#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief CGESVD computes the singular value decomposition (SVD) for GE matrices */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download CGESVD + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE CGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, */ /* WORK, LWORK, RWORK, INFO ) */ /* CHARACTER JOBU, JOBVT */ /* INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N */ /* REAL RWORK( * ), S( * ) */ /* COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ), */ /* $ WORK( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > CGESVD computes the singular value decomposition (SVD) of a complex */ /* > M-by-N matrix A, optionally computing the left and/or right singular */ /* > vectors. The SVD is written */ /* > */ /* > A = U * SIGMA * conjugate-transpose(V) */ /* > */ /* > where SIGMA is an M-by-N matrix which is zero except for its */ /* > f2cmin(m,n) diagonal elements, U is an M-by-M unitary matrix, and */ /* > V is an N-by-N unitary matrix. The diagonal elements of SIGMA */ /* > are the singular values of A; they are real and non-negative, and */ /* > are returned in descending order. The first f2cmin(m,n) columns of */ /* > U and V are the left and right singular vectors of A. */ /* > */ /* > Note that the routine returns V**H, not V. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] JOBU */ /* > \verbatim */ /* > JOBU is CHARACTER*1 */ /* > Specifies options for computing all or part of the matrix U: */ /* > = 'A': all M columns of U are returned in array U: */ /* > = 'S': the first f2cmin(m,n) columns of U (the left singular */ /* > vectors) are returned in the array U; */ /* > = 'O': the first f2cmin(m,n) columns of U (the left singular */ /* > vectors) are overwritten on the array A; */ /* > = 'N': no columns of U (no left singular vectors) are */ /* > computed. */ /* > \endverbatim */ /* > */ /* > \param[in] JOBVT */ /* > \verbatim */ /* > JOBVT is CHARACTER*1 */ /* > Specifies options for computing all or part of the matrix */ /* > V**H: */ /* > = 'A': all N rows of V**H are returned in the array VT; */ /* > = 'S': the first f2cmin(m,n) rows of V**H (the right singular */ /* > vectors) are returned in the array VT; */ /* > = 'O': the first f2cmin(m,n) rows of V**H (the right singular */ /* > vectors) are overwritten on the array A; */ /* > = 'N': no rows of V**H (no right singular vectors) are */ /* > computed. */ /* > */ /* > JOBVT and JOBU cannot both be 'O'. */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the input matrix A. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the input matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX array, dimension (LDA,N) */ /* > On entry, the M-by-N matrix A. */ /* > On exit, */ /* > if JOBU = 'O', A is overwritten with the first f2cmin(m,n) */ /* > columns of U (the left singular vectors, */ /* > stored columnwise); */ /* > if JOBVT = 'O', A is overwritten with the first f2cmin(m,n) */ /* > rows of V**H (the right singular vectors, */ /* > stored rowwise); */ /* > if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A */ /* > are destroyed. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] S */ /* > \verbatim */ /* > S is REAL array, dimension (f2cmin(M,N)) */ /* > The singular values of A, sorted so that S(i) >= S(i+1). */ /* > \endverbatim */ /* > */ /* > \param[out] U */ /* > \verbatim */ /* > U is COMPLEX array, dimension (LDU,UCOL) */ /* > (LDU,M) if JOBU = 'A' or (LDU,f2cmin(M,N)) if JOBU = 'S'. */ /* > If JOBU = 'A', U contains the M-by-M unitary matrix U; */ /* > if JOBU = 'S', U contains the first f2cmin(m,n) columns of U */ /* > (the left singular vectors, stored columnwise); */ /* > if JOBU = 'N' or 'O', U is not referenced. */ /* > \endverbatim */ /* > */ /* > \param[in] LDU */ /* > \verbatim */ /* > LDU is INTEGER */ /* > The leading dimension of the array U. LDU >= 1; if */ /* > JOBU = 'S' or 'A', LDU >= M. */ /* > \endverbatim */ /* > */ /* > \param[out] VT */ /* > \verbatim */ /* > VT is COMPLEX array, dimension (LDVT,N) */ /* > If JOBVT = 'A', VT contains the N-by-N unitary matrix */ /* > V**H; */ /* > if JOBVT = 'S', VT contains the first f2cmin(m,n) rows of */ /* > V**H (the right singular vectors, stored rowwise); */ /* > if JOBVT = 'N' or 'O', VT is not referenced. */ /* > \endverbatim */ /* > */ /* > \param[in] LDVT */ /* > \verbatim */ /* > LDVT is INTEGER */ /* > The leading dimension of the array VT. LDVT >= 1; if */ /* > JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= f2cmin(M,N). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */ /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* > \endverbatim */ /* > */ /* > \param[in] LWORK */ /* > \verbatim */ /* > LWORK is INTEGER */ /* > The dimension of the array WORK. */ /* > LWORK >= MAX(1,2*MIN(M,N)+MAX(M,N)). */ /* > For good performance, LWORK should generally be larger. */ /* > */ /* > If LWORK = -1, then a workspace query is assumed; the routine */ /* > only calculates the optimal size of the WORK array, returns */ /* > this value as the first entry of the WORK array, and no error */ /* > message related to LWORK is issued by XERBLA. */ /* > \endverbatim */ /* > */ /* > \param[out] RWORK */ /* > \verbatim */ /* > RWORK is REAL array, dimension (5*f2cmin(M,N)) */ /* > On exit, if INFO > 0, RWORK(1:MIN(M,N)-1) contains the */ /* > unconverged superdiagonal elements of an upper bidiagonal */ /* > matrix B whose diagonal is in S (not necessarily sorted). */ /* > B satisfies A = U * B * VT, so it has the same singular */ /* > values as A, and singular vectors related by U and VT. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit. */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > > 0: if CBDSQR did not converge, INFO specifies how many */ /* > superdiagonals of an intermediate bidiagonal form B */ /* > did not converge to zero. See the description of RWORK */ /* > above for details. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date April 2012 */ /* > \ingroup complexGEsing */ /* ===================================================================== */ /* Subroutine */ int cgesvd_(char *jobu, char *jobvt, integer *m, integer *n, complex *a, integer *lda, real *s, complex *u, integer *ldu, complex * vt, integer *ldvt, complex *work, integer *lwork, real *rwork, integer *info) { /* System generated locals */ address a__1[2]; integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1[2], i__2, i__3, i__4; char ch__1[2]; /* Local variables */ complex cdum[1]; integer iscl; real anrm; integer ierr, itau, ncvt, nrvt, lwork_cgebrd__, lwork_cgelqf__, lwork_cgeqrf__, i__; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); extern logical lsame_(char *, char *); integer chunk, minmn, wrkbl, itaup, itauq, mnthr, iwork; logical wntua, wntva, wntun, wntuo, wntvn, wntvo, wntus, wntvs; integer ie; extern /* Subroutine */ int cgebrd_(integer *, integer *, complex *, integer *, real *, real *, complex *, complex *, complex *, integer *, integer *); extern real clange_(char *, integer *, integer *, complex *, integer *, real *); integer ir, iu; extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), clascl_( char *, integer *, integer *, real *, real *, integer *, integer * , complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); extern real slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), cbdsqr_(char *, integer *, integer *, integer *, integer *, real *, real *, complex *, integer *, complex *, integer *, complex *, integer *, real *, integer *), xerbla_(char *, integer *, ftnlen), cungbr_(char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int cunmbr_(char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), cunglq_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cungqr_( integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); integer ldwrkr, minwrk, ldwrku, maxwrk; real smlnum; integer irwork; logical lquery, wntuas, wntvas; integer lwork_cungbr_p__, lwork_cungbr_q__, lwork_cunglq_n__, lwork_cunglq_m__, lwork_cungqr_m__, lwork_cungqr_n__, blk, ncu; real dum[1], eps; integer nru; /* -- LAPACK driver routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* April 2012 */ /* ===================================================================== */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --s; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; vt_dim1 = *ldvt; vt_offset = 1 + vt_dim1 * 1; vt -= vt_offset; --work; --rwork; /* Function Body */ *info = 0; minmn = f2cmin(*m,*n); wntua = lsame_(jobu, "A"); wntus = lsame_(jobu, "S"); wntuas = wntua || wntus; wntuo = lsame_(jobu, "O"); wntun = lsame_(jobu, "N"); wntva = lsame_(jobvt, "A"); wntvs = lsame_(jobvt, "S"); wntvas = wntva || wntvs; wntvo = lsame_(jobvt, "O"); wntvn = lsame_(jobvt, "N"); lquery = *lwork == -1; if (! (wntua || wntus || wntuo || wntun)) { *info = -1; } else if (! (wntva || wntvs || wntvo || wntvn) || wntvo && wntuo) { *info = -2; } else if (*m < 0) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*lda < f2cmax(1,*m)) { *info = -6; } else if (*ldu < 1 || wntuas && *ldu < *m) { *info = -9; } else if (*ldvt < 1 || wntva && *ldvt < *n || wntvs && *ldvt < minmn) { *info = -11; } /* Compute workspace */ /* (Note: Comments in the code beginning "Workspace:" describe the */ /* minimal amount of workspace needed at that point in the code, */ /* as well as the preferred amount for good performance. */ /* CWorkspace refers to complex workspace, and RWorkspace to */ /* real workspace. NB refers to the optimal block size for the */ /* immediately following subroutine, as returned by ILAENV.) */ if (*info == 0) { minwrk = 1; maxwrk = 1; if (*m >= *n && minmn > 0) { /* Space needed for ZBDSQR is BDSPAC = 5*N */ /* Writing concatenation */ i__1[0] = 1, a__1[0] = jobu; i__1[1] = 1, a__1[1] = jobvt; s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); mnthr = ilaenv_(&c__6, "CGESVD", ch__1, m, n, &c__0, &c__0, ( ftnlen)6, (ftnlen)2); /* Compute space needed for CGEQRF */ cgeqrf_(m, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr); lwork_cgeqrf__ = (integer) cdum[0].r; /* Compute space needed for CUNGQR */ cungqr_(m, n, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr); lwork_cungqr_n__ = (integer) cdum[0].r; cungqr_(m, m, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr); lwork_cungqr_m__ = (integer) cdum[0].r; /* Compute space needed for CGEBRD */ cgebrd_(n, n, &a[a_offset], lda, &s[1], dum, cdum, cdum, cdum, & c_n1, &ierr); lwork_cgebrd__ = (integer) cdum[0].r; /* Compute space needed for CUNGBR */ cungbr_("P", n, n, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr); lwork_cungbr_p__ = (integer) cdum[0].r; cungbr_("Q", n, n, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr); lwork_cungbr_q__ = (integer) cdum[0].r; /* Writing concatenation */ i__1[0] = 1, a__1[0] = jobu; i__1[1] = 1, a__1[1] = jobvt; s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); mnthr = ilaenv_(&c__6, "CGESVD", ch__1, m, n, &c__0, &c__0, ( ftnlen)6, (ftnlen)2); if (*m >= mnthr) { if (wntun) { /* Path 1 (M much larger than N, JOBU='N') */ maxwrk = *n + lwork_cgeqrf__; /* Computing MAX */ i__2 = maxwrk, i__3 = (*n << 1) + lwork_cgebrd__; maxwrk = f2cmax(i__2,i__3); if (wntvo || wntvas) { /* Computing MAX */ i__2 = maxwrk, i__3 = (*n << 1) + lwork_cungbr_p__; maxwrk = f2cmax(i__2,i__3); } minwrk = *n * 3; } else if (wntuo && wntvn) { /* Path 2 (M much larger than N, JOBU='O', JOBVT='N') */ wrkbl = *n + lwork_cgeqrf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *n + lwork_cungqr_n__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = *n * *n + wrkbl, i__3 = *n * *n + *m * *n; maxwrk = f2cmax(i__2,i__3); minwrk = (*n << 1) + *m; } else if (wntuo && wntvas) { /* Path 3 (M much larger than N, JOBU='O', JOBVT='S' or */ /* 'A') */ wrkbl = *n + lwork_cgeqrf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *n + lwork_cungqr_n__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_p__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = *n * *n + wrkbl, i__3 = *n * *n + *m * *n; maxwrk = f2cmax(i__2,i__3); minwrk = (*n << 1) + *m; } else if (wntus && wntvn) { /* Path 4 (M much larger than N, JOBU='S', JOBVT='N') */ wrkbl = *n + lwork_cgeqrf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *n + lwork_cungqr_n__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__; wrkbl = f2cmax(i__2,i__3); maxwrk = *n * *n + wrkbl; minwrk = (*n << 1) + *m; } else if (wntus && wntvo) { /* Path 5 (M much larger than N, JOBU='S', JOBVT='O') */ wrkbl = *n + lwork_cgeqrf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *n + lwork_cungqr_n__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_p__; wrkbl = f2cmax(i__2,i__3); maxwrk = (*n << 1) * *n + wrkbl; minwrk = (*n << 1) + *m; } else if (wntus && wntvas) { /* Path 6 (M much larger than N, JOBU='S', JOBVT='S' or */ /* 'A') */ wrkbl = *n + lwork_cgeqrf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *n + lwork_cungqr_n__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_p__; wrkbl = f2cmax(i__2,i__3); maxwrk = *n * *n + wrkbl; minwrk = (*n << 1) + *m; } else if (wntua && wntvn) { /* Path 7 (M much larger than N, JOBU='A', JOBVT='N') */ wrkbl = *n + lwork_cgeqrf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *n + lwork_cungqr_m__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__; wrkbl = f2cmax(i__2,i__3); maxwrk = *n * *n + wrkbl; minwrk = (*n << 1) + *m; } else if (wntua && wntvo) { /* Path 8 (M much larger than N, JOBU='A', JOBVT='O') */ wrkbl = *n + lwork_cgeqrf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *n + lwork_cungqr_m__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_p__; wrkbl = f2cmax(i__2,i__3); maxwrk = (*n << 1) * *n + wrkbl; minwrk = (*n << 1) + *m; } else if (wntua && wntvas) { /* Path 9 (M much larger than N, JOBU='A', JOBVT='S' or */ /* 'A') */ wrkbl = *n + lwork_cgeqrf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *n + lwork_cungqr_m__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_q__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*n << 1) + lwork_cungbr_p__; wrkbl = f2cmax(i__2,i__3); maxwrk = *n * *n + wrkbl; minwrk = (*n << 1) + *m; } } else { /* Path 10 (M at least N, but not much larger) */ cgebrd_(m, n, &a[a_offset], lda, &s[1], dum, cdum, cdum, cdum, &c_n1, &ierr); lwork_cgebrd__ = (integer) cdum[0].r; maxwrk = (*n << 1) + lwork_cgebrd__; if (wntus || wntuo) { cungbr_("Q", m, n, n, &a[a_offset], lda, cdum, cdum, & c_n1, &ierr); lwork_cungbr_q__ = (integer) cdum[0].r; /* Computing MAX */ i__2 = maxwrk, i__3 = (*n << 1) + lwork_cungbr_q__; maxwrk = f2cmax(i__2,i__3); } if (wntua) { cungbr_("Q", m, m, n, &a[a_offset], lda, cdum, cdum, & c_n1, &ierr); lwork_cungbr_q__ = (integer) cdum[0].r; /* Computing MAX */ i__2 = maxwrk, i__3 = (*n << 1) + lwork_cungbr_q__; maxwrk = f2cmax(i__2,i__3); } if (! wntvn) { /* Computing MAX */ i__2 = maxwrk, i__3 = (*n << 1) + lwork_cungbr_p__; maxwrk = f2cmax(i__2,i__3); } minwrk = (*n << 1) + *m; } } else if (minmn > 0) { /* Space needed for CBDSQR is BDSPAC = 5*M */ /* Writing concatenation */ i__1[0] = 1, a__1[0] = jobu; i__1[1] = 1, a__1[1] = jobvt; s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); mnthr = ilaenv_(&c__6, "CGESVD", ch__1, m, n, &c__0, &c__0, ( ftnlen)6, (ftnlen)2); /* Compute space needed for CGELQF */ cgelqf_(m, n, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr); lwork_cgelqf__ = (integer) cdum[0].r; /* Compute space needed for CUNGLQ */ cunglq_(n, n, m, cdum, n, cdum, cdum, &c_n1, &ierr); lwork_cunglq_n__ = (integer) cdum[0].r; cunglq_(m, n, m, &a[a_offset], lda, cdum, cdum, &c_n1, &ierr); lwork_cunglq_m__ = (integer) cdum[0].r; /* Compute space needed for CGEBRD */ cgebrd_(m, m, &a[a_offset], lda, &s[1], dum, cdum, cdum, cdum, & c_n1, &ierr); lwork_cgebrd__ = (integer) cdum[0].r; /* Compute space needed for CUNGBR P */ cungbr_("P", m, m, m, &a[a_offset], n, cdum, cdum, &c_n1, &ierr); lwork_cungbr_p__ = (integer) cdum[0].r; /* Compute space needed for CUNGBR Q */ cungbr_("Q", m, m, m, &a[a_offset], n, cdum, cdum, &c_n1, &ierr); lwork_cungbr_q__ = (integer) cdum[0].r; if (*n >= mnthr) { if (wntvn) { /* Path 1t(N much larger than M, JOBVT='N') */ maxwrk = *m + lwork_cgelqf__; /* Computing MAX */ i__2 = maxwrk, i__3 = (*m << 1) + lwork_cgebrd__; maxwrk = f2cmax(i__2,i__3); if (wntuo || wntuas) { /* Computing MAX */ i__2 = maxwrk, i__3 = (*m << 1) + lwork_cungbr_q__; maxwrk = f2cmax(i__2,i__3); } minwrk = *m * 3; } else if (wntvo && wntun) { /* Path 2t(N much larger than M, JOBU='N', JOBVT='O') */ wrkbl = *m + lwork_cgelqf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *m + lwork_cunglq_m__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = *m * *m + wrkbl, i__3 = *m * *m + *m * *n; maxwrk = f2cmax(i__2,i__3); minwrk = (*m << 1) + *n; } else if (wntvo && wntuas) { /* Path 3t(N much larger than M, JOBU='S' or 'A', */ /* JOBVT='O') */ wrkbl = *m + lwork_cgelqf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *m + lwork_cunglq_m__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_q__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = *m * *m + wrkbl, i__3 = *m * *m + *m * *n; maxwrk = f2cmax(i__2,i__3); minwrk = (*m << 1) + *n; } else if (wntvs && wntun) { /* Path 4t(N much larger than M, JOBU='N', JOBVT='S') */ wrkbl = *m + lwork_cgelqf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *m + lwork_cunglq_m__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__; wrkbl = f2cmax(i__2,i__3); maxwrk = *m * *m + wrkbl; minwrk = (*m << 1) + *n; } else if (wntvs && wntuo) { /* Path 5t(N much larger than M, JOBU='O', JOBVT='S') */ wrkbl = *m + lwork_cgelqf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *m + lwork_cunglq_m__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_q__; wrkbl = f2cmax(i__2,i__3); maxwrk = (*m << 1) * *m + wrkbl; minwrk = (*m << 1) + *n; } else if (wntvs && wntuas) { /* Path 6t(N much larger than M, JOBU='S' or 'A', */ /* JOBVT='S') */ wrkbl = *m + lwork_cgelqf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *m + lwork_cunglq_m__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_q__; wrkbl = f2cmax(i__2,i__3); maxwrk = *m * *m + wrkbl; minwrk = (*m << 1) + *n; } else if (wntva && wntun) { /* Path 7t(N much larger than M, JOBU='N', JOBVT='A') */ wrkbl = *m + lwork_cgelqf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *m + lwork_cunglq_n__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__; wrkbl = f2cmax(i__2,i__3); maxwrk = *m * *m + wrkbl; minwrk = (*m << 1) + *n; } else if (wntva && wntuo) { /* Path 8t(N much larger than M, JOBU='O', JOBVT='A') */ wrkbl = *m + lwork_cgelqf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *m + lwork_cunglq_n__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_q__; wrkbl = f2cmax(i__2,i__3); maxwrk = (*m << 1) * *m + wrkbl; minwrk = (*m << 1) + *n; } else if (wntva && wntuas) { /* Path 9t(N much larger than M, JOBU='S' or 'A', */ /* JOBVT='A') */ wrkbl = *m + lwork_cgelqf__; /* Computing MAX */ i__2 = wrkbl, i__3 = *m + lwork_cunglq_n__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cgebrd__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_p__; wrkbl = f2cmax(i__2,i__3); /* Computing MAX */ i__2 = wrkbl, i__3 = (*m << 1) + lwork_cungbr_q__; wrkbl = f2cmax(i__2,i__3); maxwrk = *m * *m + wrkbl; minwrk = (*m << 1) + *n; } } else { /* Path 10t(N greater than M, but not much larger) */ cgebrd_(m, n, &a[a_offset], lda, &s[1], dum, cdum, cdum, cdum, &c_n1, &ierr); lwork_cgebrd__ = (integer) cdum[0].r; maxwrk = (*m << 1) + lwork_cgebrd__; if (wntvs || wntvo) { /* Compute space needed for CUNGBR P */ cungbr_("P", m, n, m, &a[a_offset], n, cdum, cdum, &c_n1, &ierr); lwork_cungbr_p__ = (integer) cdum[0].r; /* Computing MAX */ i__2 = maxwrk, i__3 = (*m << 1) + lwork_cungbr_p__; maxwrk = f2cmax(i__2,i__3); } if (wntva) { cungbr_("P", n, n, m, &a[a_offset], n, cdum, cdum, &c_n1, &ierr); lwork_cungbr_p__ = (integer) cdum[0].r; /* Computing MAX */ i__2 = maxwrk, i__3 = (*m << 1) + lwork_cungbr_p__; maxwrk = f2cmax(i__2,i__3); } if (! wntun) { /* Computing MAX */ i__2 = maxwrk, i__3 = (*m << 1) + lwork_cungbr_q__; maxwrk = f2cmax(i__2,i__3); } minwrk = (*m << 1) + *n; } } maxwrk = f2cmax(minwrk,maxwrk); work[1].r = (real) maxwrk, work[1].i = 0.f; if (*lwork < minwrk && ! lquery) { *info = -13; } } if (*info != 0) { i__2 = -(*info); xerbla_("CGESVD", &i__2, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } /* Get machine constants */ eps = slamch_("P"); smlnum = sqrt(slamch_("S")) / eps; bignum = 1.f / smlnum; /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */ anrm = clange_("M", m, n, &a[a_offset], lda, dum); iscl = 0; if (anrm > 0.f && anrm < smlnum) { iscl = 1; clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, & ierr); } else if (anrm > bignum) { iscl = 1; clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, & ierr); } if (*m >= *n) { /* A has at least as many rows as columns. If A has sufficiently */ /* more rows than columns, first reduce using the QR */ /* decomposition (if sufficient workspace available) */ if (*m >= mnthr) { if (wntun) { /* Path 1 (M much larger than N, JOBU='N') */ /* No left singular vectors to be computed */ itau = 1; iwork = itau + *n; /* Compute A=Q*R */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: need 0) */ i__2 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], & i__2, &ierr); /* Zero out below R */ if (*n > 1) { i__2 = *n - 1; i__3 = *n - 1; claset_("L", &i__2, &i__3, &c_b1, &c_b1, &a[a_dim1 + 2], lda); } ie = 1; itauq = 1; itaup = itauq + *n; iwork = itaup + *n; /* Bidiagonalize R in A */ /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */ /* (RWorkspace: need N) */ i__2 = *lwork - iwork + 1; cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[ itauq], &work[itaup], &work[iwork], &i__2, &ierr); ncvt = 0; if (wntvo || wntvas) { /* If right singular vectors desired, generate P'. */ /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], & work[iwork], &i__2, &ierr); ncvt = *n; } irwork = ie + *n; /* Perform bidiagonal QR iteration, computing right */ /* singular vectors of A in A if desired */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, &ncvt, &c__0, &c__0, &s[1], &rwork[ie], &a[ a_offset], lda, cdum, &c__1, cdum, &c__1, &rwork[ irwork], info); /* If right singular vectors desired in VT, copy them there */ if (wntvas) { clacpy_("F", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt); } } else if (wntuo && wntvn) { /* Path 2 (M much larger than N, JOBU='O', JOBVT='N') */ /* N left singular vectors to be overwritten on A and */ /* no right singular vectors to be computed */ if (*lwork >= *n * *n + *n * 3) { /* Sufficient workspace for a fast algorithm */ ir = 1; /* Computing MAX */ i__2 = wrkbl, i__3 = *lda * *n; if (*lwork >= f2cmax(i__2,i__3) + *lda * *n) { /* WORK(IU) is LDA by N, WORK(IR) is LDA by N */ ldwrku = *lda; ldwrkr = *lda; } else /* if(complicated condition) */ { /* Computing MAX */ i__2 = wrkbl, i__3 = *lda * *n; if (*lwork >= f2cmax(i__2,i__3) + *n * *n) { /* WORK(IU) is LDA by N, WORK(IR) is N by N */ ldwrku = *lda; ldwrkr = *n; } else { /* WORK(IU) is LDWRKU by N, WORK(IR) is N by N */ ldwrku = (*lwork - *n * *n) / *n; ldwrkr = *n; } } itau = ir + ldwrkr * *n; iwork = itau + *n; /* Compute A=Q*R */ /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] , &i__2, &ierr); /* Copy R to WORK(IR) and zero out below it */ clacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr); i__2 = *n - 1; i__3 = *n - 1; claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[ir + 1], & ldwrkr); /* Generate Q in A */ /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *n; iwork = itaup + *n; /* Bidiagonalize R in WORK(IR) */ /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */ /* (RWorkspace: need N) */ i__2 = *lwork - iwork + 1; cgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], &i__2, & ierr); /* Generate left vectors bidiagonalizing R */ /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */ /* (RWorkspace: need 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq], & work[iwork], &i__2, &ierr); irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of R in WORK(IR) */ /* (CWorkspace: need N*N) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, &c__0, n, &c__0, &s[1], &rwork[ie], cdum, &c__1, &work[ir], &ldwrkr, cdum, &c__1, &rwork[ irwork], info); iu = itauq; /* Multiply Q in A by left singular vectors of R in */ /* WORK(IR), storing result in WORK(IU) and copying to A */ /* (CWorkspace: need N*N+N, prefer N*N+M*N) */ /* (RWorkspace: 0) */ i__2 = *m; i__3 = ldwrku; for (i__ = 1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3) { /* Computing MIN */ i__4 = *m - i__ + 1; chunk = f2cmin(i__4,ldwrku); cgemm_("N", "N", &chunk, n, n, &c_b2, &a[i__ + a_dim1] , lda, &work[ir], &ldwrkr, &c_b1, &work[iu], & ldwrku); clacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ + a_dim1], lda); /* L10: */ } } else { /* Insufficient workspace for a fast algorithm */ ie = 1; itauq = 1; itaup = itauq + *n; iwork = itaup + *n; /* Bidiagonalize A */ /* (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB) */ /* (RWorkspace: N) */ i__3 = *lwork - iwork + 1; cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[ itauq], &work[itaup], &work[iwork], &i__3, &ierr); /* Generate left vectors bidiagonalizing A */ /* (CWorkspace: need 3*N, prefer 2*N+N*NB) */ /* (RWorkspace: 0) */ i__3 = *lwork - iwork + 1; cungbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], & work[iwork], &i__3, &ierr); irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of A in A */ /* (CWorkspace: need 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, &c__0, m, &c__0, &s[1], &rwork[ie], cdum, &c__1, &a[a_offset], lda, cdum, &c__1, &rwork[ irwork], info); } } else if (wntuo && wntvas) { /* Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A') */ /* N left singular vectors to be overwritten on A and */ /* N right singular vectors to be computed in VT */ if (*lwork >= *n * *n + *n * 3) { /* Sufficient workspace for a fast algorithm */ ir = 1; /* Computing MAX */ i__3 = wrkbl, i__2 = *lda * *n; if (*lwork >= f2cmax(i__3,i__2) + *lda * *n) { /* WORK(IU) is LDA by N and WORK(IR) is LDA by N */ ldwrku = *lda; ldwrkr = *lda; } else /* if(complicated condition) */ { /* Computing MAX */ i__3 = wrkbl, i__2 = *lda * *n; if (*lwork >= f2cmax(i__3,i__2) + *n * *n) { /* WORK(IU) is LDA by N and WORK(IR) is N by N */ ldwrku = *lda; ldwrkr = *n; } else { /* WORK(IU) is LDWRKU by N and WORK(IR) is N by N */ ldwrku = (*lwork - *n * *n) / *n; ldwrkr = *n; } } itau = ir + ldwrkr * *n; iwork = itau + *n; /* Compute A=Q*R */ /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */ /* (RWorkspace: 0) */ i__3 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] , &i__3, &ierr); /* Copy R to VT, zeroing out below it */ clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt); if (*n > 1) { i__3 = *n - 1; i__2 = *n - 1; claset_("L", &i__3, &i__2, &c_b1, &c_b1, &vt[vt_dim1 + 2], ldvt); } /* Generate Q in A */ /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */ /* (RWorkspace: 0) */ i__3 = *lwork - iwork + 1; cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__3, &ierr); ie = 1; itauq = itau; itaup = itauq + *n; iwork = itaup + *n; /* Bidiagonalize R in VT, copying result to WORK(IR) */ /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */ /* (RWorkspace: need N) */ i__3 = *lwork - iwork + 1; cgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], &i__3, & ierr); clacpy_("L", n, n, &vt[vt_offset], ldvt, &work[ir], & ldwrkr); /* Generate left vectors bidiagonalizing R in WORK(IR) */ /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */ /* (RWorkspace: 0) */ i__3 = *lwork - iwork + 1; cungbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq], & work[iwork], &i__3, &ierr); /* Generate right vectors bidiagonalizing R in VT */ /* (CWorkspace: need N*N+3*N-1, prefer N*N+2*N+(N-1)*NB) */ /* (RWorkspace: 0) */ i__3 = *lwork - iwork + 1; cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], &work[iwork], &i__3, &ierr); irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of R in WORK(IR) and computing right */ /* singular vectors of R in VT */ /* (CWorkspace: need N*N) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, n, n, &c__0, &s[1], &rwork[ie], &vt[ vt_offset], ldvt, &work[ir], &ldwrkr, cdum, &c__1, &rwork[irwork], info); iu = itauq; /* Multiply Q in A by left singular vectors of R in */ /* WORK(IR), storing result in WORK(IU) and copying to A */ /* (CWorkspace: need N*N+N, prefer N*N+M*N) */ /* (RWorkspace: 0) */ i__3 = *m; i__2 = ldwrku; for (i__ = 1; i__2 < 0 ? i__ >= i__3 : i__ <= i__3; i__ += i__2) { /* Computing MIN */ i__4 = *m - i__ + 1; chunk = f2cmin(i__4,ldwrku); cgemm_("N", "N", &chunk, n, n, &c_b2, &a[i__ + a_dim1] , lda, &work[ir], &ldwrkr, &c_b1, &work[iu], & ldwrku); clacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ + a_dim1], lda); /* L20: */ } } else { /* Insufficient workspace for a fast algorithm */ itau = 1; iwork = itau + *n; /* Compute A=Q*R */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] , &i__2, &ierr); /* Copy R to VT, zeroing out below it */ clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt); if (*n > 1) { i__2 = *n - 1; i__3 = *n - 1; claset_("L", &i__2, &i__3, &c_b1, &c_b1, &vt[vt_dim1 + 2], ldvt); } /* Generate Q in A */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *n; iwork = itaup + *n; /* Bidiagonalize R in VT */ /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */ /* (RWorkspace: N) */ i__2 = *lwork - iwork + 1; cgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], &i__2, & ierr); /* Multiply Q in A by left vectors bidiagonalizing R */ /* (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunmbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt, & work[itauq], &a[a_offset], lda, &work[iwork], & i__2, &ierr); /* Generate right vectors bidiagonalizing R in VT */ /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], &work[iwork], &i__2, &ierr); irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of A in A and computing right */ /* singular vectors of A in VT */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, n, m, &c__0, &s[1], &rwork[ie], &vt[ vt_offset], ldvt, &a[a_offset], lda, cdum, &c__1, &rwork[irwork], info); } } else if (wntus) { if (wntvn) { /* Path 4 (M much larger than N, JOBU='S', JOBVT='N') */ /* N left singular vectors to be computed in U and */ /* no right singular vectors to be computed */ if (*lwork >= *n * *n + *n * 3) { /* Sufficient workspace for a fast algorithm */ ir = 1; if (*lwork >= wrkbl + *lda * *n) { /* WORK(IR) is LDA by N */ ldwrkr = *lda; } else { /* WORK(IR) is N by N */ ldwrkr = *n; } itau = ir + ldwrkr * *n; iwork = itau + *n; /* Compute A=Q*R */ /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); /* Copy R to WORK(IR), zeroing out below it */ clacpy_("U", n, n, &a[a_offset], lda, &work[ir], & ldwrkr); i__2 = *n - 1; i__3 = *n - 1; claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[ir + 1] , &ldwrkr); /* Generate Q in A */ /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungqr_(m, n, n, &a[a_offset], lda, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *n; iwork = itaup + *n; /* Bidiagonalize R in WORK(IR) */ /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */ /* (RWorkspace: need N) */ i__2 = *lwork - iwork + 1; cgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Generate left vectors bidiagonalizing R in WORK(IR) */ /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq] , &work[iwork], &i__2, &ierr); irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of R in WORK(IR) */ /* (CWorkspace: need N*N) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, &c__0, n, &c__0, &s[1], &rwork[ie], cdum, &c__1, &work[ir], &ldwrkr, cdum, &c__1, &rwork[irwork], info); /* Multiply Q in A by left singular vectors of R in */ /* WORK(IR), storing result in U */ /* (CWorkspace: need N*N) */ /* (RWorkspace: 0) */ cgemm_("N", "N", m, n, n, &c_b2, &a[a_offset], lda, & work[ir], &ldwrkr, &c_b1, &u[u_offset], ldu); } else { /* Insufficient workspace for a fast algorithm */ itau = 1; iwork = itau + *n; /* Compute A=Q*R, copying result to U */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); /* Generate Q in U */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungqr_(m, n, n, &u[u_offset], ldu, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *n; iwork = itaup + *n; /* Zero out below R in A */ if (*n > 1) { i__2 = *n - 1; i__3 = *n - 1; claset_("L", &i__2, &i__3, &c_b1, &c_b1, &a[ a_dim1 + 2], lda); } /* Bidiagonalize R in A */ /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */ /* (RWorkspace: need N) */ i__2 = *lwork - iwork + 1; cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Multiply Q in U by left vectors bidiagonalizing R */ /* (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunmbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, & work[itauq], &u[u_offset], ldu, &work[iwork], &i__2, &ierr) ; irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of A in U */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, &c__0, m, &c__0, &s[1], &rwork[ie], cdum, &c__1, &u[u_offset], ldu, cdum, &c__1, & rwork[irwork], info); } } else if (wntvo) { /* Path 5 (M much larger than N, JOBU='S', JOBVT='O') */ /* N left singular vectors to be computed in U and */ /* N right singular vectors to be overwritten on A */ if (*lwork >= (*n << 1) * *n + *n * 3) { /* Sufficient workspace for a fast algorithm */ iu = 1; if (*lwork >= wrkbl + (*lda << 1) * *n) { /* WORK(IU) is LDA by N and WORK(IR) is LDA by N */ ldwrku = *lda; ir = iu + ldwrku * *n; ldwrkr = *lda; } else if (*lwork >= wrkbl + (*lda + *n) * *n) { /* WORK(IU) is LDA by N and WORK(IR) is N by N */ ldwrku = *lda; ir = iu + ldwrku * *n; ldwrkr = *n; } else { /* WORK(IU) is N by N and WORK(IR) is N by N */ ldwrku = *n; ir = iu + ldwrku * *n; ldwrkr = *n; } itau = ir + ldwrkr * *n; iwork = itau + *n; /* Compute A=Q*R */ /* (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); /* Copy R to WORK(IU), zeroing out below it */ clacpy_("U", n, n, &a[a_offset], lda, &work[iu], & ldwrku); i__2 = *n - 1; i__3 = *n - 1; claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 1] , &ldwrku); /* Generate Q in A */ /* (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungqr_(m, n, n, &a[a_offset], lda, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *n; iwork = itaup + *n; /* Bidiagonalize R in WORK(IU), copying result to */ /* WORK(IR) */ /* (CWorkspace: need 2*N*N+3*N, */ /* prefer 2*N*N+2*N+2*N*NB) */ /* (RWorkspace: need N) */ i__2 = *lwork - iwork + 1; cgebrd_(n, n, &work[iu], &ldwrku, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); clacpy_("U", n, n, &work[iu], &ldwrku, &work[ir], & ldwrkr); /* Generate left bidiagonalizing vectors in WORK(IU) */ /* (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq] , &work[iwork], &i__2, &ierr); /* Generate right bidiagonalizing vectors in WORK(IR) */ /* (CWorkspace: need 2*N*N+3*N-1, */ /* prefer 2*N*N+2*N+(N-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", n, n, n, &work[ir], &ldwrkr, &work[itaup] , &work[iwork], &i__2, &ierr); irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of R in WORK(IU) and computing */ /* right singular vectors of R in WORK(IR) */ /* (CWorkspace: need 2*N*N) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, n, n, &c__0, &s[1], &rwork[ie], &work[ ir], &ldwrkr, &work[iu], &ldwrku, cdum, &c__1, &rwork[irwork], info); /* Multiply Q in A by left singular vectors of R in */ /* WORK(IU), storing result in U */ /* (CWorkspace: need N*N) */ /* (RWorkspace: 0) */ cgemm_("N", "N", m, n, n, &c_b2, &a[a_offset], lda, & work[iu], &ldwrku, &c_b1, &u[u_offset], ldu); /* Copy right singular vectors of R to A */ /* (CWorkspace: need N*N) */ /* (RWorkspace: 0) */ clacpy_("F", n, n, &work[ir], &ldwrkr, &a[a_offset], lda); } else { /* Insufficient workspace for a fast algorithm */ itau = 1; iwork = itau + *n; /* Compute A=Q*R, copying result to U */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); /* Generate Q in U */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungqr_(m, n, n, &u[u_offset], ldu, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *n; iwork = itaup + *n; /* Zero out below R in A */ if (*n > 1) { i__2 = *n - 1; i__3 = *n - 1; claset_("L", &i__2, &i__3, &c_b1, &c_b1, &a[ a_dim1 + 2], lda); } /* Bidiagonalize R in A */ /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */ /* (RWorkspace: need N) */ i__2 = *lwork - iwork + 1; cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Multiply Q in U by left vectors bidiagonalizing R */ /* (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunmbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, & work[itauq], &u[u_offset], ldu, &work[iwork], &i__2, &ierr) ; /* Generate right vectors bidiagonalizing R in A */ /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[iwork], &i__2, &ierr); irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of A in U and computing right */ /* singular vectors of A in A */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, n, m, &c__0, &s[1], &rwork[ie], &a[ a_offset], lda, &u[u_offset], ldu, cdum, & c__1, &rwork[irwork], info); } } else if (wntvas) { /* Path 6 (M much larger than N, JOBU='S', JOBVT='S' */ /* or 'A') */ /* N left singular vectors to be computed in U and */ /* N right singular vectors to be computed in VT */ if (*lwork >= *n * *n + *n * 3) { /* Sufficient workspace for a fast algorithm */ iu = 1; if (*lwork >= wrkbl + *lda * *n) { /* WORK(IU) is LDA by N */ ldwrku = *lda; } else { /* WORK(IU) is N by N */ ldwrku = *n; } itau = iu + ldwrku * *n; iwork = itau + *n; /* Compute A=Q*R */ /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); /* Copy R to WORK(IU), zeroing out below it */ clacpy_("U", n, n, &a[a_offset], lda, &work[iu], & ldwrku); i__2 = *n - 1; i__3 = *n - 1; claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 1] , &ldwrku); /* Generate Q in A */ /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungqr_(m, n, n, &a[a_offset], lda, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *n; iwork = itaup + *n; /* Bidiagonalize R in WORK(IU), copying result to VT */ /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */ /* (RWorkspace: need N) */ i__2 = *lwork - iwork + 1; cgebrd_(n, n, &work[iu], &ldwrku, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); clacpy_("U", n, n, &work[iu], &ldwrku, &vt[vt_offset], ldvt); /* Generate left bidiagonalizing vectors in WORK(IU) */ /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq] , &work[iwork], &i__2, &ierr); /* Generate right bidiagonalizing vectors in VT */ /* (CWorkspace: need N*N+3*N-1, */ /* prefer N*N+2*N+(N-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[ itaup], &work[iwork], &i__2, &ierr) ; irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of R in WORK(IU) and computing */ /* right singular vectors of R in VT */ /* (CWorkspace: need N*N) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, n, n, &c__0, &s[1], &rwork[ie], &vt[ vt_offset], ldvt, &work[iu], &ldwrku, cdum, & c__1, &rwork[irwork], info); /* Multiply Q in A by left singular vectors of R in */ /* WORK(IU), storing result in U */ /* (CWorkspace: need N*N) */ /* (RWorkspace: 0) */ cgemm_("N", "N", m, n, n, &c_b2, &a[a_offset], lda, & work[iu], &ldwrku, &c_b1, &u[u_offset], ldu); } else { /* Insufficient workspace for a fast algorithm */ itau = 1; iwork = itau + *n; /* Compute A=Q*R, copying result to U */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); /* Generate