/*********************************************************************/ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ #include #include #include "common.h" #if !defined(HEMV) && !defined(HEMVREV) #define MYAXPY AXPYU_K #define MYDOT DOTU_K #elif defined HEMV #define MYAXPY AXPYU_K #define MYDOT DOTC_K #else #define MYAXPY AXPYC_K #define MYDOT DOTU_K #endif static int sbmv_kernel(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *dummy1, FLOAT *buffer, BLASLONG pos){ FLOAT *a, *x, *y; BLASLONG lda, incx; BLASLONG n, k, n_from, n_to; BLASLONG i, length; #ifndef COMPLEX FLOAT result; #else OPENBLAS_COMPLEX_FLOAT result; #endif a = (FLOAT *)args -> a; x = (FLOAT *)args -> b; lda = args -> lda; incx = args -> ldb; n = args -> n; k = args -> k; n_from = 0; n_to = n; //Use y as each thread's n* COMPSIZE elements in sb buffer y = buffer; buffer += ((COMPSIZE * n + 1023) & ~1023); if (range_m) { n_from = *(range_m + 0); n_to = *(range_m + 1); a += n_from * lda * COMPSIZE; } if (incx != 1) { COPY_K(n, x, incx, buffer, 1); x = buffer; // buffer += ((COMPSIZE * n + 1023) & ~1023); } SCAL_K(n, 0, 0, ZERO, #ifdef COMPLEX ZERO, #endif y, 1, NULL, 0, NULL, 0); for (i = n_from; i < n_to; i++) { #ifndef LOWER length = i; if (length > k) length = k; MYAXPY(length, 0, 0, *(x + i * COMPSIZE + 0), #ifdef COMPLEX *(x + i * COMPSIZE + 1), #endif a + (k - length) * COMPSIZE, 1, y + (i - length) * COMPSIZE, 1, NULL, 0); #if !defined(HEMV) && !defined(HEMVREV) result = MYDOT(length + 1, a + (k - length) * COMPSIZE, 1, x + (i - length) * COMPSIZE, 1); #else result = MYDOT(length , a + (k - length) * COMPSIZE, 1, x + (i - length) * COMPSIZE, 1); #endif #ifndef COMPLEX *(y + i * COMPSIZE + 0) += result; #else #if !defined(HEMV) && !defined(HEMVREV) *(y + i * COMPSIZE + 0) += CREAL(result); *(y + i * COMPSIZE + 1) += CIMAG(result); #else *(y + i * COMPSIZE + 0) += CREAL(result) + *(a + k * COMPSIZE) * *(x + i * COMPSIZE + 0); *(y + i * COMPSIZE + 1) += CIMAG(result) + *(a + k * COMPSIZE) * *(x + i * COMPSIZE + 1); #endif #endif #else length = k; if (n - i - 1 < k) length = n - i - 1; MYAXPY(length, 0, 0, *(x + i * COMPSIZE + 0), #ifdef COMPLEX *(x + i * COMPSIZE + 1), #endif a + COMPSIZE, 1, y + (i + 1) * COMPSIZE, 1, NULL, 0); #if !defined(HEMV) && !defined(HEMVREV) result = MYDOT(length + 1, a, 1, x + i * COMPSIZE, 1); #else result = MYDOT(length , a + COMPSIZE, 1, x + (i + 1) * COMPSIZE, 1) ; #endif #ifndef COMPLEX *(y + i * COMPSIZE + 0) += result; #else #if !defined(HEMV) && !defined(HEMVREV) *(y + i * COMPSIZE + 0) += CREAL(result); *(y + i * COMPSIZE + 1) += CIMAG(result); #else *(y + i * COMPSIZE + 0) += CREAL(result) + *a * *(x + i * COMPSIZE + 0); *(y + i * COMPSIZE + 1) += CIMAG(result) + *a * *(x + i * COMPSIZE + 1); #endif #endif #endif a += lda * COMPSIZE; } return 0; } #ifndef COMPLEX int CNAME(BLASLONG n, BLASLONG k, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){ #else int CNAME(BLASLONG n, BLASLONG k, FLOAT *alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){ #endif blas_arg_t args; blas_queue_t queue[MAX_CPU_NUMBER + 1]; BLASLONG range_m[MAX_CPU_NUMBER + 1]; BLASLONG range_n[MAX_CPU_NUMBER]; BLASLONG