/*********************************************************************/ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ #include #include #include "common.h" #include "symcopy.h" #ifndef COMPLEX #ifndef TRANSA #define MYGEMV GEMV_N #undef TRANS #else #define MYGEMV GEMV_T #define TRANS #endif #define MYDOT DOTU_K #define MYAXPY AXPYU_K #else #if TRANSA == 1 #define MYGEMV GEMV_N #undef TRANS #define MYDOT DOTU_K #define MYAXPY AXPYU_K #elif TRANSA == 2 #define MYGEMV GEMV_T #define TRANS #define MYDOT DOTU_K #define MYAXPY AXPYU_K #elif TRANSA == 3 #define MYGEMV GEMV_R #undef TRANS #define MYDOT DOTC_K #define MYAXPY AXPYC_K #else #define MYGEMV GEMV_C #define TRANS #define MYDOT DOTC_K #define MYAXPY AXPYC_K #endif #endif static int trmv_kernel(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *dummy1, FLOAT *buffer, BLASLONG pos){ FLOAT *a, *x, *y; BLASLONG lda, incx; BLASLONG m_from, m_to; BLASLONG i, is, min_i; #ifdef TRANS #ifndef COMPLEX FLOAT result; #else OPENBLAS_COMPLEX_FLOAT result; #endif #endif #if defined(COMPLEX) && !defined(UNIT) FLOAT ar, ai, xr, xi; #endif a = (FLOAT *)args -> a; x = (FLOAT *)args -> b; y = (FLOAT *)args -> c; lda = args -> lda; incx = args -> ldb; m_from = 0; m_to = args -> m; if (range_m) { m_from = *(range_m + 0); m_to = *(range_m + 1); } if (incx != 1) { #ifndef LOWER COPY_K(m_to, x, incx, buffer, 1); #else COPY_K(args -> m - m_from, x + m_from * incx * COMPSIZE, incx, buffer + m_from * COMPSIZE, 1); #endif x = buffer; buffer += ((COMPSIZE * args -> m + 3) & ~3); } #ifndef TRANS if (range_n) y += *range_n * COMPSIZE; #ifndef LOWER SCAL_K(m_to, 0, 0, ZERO, #ifdef COMPLEX ZERO, #endif y, 1, NULL, 0, NULL, 0); #else SCAL_K(args -> m - m_from, 0, 0, ZERO, #ifdef COMPLEX ZERO, #endif y + m_from * COMPSIZE, 1, NULL, 0, NULL, 0); #endif #else SCAL_K(m_to - m_from, 0, 0, ZERO, #ifdef COMPLEX ZERO, #endif y + m_from * COMPSIZE, 1, NULL, 0, NULL, 0); #endif for (is = m_from; is < m_to; is += DTB_ENTRIES){ min_i = MIN(m_to - is, DTB_ENTRIES); #ifndef LOWER if (is > 0){ MYGEMV(is, min_i, 0, ONE, #ifdef COMPLEX ZERO, #endif a + is * lda * COMPSIZE, lda, #ifndef TRANS x + is * COMPSIZE, 1, y, 1, #else x, 1, y + is * COMPSIZE, 1, #endif buffer); } #endif for (i = is; i < is + min_i; i++) { #ifndef LOWER if (i - is > 0) { #ifndef TRANS MYAXPY(i - is, 0, 0, *(x + i * COMPSIZE + 0), #ifdef COMPLEX *(x + i * COMPSIZE + 1), #endif a + (is + i * lda) * COMPSIZE, 1, y + is * COMPSIZE, 1, NULL, 0); #else result = MYDOT(i - is, a + (is + i * lda) * COMPSIZE, 1, x + is * COMPSIZE, 1); #ifndef COMPLEX *(y + i * COMPSIZE + 0) += result; #else *(y + i * COMPSIZE + 0) += CREAL(result); *(y + i * COMPSIZE + 1) += CIMAG(result); #endif #endif } #endif #ifndef COMPLEX #ifdef UNIT *(y + i * COMPSIZE) += *(x + i * COMPSIZE); #else *(y + i * COMPSIZE) += *(a + (i + i * lda) * COMPSIZE) * *(x + i * COMPSIZE); #endif #else #ifdef UNIT *(y + i * COMPSIZE + 0) += *(x + i * COMPSIZE + 0); *(y + i * COMPSIZE + 1) += *(x + i * COMPSIZE + 1); #else ar = *(a + (i + i * lda) * COMPSIZE + 0); ai = *(a + (i + i * lda) * COMPSIZE + 1); xr = *(x + i * COMPSIZE + 0); xi = *(x + i * COMPSIZE + 1); #if (TRANSA == 1) || (TRANSA == 2) *(y + i * COMPSIZE + 0) += ar * xr - ai * xi; *(y + i * COMPSIZE + 1) += ar * xi + ai * xr; #else *(y + i * COMPSIZE + 0) += ar * xr + ai * xi; *(y + i * COMPSIZE + 1) += ar * xi - ai * xr; #endif #endif #endif #ifdef LOWER if (is + min_i > i + 1) { #ifndef TRANS MYAXPY(is + min_i - i - 1, 0, 0, *(x + i * COMPSIZE + 0), #ifdef COMPLEX *(x + i * COMPSIZE + 1), #endif a + (i + 1 + i * lda) * COMPSIZE, 1, y + (i + 1) * COMPSIZE, 1, NULL, 0); #else result = MYDOT(is + min_i - i - 1, a + (i + 1 + i * lda) * COMPSIZE, 