/*********************************************************************/ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ #include #include #include "common.h" #include "symcopy.h" #if! defined(HEMV) && !defined(HEMVREV) #define MYDOT DOTU_K #define MYAXPY AXPYU_K #elif defined HEMV #define MYDOT DOTC_K #define MYAXPY AXPYU_K #else #define MYDOT DOTU_K #define MYAXPY AXPYC_K #endif static int spmv_kernel(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *dummy1, FLOAT *buffer, BLASLONG pos){ FLOAT *a, *x, *y; BLASLONG incx; BLASLONG m_from, m_to, i; #ifndef COMPLEX FLOAT result; #else OPENBLAS_COMPLEX_FLOAT result; #endif a = (FLOAT *)args -> a; x = (FLOAT *)args -> b; y = (FLOAT *)args -> c; incx = args -> ldb; m_from = 0; m_to = args -> m; if (range_m) { m_from = *(range_m + 0); m_to = *(range_m + 1); } if (range_n) y += *range_n * COMPSIZE; if (incx != 1) { #ifndef LOWER COPY_K(m_to, x, incx, buffer, 1); #else COPY_K(args -> m - m_from, x + m_from * incx * COMPSIZE, incx, buffer + m_from * COMPSIZE, 1); #endif x = buffer; } #ifndef LOWER SCAL_K(m_to, 0, 0, ZERO, #ifdef COMPLEX ZERO, #endif y, 1, NULL, 0, NULL, 0); #else SCAL_K(args -> m - m_from, 0, 0, ZERO, #ifdef COMPLEX ZERO, #endif y + m_from * COMPSIZE, 1, NULL, 0, NULL, 0); #endif #ifndef LOWER a += (m_from + 1) * m_from / 2 * COMPSIZE; #else a += (2 * args -> m - m_from - 1) * m_from / 2 * COMPSIZE; #endif for (i = m_from; i < m_to; i++) { #ifndef LOWER #if !defined(HEMV) && !defined(HEMVREV) result = MYDOT(i + 1, a, 1, x, 1); #else result = MYDOT(i , a, 1, x, 1); #endif #ifndef COMPLEX *(y + i * COMPSIZE) += result; #else #if !defined(HEMV) && !defined(HEMVREV) *(y + i * COMPSIZE + 0) += CREAL(result); *(y + i * COMPSIZE + 1) += CIMAG(result); #else *(y + i * COMPSIZE + 0) += CREAL(result) + *(a + i * COMPSIZE) * *(x + i * COMPSIZE + 0); *(y + i * COMPSIZE + 1) += CIMAG(result) + *(a + i * COMPSIZE) * *(x + i * COMPSIZE + 1); #endif #endif MYAXPY(i, 0, 0, *(x + i * COMPSIZE + 0), #ifdef COMPLEX *(x + i * COMPSIZE + 1), #endif a, 1, y, 1, NULL, 0); a += (i + 1) * COMPSIZE; #else #if !defined(HEMV) && !defined(HEMVREV) result = MYDOT(args -> m - i , a + i * COMPSIZE, 1, x + i * COMPSIZE, 1); #else result = MYDOT(args -> m - i - 1, a + (i + 1) * COMPSIZE, 1, x + (i + 1) * COMPSIZE, 1); #endif #ifndef COMPLEX *(y + i * COMPSIZE) += result; #else #if !defined(HEMV) && !defined(HEMVREV) *(y + i * COMPSIZE + 0) += CREAL(result); *(y + i * COMPSIZE + 1) += CIMAG(result); #else *(y + i * COMPSIZE + 0) += CREAL(result) + *(a + i * COMPSIZE) * *(x + i * COMPSIZE + 0); *(y + i * COMPSIZE + 1) += CIMAG(result) + *(a + i * COMPSIZE) * *(x + i * COMPSIZE + 1); #endif #endif MYAXPY(args -> m - i - 1, 0, 0, *(x + i * COMPSIZE + 0), #ifdef COMPLEX *(x + i * COMPSIZE + 1), #endif a + (i + 1) * COMPSIZE, 1, y + (i + 1) * COMPSIZE, 1, NULL, 0); a += (args -> m - i - 1) * COMPSIZE; #endif } return 0; } #ifndef COMPLEX int CNAME(BLASLONG m, FLOAT alpha, FLOAT *a, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){ #else int