width, i, num_cpu; double dnum; int mask = 7; #ifdef SMP #ifndef COMPLEX #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_REAL; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_REAL; #else int mode = BLAS_SINGLE | BLAS_REAL; #endif #else #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_COMPLEX; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_COMPLEX; #else int mode = BLAS_SINGLE | BLAS_COMPLEX; #endif #endif #endif args.n = n; args.k = k; args.a = (void *)a; args.b = (void *)x; args.c = (void *)buffer; args.lda = lda; args.ldb = incx; args.ldc = incy; dnum = (double)n * (double)n / (double)nthreads; num_cpu = 0; if (n < 2 * k) { #ifndef LOWER range_m[MAX_CPU_NUMBER] = n; i = 0; while (i < n){ if (nthreads - num_cpu > 1) { double di = (double)(n - i); if (di * di - dnum > 0) { width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask; } else { width = n - i; } if (width < 16) width = 16; if (width > n - i) width = n - i; } else { width = n - i; } range_m[MAX_CPU_NUMBER - num_cpu - 1] = range_m[MAX_CPU_NUMBER - num_cpu] - width; range_n[num_cpu] = num_cpu * (((n + 15) & ~15) + 16); if (range_n[num_cpu] > n * num_cpu) range_n[num_cpu] = n * num_cpu; queue[num_cpu].mode = mode; queue[num_cpu].routine = sbmv_kernel; queue[num_cpu].args = &args; queue[num_cpu].range_m = &range_m[MAX_CPU_NUMBER - num_cpu - 1]; queue[num_cpu].range_n = &range_n[num_cpu]; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i += width; } #else range_m[0] = 0; i = 0; while (i < n){ if (nthreads - num_cpu > 1) { double di = (double)(n - i); if (di * di - dnum > 0) { width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask; } else { width = n - i; } if (width < 16) width = 16; if (width > n - i) width = n - i; } else { width = n - i; } range_m[num_cpu + 1] = range_m[num_cpu] + width; range_n[num_cpu] = num_cpu * (((n + 15) & ~15) + 16); if (range_n[num_cpu] > n * num_cpu) range_n[num_cpu] = n * num_cpu; queue[num_cpu].mode = mode; queue[num_cpu].routine = sbmv_kernel; queue[num_cpu].args = &args; queue[num_cpu].range_m = &range_m[num_cpu]; queue[num_cpu].range_n = &range_n[num_cpu]; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i += width; } #endif } else { range_m[0] = 0; i = n; while (i > 0){ width = blas_quickdivide(i + nthreads - num_cpu - 1, nthreads - num_cpu); if (width < 4) width = 4; if (i < width) width = i; range_m[num_cpu + 1] = range_m[num_cpu] + width; range_n[num_cpu] = num_cpu * ((n + 15) & ~15); if (range_n[num_cpu] > n * num_cpu) range_n[num_cpu] = n * num_cpu; queue[num_cpu].mode = mode; queue[num_cpu].routine = sbmv_kernel; queue[num_cpu].args = &args; queue[num_cpu].range_m = &range_m[num_cpu]; queue[num_cpu].range_n = &range_n[num_cpu]; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i -= width; } } if (num_cpu) { queue[0].sa = NULL; queue[0].sb = buffer; queue[num_cpu - 1].next = NULL; exec_blas(num_cpu, queue); } for (i = 1; i < num_cpu; i ++) { AXPYU_K(n, 0, 0, #ifndef COMPLEX ONE, #else ONE, ZERO, #endif (FLOAT*)(queue[i].sb), 1, buffer, 1, NULL, 0); } AXPYU_K(n, 0, 0, #ifndef COMPLEX alpha, #else alpha[0], alpha[1], #endif buffer, 1, y, incy, NULL, 0); return 0; }