/*********************************************************************/ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ #include #include #include "common.h" #if !defined(CONJ) && !defined(XCONJ) #define MYAXPY AXPYU_K #define MYDOT DOTU_K #elif defined(CONJ) && !defined(XCONJ) #define MYAXPY AXPYC_K #define MYDOT DOTC_K #elif !defined(CONJ) && defined(XCONJ) #define MYAXPY AXPYU_K #define MYDOT DOTC_K #else #define MYAXPY AXPYC_K #define MYDOT DOTU_K #endif static int gbmv_kernel(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *dummy1, FLOAT *buffer, BLASLONG pos){ FLOAT *a, *x, *y; BLASLONG lda, incx; BLASLONG n_from, n_to; BLASLONG i, offset_l, offset_u, uu, ll, ku, kl; #ifdef TRANSA #ifndef COMPLEX FLOAT result; #else OPENBLAS_COMPLEX_FLOAT result; #endif #endif a = (FLOAT *)args -> a; x = (FLOAT *)args -> b; y = (FLOAT *)args -> c; lda = args -> lda; incx = args -> ldb; ku = args -> ldc; kl = args -> ldd; n_from = 0; n_to = args -> n; if (range_m) y += *range_m * COMPSIZE; if (range_n) { n_from = *(range_n + 0); n_to = *(range_n + 1); a += n_from * lda * COMPSIZE; } n_to = MIN(n_to, args -> m + ku); #ifdef TRANSA if (incx != 1) { COPY_K(args -> m, x, incx, buffer, 1); x = buffer; // buffer += ((COMPSIZE * args -> m + 1023) & ~1023); } #endif SCAL_K( #ifndef TRANSA args -> m, #else args -> n, #endif 0, 0, ZERO, #ifdef COMPLEX ZERO, #endif y, 1, NULL, 0, NULL, 0); offset_u = ku - n_from; offset_l = ku - n_from + args -> m; #ifndef TRANSA x += n_from * incx * COMPSIZE; y -= offset_u * COMPSIZE; #else x -= offset_u * COMPSIZE; y += n_from * COMPSIZE; #endif for (i = n_from; i < n_to; i++) { uu = MAX(offset_u, 0); ll = MIN(offset_l, ku + kl + 1); #ifndef TRANSA MYAXPY(ll - uu, 0, 0, *(x + 0), #ifdef COMPLEX #ifndef XCONJ *(x + 1), #else -*(x + 1), #endif #endif a + uu * COMPSIZE, 1, y + uu * COMPSIZE, 1, NULL, 0); x += incx * COMPSIZE; #else result = MYDOT(ll - uu, a + uu * COMPSIZE, 1, x + uu * COMPSIZE, 1); #ifndef COMPLEX *y = result; #else *(y + 0) += CREAL(result); #ifndef XCONJ *(y + 1) += CIMAG(result); #else *(y + 1) -= CIMAG(result); #endif #endif x += COMPSIZE; #endif y += COMPSIZE; offset_u --; offset_l --; a += lda * COMPSIZE; } return 0; } #ifndef COMPLEX int CNAME(BLASLONG m, BLASLONG n, BLASLONG ku, BLASLONG kl, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){ #else int CNAME(BLASLONG m, BLASLONG n, BLASLONG ku, BLASLONG kl, FLOAT *alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){ #endif blas_arg_t args; blas_queue_t queue[MAX_CPU_NUMBER]; BLASLONG range_m[MAX_CPU_NUMBER + 1]; BLASLONG range_n[MAX_CPU_NUMBER + 1]; BLASLONG width, i, num_cpu; #ifdef SMP #ifndef COMPLEX #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_REAL; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_REAL; #else int mode = BLAS_SINGLE | BLAS_REAL; #endif #else #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_COMPLEX; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_COMPLEX; #else int mode = BLAS_SINGLE | BLAS_COMPLEX; #endif #endif #endif args.m = m; args.n = n; args.a = (void *)a; args.b = (void *)x; args.c = (void *)buffer; args.lda = lda; args.ldb = incx; args.ldc = ku; args.ldd = kl; num_cpu = 0; range_n[0] = 0; i = n; while (i > 0){ width = blas_quickdivide(i + nthreads - num_cpu - 1, nthreads - num_cpu); if (width < 4) width = 4; if (i < width) width = i; range_n[num_cpu + 1] = range_n[num_cpu] + width; #ifndef TRANSA range_m[num_cpu] = num_cpu * ((m + 15) & ~15); if (range_m[num_cpu] > m * num_cpu) range_m[num_cpu] = m * num_cpu; #else range_m[num_cpu] = num_cpu * ((n + 15) & ~15); if (range_m[num_cpu] > n * num_cpu) range_m[num_cpu] = n * num_cpu; #endif queue[num_cpu].mode = mode; queue[num_cpu].routine = gbmv_kernel; queue[num_cpu].args = &args; queue[num_cpu].range_m = &range_m[num_cpu]; queue[num_cpu].range_n = &range_n[num_cpu]; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i -= width; } if (num_cpu) { queue[0].sa = NULL; #ifndef TRANSA queue[0].sb = buffer + num_cpu * (((m + 255) & ~255) + 16) * COMPSIZE; #else queue[0].sb = buffer + num_cpu * (((n + 255) & ~255) + 16) * COMPSIZE; #endif queue[num_cpu - 1].next = NULL; exec_blas(num_cpu, queue); } for (i = 1; i < num_cpu; i ++) { AXPYU_K( #ifndef TRANSA m, #else n, #endif 0, 0, #ifndef COMPLEX ONE, #else ONE, ZERO, #endif buffer + range_m[i] * COMPSIZE, 1, buffer, 1, NULL, 0); } AXPYU_K( #ifndef TRANSA m, #else n, #endif 0, 0, #ifndef COMPLEX alpha, #else alpha[0], alpha[1], #endif buffer, 1, y, incy, NULL, 0); return 0; }