/*********************************************************************/ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ #include #include #include "common.h" #include "symcopy.h" #if! defined(HEMV) && !defined(HEMVREV) #define MYSYMV_U SYMV_U #define MYSYMV_L SYMV_L #elif defined HEMV #define MYSYMV_U HEMV_U #define MYSYMV_L HEMV_L #else #define MYSYMV_U HEMV_V #define MYSYMV_L HEMV_M #endif static int symv_kernel(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *dummy1, FLOAT *buffer, BLASLONG pos){ FLOAT *a, *x, *y; BLASLONG lda, incx; BLASLONG m_from, m_to; a = (FLOAT *)args -> a; x = (FLOAT *)args -> b; y = (FLOAT *)args -> c; lda = args -> lda; incx = args -> ldb; m_from = 0; m_to = args -> m; if (range_m) { m_from = *(range_m + 0); m_to = *(range_m + 1); } if (range_n) y += *range_n * COMPSIZE; #ifndef LOWER SCAL_K(m_to, 0, 0, ZERO, #ifdef COMPLEX ZERO, #endif y, 1, NULL, 0, NULL, 0); MYSYMV_U (m_to, m_to - m_from, ONE, #ifdef COMPLEX ZERO, #endif a, lda, x, incx, y, 1, buffer); #else SCAL_K(args -> m - m_from, 0, 0, ZERO, #ifdef COMPLEX ZERO, #endif y + m_from * COMPSIZE, 1, NULL, 0, NULL, 0); MYSYMV_L (args -> m - m_from, m_to - m_from, ONE, #ifdef COMPLEX ZERO, #endif a + m_from * (lda + 1) * COMPSIZE, lda, x + m_from * incx * COMPSIZE, incx, y + m_from * COMPSIZE, 1, buffer); #endif return 0; } #ifndef COMPLEX int CNAME(BLASLONG m, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){ #else int CNAME(BLASLONG m, FLOAT *alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){ #endif blas_arg_t args; blas_queue_t queue[MAX_CPU_NUMBER]; BLASLONG range_m[MAX_CPU_NUMBER + 1]; BLASLONG range_n[MAX_CPU_NUMBER]; BLASLONG width, i, num_cpu; double dnum; int mask = 3; #ifdef SMP #ifndef COMPLEX #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_REAL; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_REAL; #else int mode = BLAS_SINGLE | BLAS_REAL; #endif #else #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_COMPLEX; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_COMPLEX; #else int mode = BLAS_SINGLE | BLAS_COMPLEX; #endif #endif #endif args.m = m; args.a = (void *)a; args.b = (void *)x; args.c = (void *)buffer; args.lda = lda; args.ldb = incx; args.ldc = incy; dnum = (double)m * (double)m / (double)nthreads; num_cpu = 0; #ifndef LOWER range_m[0] = 0; i = 0; while (i < m){ if (nthreads - num_cpu > 1) { double di = (double)i; width = ((BLASLONG)(sqrt(di * di + dnum) - di) + mask) & ~mask; if (width < 4) width = 4; if (width > m - i) width = m - i; } else { width = m - i; } range_m[num_cpu + 1] = range_m[num_cpu] + width; range_n[num_cpu] = num_cpu * (((m + 15) & ~15) + 16); if (range_n[num_cpu] > m * num_cpu) range_n[num_cpu] = m * num_cpu; queue[MAX_CPU_NUMBER - num_cpu - 1].mode = mode; queue[MAX_CPU_NUMBER - num_cpu - 1].routine = symv_kernel; queue[MAX_CPU_NUMBER - num_cpu - 1].args = &args; queue[MAX_CPU_NUMBER - num_cpu - 1].range_m = &range_m[num_cpu]; queue[MAX_CPU_NUMBER - num_cpu - 1].range_n = &range_n[num_cpu]; queue[MAX_CPU_NUMBER - num_cpu - 1].sa = NULL; queue[MAX_CPU_NUMBER - num_cpu - 1].sb = NULL; queue[MAX_CPU_NUMBER - num_cpu - 1].next = &queue[MAX_CPU_NUMBER - num_cpu]; num_cpu ++; i += width; } if (num_cpu) { queue[MAX_CPU_NUMBER - num_cpu].sa = NULL; queue[MAX_CPU_NUMBER - num_cpu].sb = buffer + num_cpu * (((m + 255) & ~255) + 16) * COMPSIZE; queue[MAX_CPU_NUMBER - 1].next = NULL; exec_blas(num_cpu, &queue[MAX_CPU_NUMBER - num_cpu]); } #else range_m[0] = 0; i = 0; while (i < m){ if (nthreads - num_cpu > 1) { double di = (double)(m - i); if (di * di - dnum > 0) { width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask; } else { width = m - i; } if (width < 4) width = 4; if (width > m - i) width = m - i; } else { width = m - i; } range_m[num_cpu + 1] = range_m[num_cpu] + width; range_n[num_cpu] = num_cpu * (((m + 15) & ~15) + 16); if (range_n[num_cpu] > m * num_cpu) range_n[num_cpu] = m * num_cpu; queue[num_cpu].mode = mode; queue[num_cpu].routine = symv_kernel; queue[num_cpu].args = &args; queue[num_cpu].range_m = &range_m[num_cpu]; queue[num_cpu].range_n = &range_n[num_cpu]; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i += width; } if (num_cpu) { queue[0].sa = NULL; queue[0].sb = buffer + num_cpu * (((m + 255) & ~255) + 16) * COMPSIZE; queue[num_cpu - 1].next = NULL; exec_blas(num_cpu, queue); } #endif #ifndef LOWER for (i = 0; i < num_cpu - 1; i ++) { AXPYU_K(range_m[i + 1], 0, 0, ONE, #ifdef COMPLEX ZERO, #endif buffer + range_n[i] * COMPSIZE, 1, buffer + range_n[num_cpu - 1] * COMPSIZE, 1, NULL, 0); } AXPYU_K(m, 0, 0, #ifndef COMPLEX alpha, #else alpha[0], alpha[1], #endif buffer + range_n[num_cpu - 1] * COMPSIZE, 1, y, incy, NULL, 0); #else for (i = 1; i < num_cpu; i ++) { AXPYU_K(m - range_m[i], 0, 0, ONE, #ifdef COMPLEX ZERO, #endif buffer + (range_n[i] + range_m[i]) * COMPSIZE, 1, buffer + range_m[i] * COMPSIZE, 1, NULL, 0); } AXPYU_K(m, 0, 0, #ifndef COMPLEX alpha, #else alpha[0], alpha[1], #endif buffer, 1, y, incy, NULL, 0); #endif return 0; }