CNAME(BLASLONG m, FLOAT *alpha, FLOAT *a, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){ #endif blas_arg_t args; blas_queue_t queue[MAX_CPU_NUMBER]; BLASLONG range_m[MAX_CPU_NUMBER + 1]; BLASLONG range_n[MAX_CPU_NUMBER + 1]; BLASLONG width, i, num_cpu; double dnum; int mask = 7; #ifdef SMP #ifndef COMPLEX #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_REAL; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_REAL; #else int mode = BLAS_SINGLE | BLAS_REAL; #endif #else #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_COMPLEX; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_COMPLEX; #else int mode = BLAS_SINGLE | BLAS_COMPLEX; #endif #endif #endif args.m = m; args.a = (void *)a; args.b = (void *)x; args.c = (void *)buffer; args.ldb = incx; args.ldc = incy; dnum = (double)m * (double)m / (double)nthreads; num_cpu = 0; #ifndef LOWER range_m[MAX_CPU_NUMBER] = m; i = 0; while (i < m){ if (nthreads - num_cpu > 1) { double di = (double)(m - i); if (di * di - dnum > 0) { width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask; } else { width = m - i; } if (width < 16) width = 16; if (width > m - i) width = m - i; } else { width = m - i; } range_m[MAX_CPU_NUMBER - num_cpu - 1] = range_m[MAX_CPU_NUMBER - num_cpu] - width; range_n[num_cpu] = num_cpu * (((m + 15) & ~15) + 16); if (range_n[num_cpu] > m * num_cpu) range_n[num_cpu] = m * num_cpu; queue[num_cpu].mode = mode; queue[num_cpu].routine = spmv_kernel; queue[num_cpu].args = &args; queue[num_cpu].range_m = &range_m[MAX_CPU_NUMBER - num_cpu - 1]; queue[num_cpu].range_n = &range_n[num_cpu]; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i += width; } #else range_m[0] = 0; i = 0; while (i < m){ if (nthreads - num_cpu > 1) { double di = (double)(m - i); if (di * di - dnum > 0) { width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask; } else { width = m - i; } if (width < 16) width = 16; if (width > m - i) width = m - i; } else { width = m - i; } range_m[num_cpu + 1] = range_m[num_cpu] + width; range_n[num_cpu] = num_cpu * (((m + 15) & ~15) + 16); if (range_n[num_cpu] > m * num_cpu) range_n[num_cpu] = m * num_cpu; queue[num_cpu].mode = mode; queue[num_cpu].routine = spmv_kernel; queue[num_cpu].args = &args; queue[num_cpu].range_m = &range_m[num_cpu]; queue[num_cpu].range_n = &range_n[num_cpu]; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i += width; } #endif if (num_cpu) { queue[0].sa = NULL; queue[0].sb = buffer + num_cpu * (((m + 255) & ~255) + 16) * COMPSIZE; queue[num_cpu - 1].next = NULL; exec_blas(num_cpu, queue); } for (i = 1; i < num_cpu; i ++) { #ifndef LOWER AXPYU_K(range_m[MAX_CPU_NUMBER - i], 0, 0, ONE, #ifdef COMPLEX ZERO, #endif buffer + range_n[i] * COMPSIZE, 1, buffer, 1, NULL, 0); #else AXPYU_K(m - range_m[i], 0, 0, ONE, #ifdef COMPLEX ZERO, #endif buffer + (range_n[i] + range_m[i]) * COMPSIZE, 1, buffer + range_m[i] * COMPSIZE, 1, NULL, 0); #endif } AXPYU_K(m, 0, 0, #ifndef COMPLEX alpha, #else alpha[0], alpha[1], #endif buffer, 1, y, incy, NULL, 0); return 0; }