 1 and 9.99999, and then taking the integer portion. The advanced
method stops after the first step, and directly looks at the pdf of the
numbers running between 1 and 9.99999. We will call these the modified
numbers. If Benford’s law is being followed, a(n) = k/n, where a(n) is
the probability density function of the modified numbers on the linear
scale, and k is a constant providing unity area under the pdf curve. If
needed for some purpose, we can find the fraction of numbers that have
a leading digit of 1 by integrating a(n) from 1 to 2. Since the integral of
k/n is the logarithm, if Benford’s law is being followed this fraction is
given by: log(2) - log(1) = 0.301. That is, we can easily move from the
advanced representation to the simpler leading-digit definition.

This “k/n” form of Benford’s law can be also derived from the method of
Fig. 34-5. The fraction of the modified numbers that are greater than p
but less than q is found by integrating a(n) between p and q. Further, this
fraction will remain a constant under the scaling test if Benford’s law is

Chapter 34- Explaining Benford’s Law 719

FIGURE 34-7
Two examples for understanding Benford's law. A distribution will follow Benford’s law only if PDF(f)
falls to near zero before f=1 (excluding the oscillatory case). In turn, this requires that pdf(g) be broad
compared with one unit of distance on the logarithmic scale. This explains why the income tax numbers
follow the law, while the RNG numbers do not.

EQUATION 34-5
Derivation of k/n form of
Benford’s law.

 being followed. However, this value is also equal to the average value of
the appropriate scaling function. The logic here is the same used to show
that the average value of ost(g) is equal to the average value of sf(g) in
“Solving Mystery #1.” These two factors become the left and right sides
of the following equation, respectively:

 Solving this equation results in Benford’s law, i.e., a(n) = k/n,

Analysis of the Log-Normal Distribution

We have looked at two log-normal distributions, one having a standard
deviation of 0.25 and the other a standard deviation of 0.5. Surprisingly,
one follows Benford's law extremely well, while the other does not follow
it at all. In this section we will examine the analytical transition between
these two behaviors for this particular distribution.

As shown in Fig. 34-5d, we can use the value of OST(1) as a measure of
how well Benford's law is followed. Our goal is to derive an equation
relating the standard deviation of psf(g) with the value of OST(1), that is,
relating the width of the distribution with its compliance with Benford's
law. Notice that this has rigorously defined the problem (removed the

The Scientist and Engineer's Guide to Digital Signal Processing720

EQUATION 34-5
Compliance of the log-normal
distribution with Benford’s law.

fuzziness) by specifying three things, the shape of the distribution, how
we are measuring compliance with Benford's law, and how we are
defining the distribution width.

The next step is to write the equation for PSF(f), a one-sided Gaussian
curve, having a value of zero at f=0, and a standard deviation of Ff:

 Next we plug in the conversion from the logarithmic-domain standard
deviation, Ff = 1/(2BFg), and evaluate the expression at f=1:

Lastly, we use OST(1) = SF(1) × PSF(1), where SF(1) = 0.516, to reach
the final equation:

As illustrated in Fig. 34-5c, the highest value in ost(g) is OST(1) plus
0.301, and the lowest value is 0.301 - OST(1). These highest and lowest
values are graphed in Fig. 34-8a. As shown, when the 2F width of the
distribution is 0.5 (as in Fig 34-5a), the Ones Scaling Test will have
values as high as 45% and as low as 16%, a very poor match to Benford’s
law. However, doubling the width to 2F = 1.0 results in a high to low
fluctuation of less than 1%, a good match.

There are a number of interesting details in this example. First, notice
how rapidly the transition occurs between following and not following
Benford’s law. For instance, two cases are indicated by A and B in Fig.
34-8, with 2F = 0.60 and 2F = 0.90, respectively. In Fig. (b) these are
shown on the linear scale. Now imagine that you are a researcher trying
to understand Benford’s law, before reading this chapter. Even though
these two distributions appear very similar, one follows Benford’s law
very well, and the other doesn’t follow it at all! This gives you an idea
of the frustration Benford’s law has produced.

Second, even though the curves in Fig. (a) move together extremely
rapidly, they never actually meet (excluding infinity which isn’t allowed
for a pdf). For instance, from Eq. 34-5 a log-normal distribution with a
standard deviation of three will follow Benford’s law within about 1 part
in 100,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000. That’s pretty close! In
fact, you could not statistically detect this error even with a billion
computers, each generating a billion numbers each second, since the
beginning of the universe.