1, x + (i + 1) * COMPSIZE, 1); #ifndef COMPLEX *(y + i * COMPSIZE + 0) += result; #else *(y + i * COMPSIZE + 0) += CREAL(result); *(y + i * COMPSIZE + 1) += CIMAG(result); #endif #endif } #endif } #ifdef LOWER if (args -> m > is + min_i){ MYGEMV(args -> m - is - min_i, min_i, 0, ONE, #ifdef COMPLEX ZERO, #endif a + (is + min_i + is * lda) * COMPSIZE, lda, #ifndef TRANS x + is * COMPSIZE, 1, y + (is + min_i) * COMPSIZE, 1, #else x + (is + min_i) * COMPSIZE, 1, y + is * COMPSIZE, 1, #endif buffer); } #endif } return 0; } #ifndef COMPLEX int CNAME(BLASLONG m, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *buffer, int nthreads){ #else int CNAME(BLASLONG m, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *buffer, int nthreads){ #endif blas_arg_t args; blas_queue_t queue[MAX_CPU_NUMBER]; BLASLONG range_m[MAX_CPU_NUMBER + 1]; BLASLONG range_n[MAX_CPU_NUMBER + 1]; BLASLONG width, i, num_cpu; double dnum; int mask = 7; #ifdef SMP #ifndef COMPLEX #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_REAL; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_REAL; #else int mode = BLAS_SINGLE | BLAS_REAL; #endif #else #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_COMPLEX; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_COMPLEX; #else int mode = BLAS_SINGLE | BLAS_COMPLEX; #endif #endif #endif args.m = m; args.a = (void *)a; args.b = (void *)x; args.c = (void *)(buffer); args.lda = lda; args.ldb = incx; args.ldc = incx; dnum = (double)m * (double)m / (double)nthreads; num_cpu = 0; #ifndef LOWER range_m[MAX_CPU_NUMBER] = m; i = 0; while (i < m){ if (nthreads - num_cpu > 1) { double di = (double)(m - i); if (di * di - dnum > 0) { width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask; } else { width = m - i; } if (width < 16) width = 16; if (width > m - i) width = m - i; } else { width = m - i; } range_m[MAX_CPU_NUMBER - num_cpu - 1] = range_m[MAX_CPU_NUMBER - num_cpu] - width; range_n[num_cpu] = num_cpu * (((m + 15) & ~15) + 16); if (range_n[num_cpu] > m * num_cpu) range_n[num_cpu] = m * num_cpu; queue[num_cpu].mode = mode; queue[num_cpu].routine = trmv_kernel; queue[num_cpu].args = &args; queue[num_cpu].range_m = &range_m[MAX_CPU_NUMBER - num_cpu - 1]; queue[num_cpu].range_n = &range_n[num_cpu]; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i += width; } #else range_m[0] = 0; i = 0; while (i < m){ if (nthreads - num_cpu > 1) { double di = (double)(m - i); if (di * di - dnum > 0) { width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask; } else { width = m - i; } if (width < 16) width = 16; if (width > m - i) width = m - i; } else { width = m - i; } range_m[num_cpu + 1] = range_m[num_cpu] + width; range_n[num_cpu] = num_cpu * (((m + 15) & ~15) + 16); if (range_n[num_cpu] > m * num_cpu) range_n[num_cpu] = m * num_cpu; queue[num_cpu].mode = mode; queue[num_cpu].routine = trmv_kernel; queue[num_cpu].args = &args; queue[num_cpu].range_m = &range_m[num_cpu]; queue[num_cpu].range_n = &range_n[num_cpu]; queue[num_cpu].sa = NULL; queue[num_cpu].sb = NULL; queue[num_cpu].next = &queue[num_cpu + 1]; num_cpu ++; i += width; } #endif if (num_cpu) { queue[0].sa = NULL; queue[0].sb = buffer + num_cpu * (((m + 3) & ~3) + 16) * COMPSIZE; queue[num_cpu - 1].next = NULL; exec_blas(num_cpu, queue); } #ifndef TRANS for (i = 1; i < num_cpu; i ++) { #ifndef LOWER AXPYU_K(range_m[MAX_CPU_NUMBER - i], 0, 0, ONE, #ifdef COMPLEX ZERO, #endif buffer + range_n[i] * COMPSIZE, 1, buffer, 1, NULL, 0); #else AXPYU_K(m - range_m[i], 0, 0, ONE, #ifdef COMPLEX ZERO, #endif buffer + (range_n[i] + range_m[i]) * COMPSIZE, 1, buffer + range_m[i] * COMPSIZE, 1, NULL, 0); #endif } #endif COPY_K(m, buffer, 1, x, incx); return 0; }