Chapter 34- Explaining Benford’s Law 721

FIGURE 34-8
Analyzing the log-normal distribution for complying with Benford’s law. Even a slight difference
in the width of this distribution, shown by A and B, can drastically change its following the law.

Nevertheless, this is a finite error, and has caused frustration of its own.
Again imagine that you are a researcher trying to understand Benford’s
law. You proceed by writing down some equation describing when
Benford’s law will be followed, and then you solve it. The answer you
find is— Never! There is no distribution (excluding the oscillatory case
of Fig. 34-6b) that follows Benford’s law exactly. An equation doesn’t
give you what is close, only what is equal. In other words, you find no
understanding, just more mystery.

Lastly, the log-normal distribution is more than just an example, it is an
important case where Benford’s law arises in Nature. The reason for this
is one of the most powerful driving forces in statistics, the Central Limit
Theorem (CLT). As discussed in chapter 2, the CLT describes that adding
many random numbers produces a normal distribution. This accounts for
the normal distribution being so commonly observed in science and
engineering. However, if a group of random numbers are multiplied, the
result will be a normal distribution on the logarithmic scale. Accordingly,
the log-normal distribution is also commonly found in Nature. This is
probably the single most important reason that some distributions are
found to follow Benford’s law while others do not. Normal distributions
are not wide enough to follow the law. On the other hand, broad log-
normal distributions follow it to a very high degree.

Want to generate numbers that follow Benford’s law for your own
experiments? You can take advantage of the CLT. Most computer
languages have a random number generator that produces values
uniformly distributed between 0 and 1. Call this function multiple times
and multiply the numbers. It can be shown that PDF(1) = 0.344 for the
uniform distribution, and therefore the product of these numbers follows
Benford’s law according to OST(1) = 51.6% × 0.344", where " is how
many random numbers are multiplied. For instance, ten multiplications
produce a random number that comes from a log-normal distribution with

The Scientist and Engineer's Guide to Digital Signal Processing722

a standard deviation of approximately 0.75. This corresponds to OST(1)
= 0.0012%, a very good fit to Benford’s law.

If you do try some of these experiments, remember that the statistical
variation (noise) on N random events is about SQRT(N). For instance,
suppose you generate 1 million numbers in your computer and count how
many have 1 as the leading digit. If Benford’s law is being followed, this
number will be about 301,000. However, when you repeat the experiment
several times you find this changes randomly by about 1,000 numbers,
since SQRT(1,000,000) = 1,000. In other words, using 1 million numbers
allows you to conclude that the percentage of numbers with one as the
leading digit is about 30.1% +/- 0.1%. As another example, the ripple in
Fig. 34-3a is a result of using 14,414 samples. For a more precise
measurement you need more numbers, and it grows very quickly. For
instance, to detect the error of OST(1) = 0.0012% (the above example),
you will need in excess of a billion numbers.

 The Power of Signal Processing

Benford’s law has never been viewed as a major mathematical problem,
only a minor mystery. Nevertheless, many bright and creative people
have spent time trying to understand it. The primary goal of this chapter
has been to demonstrate the power of DSP in nontraditional applications.
In the case of Benford’s law this power is clear; signal processing has
succeeded where other mathematical techniques have failed.

Nowhere is this more apparent than a review article published in 1976 by
mathematician Ralph Raimi. He examined the many approaches in
explicit mathematical detail, and his paper has become a landmark in the
history of this problem. Buried in the detailed math, Raimi makes the
brief comment: “...many writers ... have said vaguely that Benford’s law
holds better when the distribution ... covers several orders of magnitude.”
As we now know, this is the root of the phenomenon. In one of the most
colorful events of this history, a small error in logic prompted Raimi to
argue that this could not be correct. [Specifically, scaling a distribution
does not change how many orders of magnitude it covers.] While this
slight misdirection probably made no difference, it shows just how little
success had been achieved by traditional mathematics. An understanding
of the basic operation of Benford’s law was nowhere on the horizon.

Lastly, this discussion would be incomplete without mentioning the
practical applications of Benford’s law. Next time you file your income
tax return or other f inancial report , consider what happens to the
distribution of leading digits if you fabricate some of the numbers. I’m
not going to help you cheat, so I won’t give the details away. Simply
put, the numbers you make up will probably not follow Benford’s law,
making your fraudulent report distinguishable from an accurate one. I’ll
let you imagine who might be interested in this.