Q in U */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungqr_(m, n, n, &u[u_offset], ldu, &work[itau], & work[iwork], &i__2, &ierr); /* Copy R to VT, zeroing out below it */ clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt); if (*n > 1) { i__2 = *n - 1; i__3 = *n - 1; claset_("L", &i__2, &i__3, &c_b1, &c_b1, &vt[ vt_dim1 + 2], ldvt); } ie = 1; itauq = itau; itaup = itauq + *n; iwork = itaup + *n; /* Bidiagonalize R in VT */ /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */ /* (RWorkspace: need N) */ i__2 = *lwork - iwork + 1; cgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &rwork[ie], &work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Multiply Q in U by left bidiagonalizing vectors */ /* in VT */ /* (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunmbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt, &work[itauq], &u[u_offset], ldu, &work[iwork], &i__2, &ierr); /* Generate right bidiagonalizing vectors in VT */ /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[ itaup], &work[iwork], &i__2, &ierr) ; irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of A in U and computing right */ /* singular vectors of A in VT */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, n, m, &c__0, &s[1], &rwork[ie], &vt[ vt_offset], ldvt, &u[u_offset], ldu, cdum, & c__1, &rwork[irwork], info); } } } else if (wntua) { if (wntvn) { /* Path 7 (M much larger than N, JOBU='A', JOBVT='N') */ /* M left singular vectors to be computed in U and */ /* no right singular vectors to be computed */ /* Computing MAX */ i__2 = *n + *m, i__3 = *n * 3; if (*lwork >= *n * *n + f2cmax(i__2,i__3)) { /* Sufficient workspace for a fast algorithm */ ir = 1; if (*lwork >= wrkbl + *lda * *n) { /* WORK(IR) is LDA by N */ ldwrkr = *lda; } else { /* WORK(IR) is N by N */ ldwrkr = *n; } itau = ir + ldwrkr * *n; iwork = itau + *n; /* Compute A=Q*R, copying result to U */ /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); /* Copy R to WORK(IR), zeroing out below it */ clacpy_("U", n, n, &a[a_offset], lda, &work[ir], & ldwrkr); i__2 = *n - 1; i__3 = *n - 1; claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[ir + 1] , &ldwrkr); /* Generate Q in U */ /* (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *n; iwork = itaup + *n; /* Bidiagonalize R in WORK(IR) */ /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */ /* (RWorkspace: need N) */ i__2 = *lwork - iwork + 1; cgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Generate left bidiagonalizing vectors in WORK(IR) */ /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq] , &work[iwork], &i__2, &ierr); irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of R in WORK(IR) */ /* (CWorkspace: need N*N) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, &c__0, n, &c__0, &s[1], &rwork[ie], cdum, &c__1, &work[ir], &ldwrkr, cdum, &c__1, &rwork[irwork], info); /* Multiply Q in U by left singular vectors of R in */ /* WORK(IR), storing result in A */ /* (CWorkspace: need N*N) */ /* (RWorkspace: 0) */ cgemm_("N", "N", m, n, n, &c_b2, &u[u_offset], ldu, & work[ir], &ldwrkr, &c_b1, &a[a_offset], lda); /* Copy left singular vectors of A from A to U */ clacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu); } else { /* Insufficient workspace for a fast algorithm */ itau = 1; iwork = itau + *n; /* Compute A=Q*R, copying result to U */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); /* Generate Q in U */ /* (CWorkspace: need N+M, prefer N+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *n; iwork = itaup + *n; /* Zero out below R in A */ if (*n > 1) { i__2 = *n - 1; i__3 = *n - 1; claset_("L", &i__2, &i__3, &c_b1, &c_b1, &a[ a_dim1 + 2], lda); } /* Bidiagonalize R in A */ /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */ /* (RWorkspace: need N) */ i__2 = *lwork - iwork + 1; cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Multiply Q in U by left bidiagonalizing vectors */ /* in A */ /* (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunmbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, & work[itauq], &u[u_offset], ldu, &work[iwork], &i__2, &ierr) ; irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of A in U */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, &c__0, m, &c__0, &s[1], &rwork[ie], cdum, &c__1, &u[u_offset], ldu, cdum, &c__1, & rwork[irwork], info); } } else if (wntvo) { /* Path 8 (M much larger than N, JOBU='A', JOBVT='O') */ /* M left singular vectors to be computed in U and */ /* N right singular vectors to be overwritten on A */ /* Computing MAX */ i__2 = *n + *m, i__3 = *n * 3; if (*lwork >= (*n << 1) * *n + f2cmax(i__2,i__3)) { /* Sufficient workspace for a fast algorithm */ iu = 1; if (*lwork >= wrkbl + (*lda << 1) * *n) { /* WORK(IU) is LDA by N and WORK(IR) is LDA by N */ ldwrku = *lda; ir = iu + ldwrku * *n; ldwrkr = *lda; } else if (*lwork >= wrkbl + (*lda + *n) * *n) { /* WORK(IU) is LDA by N and WORK(IR) is N by N */ ldwrku = *lda; ir = iu + ldwrku * *n; ldwrkr = *n; } else { /* WORK(IU) is N by N and WORK(IR) is N by N */ ldwrku = *n; ir = iu + ldwrku * *n; ldwrkr = *n; } itau = ir + ldwrkr * *n; iwork = itau + *n; /* Compute A=Q*R, copying result to U */ /* (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); /* Generate Q in U */ /* (CWorkspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], & work[iwork], &i__2, &ierr); /* Copy R to WORK(IU), zeroing out below it */ clacpy_("U", n, n, &a[a_offset], lda, &work[iu], & ldwrku); i__2 = *n - 1; i__3 = *n - 1; claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 1] , &ldwrku); ie = 1; itauq = itau; itaup = itauq + *n; iwork = itaup + *n; /* Bidiagonalize R in WORK(IU), copying result to */ /* WORK(IR) */ /* (CWorkspace: need 2*N*N+3*N, */ /* prefer 2*N*N+2*N+2*N*NB) */ /* (RWorkspace: need N) */ i__2 = *lwork - iwork + 1; cgebrd_(n, n, &work[iu], &ldwrku, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); clacpy_("U", n, n, &work[iu], &ldwrku, &work[ir], & ldwrkr); /* Generate left bidiagonalizing vectors in WORK(IU) */ /* (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq] , &work[iwork], &i__2, &ierr); /* Generate right bidiagonalizing vectors in WORK(IR) */ /* (CWorkspace: need 2*N*N+3*N-1, */ /* prefer 2*N*N+2*N+(N-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", n, n, n, &work[ir], &ldwrkr, &work[itaup] , &work[iwork], &i__2, &ierr); irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of R in WORK(IU) and computing */ /* right singular vectors of R in WORK(IR) */ /* (CWorkspace: need 2*N*N) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, n, n, &c__0, &s[1], &rwork[ie], &work[ ir], &ldwrkr, &work[iu], &ldwrku, cdum, &c__1, &rwork[irwork], info); /* Multiply Q in U by left singular vectors of R in */ /* WORK(IU), storing result in A */ /* (CWorkspace: need N*N) */ /* (RWorkspace: 0) */ cgemm_("N", "N", m, n, n, &c_b2, &u[u_offset], ldu, & work[iu], &ldwrku, &c_b1, &a[a_offset], lda); /* Copy left singular vectors of A from A to U */ clacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu); /* Copy right singular vectors of R from WORK(IR) to A */ clacpy_("F", n, n, &work[ir], &ldwrkr, &a[a_offset], lda); } else { /* Insufficient workspace for a fast algorithm */ itau = 1; iwork = itau + *n; /* Compute A=Q*R, copying result to U */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); /* Generate Q in U */ /* (CWorkspace: need N+M, prefer N+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *n; iwork = itaup + *n; /* Zero out below R in A */ if (*n > 1) { i__2 = *n - 1; i__3 = *n - 1; claset_("L", &i__2, &i__3, &c_b1, &c_b1, &a[ a_dim1 + 2], lda); } /* Bidiagonalize R in A */ /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */ /* (RWorkspace: need N) */ i__2 = *lwork - iwork + 1; cgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Multiply Q in U by left bidiagonalizing vectors */ /* in A */ /* (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunmbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, & work[itauq], &u[u_offset], ldu, &work[iwork], &i__2, &ierr) ; /* Generate right bidiagonalizing vectors in A */ /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[iwork], &i__2, &ierr); irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of A in U and computing right */ /* singular vectors of A in A */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, n, m, &c__0, &s[1], &rwork[ie], &a[ a_offset], lda, &u[u_offset], ldu, cdum, & c__1, &rwork[irwork], info); } } else if (wntvas) { /* Path 9 (M much larger than N, JOBU='A', JOBVT='S' */ /* or 'A') */ /* M left singular vectors to be computed in U and */ /* N right singular vectors to be computed in VT */ /* Computing MAX */ i__2 = *n + *m, i__3 = *n * 3; if (*lwork >= *n * *n + f2cmax(i__2,i__3)) { /* Sufficient workspace for a fast algorithm */ iu = 1; if (*lwork >= wrkbl + *lda * *n) { /* WORK(IU) is LDA by N */ ldwrku = *lda; } else { /* WORK(IU) is N by N */ ldwrku = *n; } itau = iu + ldwrku * *n; iwork = itau + *n; /* Compute A=Q*R, copying result to U */ /* (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); /* Generate Q in U */ /* (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], & work[iwork], &i__2, &ierr); /* Copy R to WORK(IU), zeroing out below it */ clacpy_("U", n, n, &a[a_offset], lda, &work[iu], & ldwrku); i__2 = *n - 1; i__3 = *n - 1; claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[iu + 1] , &ldwrku); ie = 1; itauq = itau; itaup = itauq + *n; iwork = itaup + *n; /* Bidiagonalize R in WORK(IU), copying result to VT */ /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB) */ /* (RWorkspace: need N) */ i__2 = *lwork - iwork + 1; cgebrd_(n, n, &work[iu], &ldwrku, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); clacpy_("U", n, n, &work[iu], &ldwrku, &vt[vt_offset], ldvt); /* Generate left bidiagonalizing vectors in WORK(IU) */ /* (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq] , &work[iwork], &i__2, &ierr); /* Generate right bidiagonalizing vectors in VT */ /* (CWorkspace: need N*N+3*N-1, */ /* prefer N*N+2*N+(N-1)*NB) */ /* (RWorkspace: need 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[ itaup], &work[iwork], &i__2, &ierr) ; irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of R in WORK(IU) and computing */ /* right singular vectors of R in VT */ /* (CWorkspace: need N*N) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, n, n, &c__0, &s[1], &rwork[ie], &vt[ vt_offset], ldvt, &work[iu], &ldwrku, cdum, & c__1, &rwork[irwork], info); /* Multiply Q in U by left singular vectors of R in */ /* WORK(IU), storing result in A */ /* (CWorkspace: need N*N) */ /* (RWorkspace: 0) */ cgemm_("N", "N", m, n, n, &c_b2, &u[u_offset], ldu, & work[iu], &ldwrku, &c_b1, &a[a_offset], lda); /* Copy left singular vectors of A from A to U */ clacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu); } else { /* Insufficient workspace for a fast algorithm */ itau = 1; iwork = itau + *n; /* Compute A=Q*R, copying result to U */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); /* Generate Q in U */ /* (CWorkspace: need N+M, prefer N+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungqr_(m, m, n, &u[u_offset], ldu, &work[itau], & work[iwork], &i__2, &ierr); /* Copy R from A to VT, zeroing out below it */ clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt); if (*n > 1) { i__2 = *n - 1; i__3 = *n - 1; claset_("L", &i__2, &i__3, &c_b1, &c_b1, &vt[ vt_dim1 + 2], ldvt); } ie = 1; itauq = itau; itaup = itauq + *n; iwork = itaup + *n; /* Bidiagonalize R in VT */ /* (CWorkspace: need 3*N, prefer 2*N+2*N*NB) */ /* (RWorkspace: need N) */ i__2 = *lwork - iwork + 1; cgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &rwork[ie], &work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Multiply Q in U by left bidiagonalizing vectors */ /* in VT */ /* (CWorkspace: need 2*N+M, prefer 2*N+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunmbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt, &work[itauq], &u[u_offset], ldu, &work[iwork], &i__2, &ierr); /* Generate right bidiagonalizing vectors in VT */ /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[ itaup], &work[iwork], &i__2, &ierr) ; irwork = ie + *n; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of A in U and computing right */ /* singular vectors of A in VT */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, n, m, &c__0, &s[1], &rwork[ie], &vt[ vt_offset], ldvt, &u[u_offset], ldu, cdum, & c__1, &rwork[irwork], info); } } } } else { /* M .LT. MNTHR */ /* Path 10 (M at least N, but not much larger) */ /* Reduce to bidiagonal form without QR decomposition */ ie = 1; itauq = 1; itaup = itauq + *n; iwork = itaup + *n; /* Bidiagonalize A */ /* (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB) */ /* (RWorkspace: need N) */ i__2 = *lwork - iwork + 1; cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &work[itaup], &work[iwork], &i__2, &ierr); if (wntuas) { /* If left singular vectors desired in U, copy result to U */ /* and generate left bidiagonalizing vectors in U */ /* (CWorkspace: need 2*N+NCU, prefer 2*N+NCU*NB) */ /* (RWorkspace: 0) */ clacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu); if (wntus) { ncu = *n; } if (wntua) { ncu = *m; } i__2 = *lwork - iwork + 1; cungbr_("Q", m, &ncu, n, &u[u_offset], ldu, &work[itauq], & work[iwork], &i__2, &ierr); } if (wntvas) { /* If right singular vectors desired in VT, copy result to */ /* VT and generate right bidiagonalizing vectors in VT */ /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */ /* (RWorkspace: 0) */ clacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt); i__2 = *lwork - iwork + 1; cungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], & work[iwork], &i__2, &ierr); } if (wntuo) { /* If left singular vectors desired in A, generate left */ /* bidiagonalizing vectors in A */ /* (CWorkspace: need 3*N, prefer 2*N+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &work[ iwork], &i__2, &ierr); } if (wntvo) { /* If right singular vectors desired in A, generate right */ /* bidiagonalizing vectors in A */ /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[ iwork], &i__2, &ierr); } irwork = ie + *n; if (wntuas || wntuo) { nru = *m; } if (wntun) { nru = 0; } if (wntvas || wntvo) { ncvt = *n; } if (wntvn) { ncvt = 0; } if (! wntuo && ! wntvo) { /* Perform bidiagonal QR iteration, if desired, computing */ /* left singular vectors in U and computing right singular */ /* vectors in VT */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &vt[ vt_offset], ldvt, &u[u_offset], ldu, cdum, &c__1, & rwork[irwork], info); } else if (! wntuo && wntvo) { /* Perform bidiagonal QR iteration, if desired, computing */ /* left singular vectors in U and computing right singular */ /* vectors in A */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &a[ a_offset], lda, &u[u_offset], ldu, cdum, &c__1, & rwork[irwork], info); } else { /* Perform bidiagonal QR iteration, if desired, computing */ /* left singular vectors in A and computing right singular */ /* vectors in VT */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &vt[ vt_offset], ldvt, &a[a_offset], lda, cdum, &c__1, & rwork[irwork], info); } } } else { /* A has more columns than rows. If A has sufficiently more */ /* columns than rows, first reduce using the LQ decomposition (if */ /* sufficient workspace available) */ if (*n >= mnthr) { if (wntvn) { /* Path 1t(N much larger than M, JOBVT='N') */ /* No right singular vectors to be computed */ itau = 1; iwork = itau + *m; /* Compute A=L*Q */ /* (CWorkspace: need 2*M, prefer M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], & i__2, &ierr); /* Zero out above L */ i__2 = *m - 1; i__3 = *m - 1; claset_("U", &i__2, &i__3, &c_b1, &c_b1, &a[(a_dim1 << 1) + 1] , lda); ie = 1; itauq = 1; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize L in A */ /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &work[ itauq], &work[itaup], &work[iwork], &i__2, &ierr); if (wntuo || wntuas) { /* If left singular vectors desired, generate Q */ /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq], & work[iwork], &i__2, &ierr); } irwork = ie + *m; nru = 0; if (wntuo || wntuas) { nru = *m; } /* Perform bidiagonal QR iteration, computing left singular */ /* vectors of A in A if desired */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, &c__0, &nru, &c__0, &s[1], &rwork[ie], cdum, & c__1, &a[a_offset], lda, cdum, &c__1, &rwork[irwork], info); /* If left singular vectors desired in U, copy them there */ if (wntuas) { clacpy_("F", m, m, &a[a_offset], lda, &u[u_offset], ldu); } } else if (wntvo && wntun) { /* Path 2t(N much larger than M, JOBU='N', JOBVT='O') */ /* M right singular vectors to be overwritten on A and */ /* no left singular vectors to be computed */ if (*lwork >= *m * *m + *m * 3) { /* Sufficient workspace for a fast algorithm */ ir = 1; /* Computing MAX */ i__2 = wrkbl, i__3 = *lda * *n; if (*lwork >= f2cmax(i__2,i__3) + *lda * *m) { /* WORK(IU) is LDA by N and WORK(IR) is LDA by M */ ldwrku = *lda; chunk = *n; ldwrkr = *lda; } else /* if(complicated condition) */ { /* Computing MAX */ i__2 = wrkbl, i__3 = *lda * *n; if (*lwork >= f2cmax(i__2,i__3) + *m * *m) { /* WORK(IU) is LDA by N and WORK(IR) is M by M */ ldwrku = *lda; chunk = *n; ldwrkr = *m; } else { /* WORK(IU) is M by CHUNK and WORK(IR) is M by M */ ldwrku = *m; chunk = (*lwork - *m * *m) / *m; ldwrkr = *m; } } itau = ir + ldwrkr * *m; iwork = itau + *m; /* Compute A=L*Q */ /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] , &i__2, &ierr); /* Copy L to WORK(IR) and zero out above it */ clacpy_("L", m, m, &a[a_offset], lda, &work[ir], &ldwrkr); i__2 = *m - 1; i__3 = *m - 1; claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[ir + ldwrkr], &ldwrkr); /* Generate Q in A */ /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize L in WORK(IR) */ /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], &i__2, & ierr); /* Generate right vectors bidiagonalizing L */ /* (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup], & work[iwork], &i__2, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing right */ /* singular vectors of L in WORK(IR) */ /* (CWorkspace: need M*M) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, m, &c__0, &c__0, &s[1], &rwork[ie], &work[ ir], &ldwrkr, cdum, &c__1, cdum, &c__1, &rwork[ irwork], info); iu = itauq; /* Multiply right singular vectors of L in WORK(IR) by Q */ /* in A, storing result in WORK(IU) and copying to A */ /* (CWorkspace: need M*M+M, prefer M*M+M*N) */ /* (RWorkspace: 0) */ i__2 = *n; i__3 = chunk; for (i__ = 1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3) { /* Computing MIN */ i__4 = *n - i__ + 1; blk = f2cmin(i__4,chunk); cgemm_("N", "N", m, &blk, m, &c_b2, &work[ir], & ldwrkr, &a[i__ * a_dim1 + 1], lda, &c_b1, & work[iu], &ldwrku); clacpy_("F", m, &blk, &work[iu], &ldwrku, &a[i__ * a_dim1 + 1], lda); /* L30: */ } } else { /* Insufficient workspace for a fast algorithm */ ie = 1; itauq = 1; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize A */ /* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */ /* (RWorkspace: need M) */ i__3 = *lwork - iwork + 1; cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[ itauq], &work[itaup], &work[iwork], &i__3, &ierr); /* Generate right vectors bidiagonalizing A */ /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */ /* (RWorkspace: 0) */ i__3 = *lwork - iwork + 1; cungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], & work[iwork], &i__3, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing right */ /* singular vectors of A in A */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("L", m, n, &c__0, &c__0, &s[1], &rwork[ie], &a[ a_offset], lda, cdum, &c__1, cdum, &c__1, &rwork[ irwork], info); } } else if (wntvo && wntuas) { /* Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O') */ /* M right singular vectors to be overwritten on A and */ /* M left singular vectors to be computed in U */ if (*lwork >= *m * *m + *m * 3) { /* Sufficient workspace for a fast algorithm */ ir = 1; /* Computing MAX */ i__3 = wrkbl, i__2 = *lda * *n; if (*lwork >= f2cmax(i__3,i__2) + *lda * *m) { /* WORK(IU) is LDA by N and WORK(IR) is LDA by M */ ldwrku = *lda; chunk = *n; ldwrkr = *lda; } else /* if(complicated condition) */ { /* Computing MAX */ i__3 = wrkbl, i__2 = *lda * *n; if (*lwork >= f2cmax(i__3,i__2) + *m * *m) { /* WORK(IU) is LDA by N and WORK(IR) is M by M */ ldwrku = *lda; chunk = *n; ldwrkr = *m; } else { /* WORK(IU) is M by CHUNK and WORK(IR) is M by M */ ldwrku = *m; chunk = (*lwork - *m * *m) / *m; ldwrkr = *m; } } itau = ir + ldwrkr * *m; iwork = itau + *m; /* Compute A=L*Q */ /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */ /* (RWorkspace: 0) */ i__3 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] , &i__3, &ierr); /* Copy L to U, zeroing about above it */ clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu); i__3 = *m - 1; i__2 = *m - 1; claset_("U", &i__3, &i__2, &c_b1, &c_b1, &u[(u_dim1 << 1) + 1], ldu); /* Generate Q in A */ /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */ /* (RWorkspace: 0) */ i__3 = *lwork - iwork + 1; cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[ iwork], &i__3, &ierr); ie = 1; itauq = itau; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize L in U, copying result to WORK(IR) */ /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__3 = *lwork - iwork + 1; cgebrd_(m, m, &u[u_offset], ldu, &s[1], &rwork[ie], &work[ itauq], &work[itaup], &work[iwork], &i__3, &ierr); clacpy_("U", m, m, &u[u_offset], ldu, &work[ir], &ldwrkr); /* Generate right vectors bidiagonalizing L in WORK(IR) */ /* (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB) */ /* (RWorkspace: 0) */ i__3 = *lwork - iwork + 1; cungbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup], & work[iwork], &i__3, &ierr); /* Generate left vectors bidiagonalizing L in U */ /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB) */ /* (RWorkspace: 0) */ i__3 = *lwork - iwork + 1; cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], & work[iwork], &i__3, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of L in U, and computing right */ /* singular vectors of L in WORK(IR) */ /* (CWorkspace: need M*M) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, m, m, &c__0, &s[1], &rwork[ie], &work[ir], &ldwrkr, &u[u_offset], ldu, cdum, &c__1, &rwork[ irwork], info); iu = itauq; /* Multiply right singular vectors of L in WORK(IR) by Q */ /* in A, storing result in WORK(IU) and copying to A */ /* (CWorkspace: need M*M+M, prefer M*M+M*N)) */ /* (RWorkspace: 0) */ i__3 = *n; i__2 = chunk; for (i__ = 1; i__2 < 0 ? i__ >= i__3 : i__ <= i__3; i__ += i__2) { /* Computing MIN */ i__4 = *n - i__ + 1; blk = f2cmin(i__4,chunk); cgemm_("N", "N", m, &blk, m, &c_b2, &work[ir], & ldwrkr, &a[i__ * a_dim1 + 1], lda, &c_b1, & work[iu], &ldwrku); clacpy_("F", m, &blk, &work[iu], &ldwrku, &a[i__ * a_dim1 + 1], lda); /* L40: */ } } else { /* Insufficient workspace for a fast algorithm */ itau = 1; iwork = itau + *m; /* Compute A=L*Q */ /* (CWorkspace: need 2*M, prefer M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork] , &i__2, &ierr); /* Copy L to U, zeroing out above it */ clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu); i__2 = *m - 1; i__3 = *m - 1; claset_("U", &i__2, &i__3, &c_b1, &c_b1, &u[(u_dim1 << 1) + 1], ldu); /* Generate Q in A */ /* (CWorkspace: need 2*M, prefer M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize L in U */ /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &u[u_offset], ldu, &s[1], &rwork[ie], &work[ itauq], &work[itaup], &work[iwork], &i__2, &ierr); /* Multiply right vectors bidiagonalizing L by Q in A */ /* (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunmbr_("P", "L", "C", m, n, m, &u[u_offset], ldu, &work[ itaup], &a[a_offset], lda, &work[iwork], &i__2, & ierr); /* Generate left vectors bidiagonalizing L in U */ /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], & work[iwork], &i__2, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of A in U and computing right */ /* singular vectors of A in A */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, n, m, &c__0, &s[1], &rwork[ie], &a[ a_offset], lda, &u[u_offset], ldu, cdum, &c__1, & rwork[irwork], info); } } else if (wntvs) { if (wntun) { /* Path 4t(N much larger than M, JOBU='N', JOBVT='S') */ /* M right singular vectors to be computed in VT and */ /* no left singular vectors to be computed */ if (*lwork >= *m * *m + *m * 3) { /* Sufficient workspace for a fast algorithm */ ir = 1; if (*lwork >= wrkbl + *lda * *m) { /* WORK(IR) is LDA by M */ ldwrkr = *lda; } else { /* WORK(IR) is M by M */ ldwrkr = *m; } itau = ir + ldwrkr * *m; iwork = itau + *m; /* Compute A=L*Q */ /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); /* Copy L to WORK(IR), zeroing out above it */ clacpy_("L", m, m, &a[a_offset], lda, &work[ir], & ldwrkr); i__2 = *m - 1; i__3 = *m - 1; claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[ir + ldwrkr], &ldwrkr); /* Generate Q in A */ /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunglq_(m, n, m, &a[a_offset], lda, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize L in WORK(IR) */ /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Generate right vectors bidiagonalizing L in */ /* WORK(IR) */ /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup] , &work[iwork], &i__2, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing right */ /* singular vectors of L in WORK(IR) */ /* (CWorkspace: need M*M) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, m, &c__0, &c__0, &s[1], &rwork[ie], & work[ir], &ldwrkr, cdum, &c__1, cdum, &c__1, & rwork[irwork], info); /* Multiply right singular vectors of L in WORK(IR) by */ /* Q in A, storing result in VT */ /* (CWorkspace: need M*M) */ /* (RWorkspace: 0) */ cgemm_("N", "N", m, n, m, &c_b2, &work[ir], &ldwrkr, & a[a_offset], lda, &c_b1, &vt[vt_offset], ldvt); } else { /* Insufficient workspace for a fast algorithm */ itau = 1; iwork = itau + *m; /* Compute A=L*Q */ /* (CWorkspace: need 2*M, prefer M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); /* Copy result to VT */ clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); /* Generate Q in VT */ /* (CWorkspace: need 2*M, prefer M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *m; iwork = itaup + *m; /* Zero out above L in A */ i__2 = *m - 1; i__3 = *m - 1; claset_("U", &i__2, &i__3, &c_b1, &c_b1, &a[(a_dim1 << 1) + 1], lda); /* Bidiagonalize L in A */ /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Multiply right vectors bidiagonalizing L by Q in VT */ /* (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunmbr_("P", "L", "C", m, n, m, &a[a_offset], lda, & work[itaup], &vt[vt_offset], ldvt, &work[ iwork], &i__2, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing right */ /* singular vectors of A in VT */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, n, &c__0, &c__0, &s[1], &rwork[ie], & vt[vt_offset], ldvt, cdum, &c__1, cdum, &c__1, &rwork[irwork], info); } } else if (wntuo) { /* Path 5t(N much larger than M, JOBU='O', JOBVT='S') */ /* M right singular vectors to be computed in VT and */ /* M left singular vectors to be overwritten on A */ if (*lwork >= (*m << 1) * *m + *m * 3) { /* Sufficient workspace for a fast algorithm */ iu = 1; if (*lwork >= wrkbl + (*lda << 1) * *m) { /* WORK(IU) is LDA by M and WORK(IR) is LDA by M */ ldwrku = *lda; ir = iu + ldwrku * *m; ldwrkr = *lda; } else if (*lwork >= wrkbl + (*lda + *m) * *m) { /* WORK(IU) is LDA by M and WORK(IR) is M by M */ ldwrku = *lda; ir = iu + ldwrku * *m; ldwrkr = *m; } else { /* WORK(IU) is M by M and WORK(IR) is M by M */ ldwrku = *m; ir = iu + ldwrku * *m; ldwrkr = *m; } itau = ir + ldwrkr * *m; iwork = itau + *m; /* Compute A=L*Q */ /* (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); /* Copy L to WORK(IU), zeroing out below it */ clacpy_("L", m, m, &a[a_offset], lda, &work[iu], & ldwrku); i__2 = *m - 1; i__3 = *m - 1; claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[iu + ldwrku], &ldwrku); /* Generate Q in A */ /* (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunglq_(m, n, m, &a[a_offset], lda, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize L in WORK(IU), copying result to */ /* WORK(IR) */ /* (CWorkspace: need 2*M*M+3*M, */ /* prefer 2*M*M+2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &work[iu], &ldwrku, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); clacpy_("L", m, m, &work[iu], &ldwrku, &work[ir], & ldwrkr); /* Generate right bidiagonalizing vectors in WORK(IU) */ /* (CWorkspace: need 2*M*M+3*M-1, */ /* prefer 2*M*M+2*M+(M-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup] , &work[iwork], &i__2, &ierr); /* Generate left bidiagonalizing vectors in WORK(IR) */ /* (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", m, m, m, &work[ir], &ldwrkr, &work[itauq] , &work[iwork], &i__2, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of L in WORK(IR) and computing */ /* right singular vectors of L in WORK(IU) */ /* (CWorkspace: need 2*M*M) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, m, m, &c__0, &s[1], &rwork[ie], &work[ iu], &ldwrku, &work[ir], &ldwrkr, cdum, &c__1, &rwork[irwork], info); /* Multiply right singular vectors of L in WORK(IU) by */ /* Q in A, storing result in VT */ /* (CWorkspace: need M*M) */ /* (RWorkspace: 0) */ cgemm_("N", "N", m, n, m, &c_b2, &work[iu], &ldwrku, & a[a_offset], lda, &c_b1, &vt[vt_offset], ldvt); /* Copy left singular vectors of L to A */ /* (CWorkspace: need M*M) */ /* (RWorkspace: 0) */ clacpy_("F", m, m, &work[ir], &ldwrkr, &a[a_offset], lda); } else { /* Insufficient workspace for a fast algorithm */ itau = 1; iwork = itau + *m; /* Compute A=L*Q, copying result to VT */ /* (CWorkspace: need 2*M, prefer M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); /* Generate Q in VT */ /* (CWorkspace: need 2*M, prefer M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *m; iwork = itaup + *m; /* Zero out above L in A */ i__2 = *m - 1; i__3 = *m - 1; claset_("U", &i__2, &i__3, &c_b1, &c_b1, &a[(a_dim1 << 1) + 1], lda); /* Bidiagonalize L in A */ /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Multiply right vectors bidiagonalizing L by Q in VT */ /* (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunmbr_("P", "L", "C", m, n, m, &a[a_offset], lda, & work[itaup], &vt[vt_offset], ldvt, &work[ iwork], &i__2, &ierr); /* Generate left bidiagonalizing vectors of L in A */ /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq], &work[iwork], &i__2, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of A in A and computing right */ /* singular vectors of A in VT */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, n, m, &c__0, &s[1], &rwork[ie], &vt[ vt_offset], ldvt, &a[a_offset], lda, cdum, & c__1, &rwork[irwork], info); } } else if (wntuas) { /* Path 6t(N much larger than M, JOBU='S' or 'A', */ /* JOBVT='S') */ /* M right singular vectors to be computed in VT and */ /* M left singular vectors to be computed in U */ if (*lwork >= *m * *m + *m * 3) { /* Sufficient workspace for a fast algorithm */ iu = 1; if (*lwork >= wrkbl + *lda * *m) { /* WORK(IU) is LDA by N */ ldwrku = *lda; } else { /* WORK(IU) is LDA by M */ ldwrku = *m; } itau = iu + ldwrku * *m; iwork = itau + *m; /* Compute A=L*Q */ /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); /* Copy L to WORK(IU), zeroing out above it */ clacpy_("L", m, m, &a[a_offset], lda, &work[iu], & ldwrku); i__2 = *m - 1; i__3 = *m - 1; claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[iu + ldwrku], &ldwrku); /* Generate Q in A */ /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunglq_(m, n, m, &a[a_offset], lda, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize L in WORK(IU), copying result to U */ /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &work[iu], &ldwrku, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); clacpy_("L", m, m, &work[iu], &ldwrku, &u[u_offset], ldu); /* Generate right bidiagonalizing vectors in WORK(IU) */ /* (CWorkspace: need M*M+3*M-1, */ /* prefer M*M+2*M+(M-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup] , &work[iwork], &i__2, &ierr); /* Generate left bidiagonalizing vectors in U */ /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], &work[iwork], &i__2, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of L in U and computing right */ /* singular vectors of L in WORK(IU) */ /* (CWorkspace: need M*M) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, m, m, &c__0, &s[1], &rwork[ie], &work[ iu], &ldwrku, &u[u_offset], ldu, cdum, &c__1, &rwork[irwork], info); /* Multiply right singular vectors of L in WORK(IU) by */ /* Q in A, storing result in VT */ /* (CWorkspace: need M*M) */ /* (RWorkspace: 0) */ cgemm_("N", "N", m, n, m, &c_b2, &work[iu], &ldwrku, & a[a_offset], lda, &c_b1, &vt[vt_offset], ldvt); } else { /* Insufficient workspace for a fast algorithm */ itau = 1; iwork = itau + *m; /* Compute A=L*Q, copying result to VT */ /* (CWorkspace: need 2*M, prefer M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); /* Generate Q in VT */ /* (CWorkspace: need 2*M, prefer M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], & work[iwork], &i__2, &ierr); /* Copy L to U, zeroing out above it */ clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu); i__2 = *m - 1; i__3 = *m - 1; claset_("U", &i__2, &i__3, &c_b1, &c_b1, &u[(u_dim1 << 1) + 1], ldu); ie = 1; itauq = itau; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize L in U */ /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &u[u_offset], ldu, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Multiply right bidiagonalizing vectors in U by Q */ /* in VT */ /* (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunmbr_("P", "L", "C", m, n, m, &u[u_offset], ldu, & work[itaup], &vt[vt_offset], ldvt, &work[ iwork], &i__2, &ierr); /* Generate left bidiagonalizing vectors in U */ /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], &work[iwork], &i__2, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of A in U and computing right */ /* singular vectors of A in VT */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, n, m, &c__0, &s[1], &rwork[ie], &vt[ vt_offset], ldvt, &u[u_offset], ldu, cdum, & c__1, &rwork[irwork], info); } } } else if (wntva) { if (wntun) { /* Path 7t(N much larger than M, JOBU='N', JOBVT='A') */ /* N right singular vectors to be computed in VT and */ /* no left singular vectors to be computed */ /* Computing MAX */ i__2 = *n + *m, i__3 = *m * 3; if (*lwork >= *m * *m + f2cmax(i__2,i__3)) { /* Sufficient workspace for a fast algorithm */ ir = 1; if (*lwork >= wrkbl + *lda * *m) { /* WORK(IR) is LDA by M */ ldwrkr = *lda; } else { /* WORK(IR) is M by M */ ldwrkr = *m; } itau = ir + ldwrkr * *m; iwork = itau + *m; /* Compute A=L*Q, copying result to VT */ /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); /* Copy L to WORK(IR), zeroing out above it */ clacpy_("L", m, m, &a[a_offset], lda, &work[ir], & ldwrkr); i__2 = *m - 1; i__3 = *m - 1; claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[ir + ldwrkr], &ldwrkr); /* Generate Q in VT */ /* (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize L in WORK(IR) */ /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Generate right bidiagonalizing vectors in WORK(IR) */ /* (CWorkspace: need M*M+3*M-1, */ /* prefer M*M+2*M+(M-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup] , &work[iwork], &i__2, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing right */ /* singular vectors of L in WORK(IR) */ /* (CWorkspace: need M*M) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, m, &c__0, &c__0, &s[1], &rwork[ie], & work[ir], &ldwrkr, cdum, &c__1, cdum, &c__1, & rwork[irwork], info); /* Multiply right singular vectors of L in WORK(IR) by */ /* Q in VT, storing result in A */ /* (CWorkspace: need M*M) */ /* (RWorkspace: 0) */ cgemm_("N", "N", m, n, m, &c_b2, &work[ir], &ldwrkr, & vt[vt_offset], ldvt, &c_b1, &a[a_offset], lda); /* Copy right singular vectors of A from A to VT */ clacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); } else { /* Insufficient workspace for a fast algorithm */ itau = 1; iwork = itau + *m; /* Compute A=L*Q, copying result to VT */ /* (CWorkspace: need 2*M, prefer M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); /* Generate Q in VT */ /* (CWorkspace: need M+N, prefer M+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *m; iwork = itaup + *m; /* Zero out above L in A */ i__2 = *m - 1; i__3 = *m - 1; claset_("U", &i__2, &i__3, &c_b1, &c_b1, &a[(a_dim1 << 1) + 1], lda); /* Bidiagonalize L in A */ /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Multiply right bidiagonalizing vectors in A by Q */ /* in VT */ /* (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunmbr_("P", "L", "C", m, n, m, &a[a_offset], lda, & work[itaup], &vt[vt_offset], ldvt, &work[ iwork], &i__2, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing right */ /* singular vectors of A in VT */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, n, &c__0, &c__0, &s[1], &rwork[ie], & vt[vt_offset], ldvt, cdum, &c__1, cdum, &c__1, &rwork[irwork], info); } } else if (wntuo) { /* Path 8t(N much larger than M, JOBU='O', JOBVT='A') */ /* N right singular vectors to be computed in VT and */ /* M left singular vectors to be overwritten on A */ /* Computing MAX */ i__2 = *n + *m, i__3 = *m * 3; if (*lwork >= (*m << 1) * *m + f2cmax(i__2,i__3)) { /* Sufficient workspace for a fast algorithm */ iu = 1; if (*lwork >= wrkbl + (*lda << 1) * *m) { /* WORK(IU) is LDA by M and WORK(IR) is LDA by M */ ldwrku = *lda; ir = iu + ldwrku * *m; ldwrkr = *lda; } else if (*lwork >= wrkbl + (*lda + *m) * *m) { /* WORK(IU) is LDA by M and WORK(IR) is M by M */ ldwrku = *lda; ir = iu + ldwrku * *m; ldwrkr = *m; } else { /* WORK(IU) is M by M and WORK(IR) is M by M */ ldwrku = *m; ir = iu + ldwrku * *m; ldwrkr = *m; } itau = ir + ldwrkr * *m; iwork = itau + *m; /* Compute A=L*Q, copying result to VT */ /* (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); /* Generate Q in VT */ /* (CWorkspace: need 2*M*M+M+N, prefer 2*M*M+M+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & work[iwork], &i__2, &ierr); /* Copy L to WORK(IU), zeroing out above it */ clacpy_("L", m, m, &a[a_offset], lda, &work[iu], & ldwrku); i__2 = *m - 1; i__3 = *m - 1; claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[iu + ldwrku], &ldwrku); ie = 1; itauq = itau; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize L in WORK(IU), copying result to */ /* WORK(IR) */ /* (CWorkspace: need 2*M*M+3*M, */ /* prefer 2*M*M+2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &work[iu], &ldwrku, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); clacpy_("L", m, m, &work[iu], &ldwrku, &work[ir], & ldwrkr); /* Generate right bidiagonalizing vectors in WORK(IU) */ /* (CWorkspace: need 2*M*M+3*M-1, */ /* prefer 2*M*M+2*M+(M-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup] , &work[iwork], &i__2, &ierr); /* Generate left bidiagonalizing vectors in WORK(IR) */ /* (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", m, m, m, &work[ir], &ldwrkr, &work[itauq] , &work[iwork], &i__2, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of L in WORK(IR) and computing */ /* right singular vectors of L in WORK(IU) */ /* (CWorkspace: need 2*M*M) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, m, m, &c__0, &s[1], &rwork[ie], &work[ iu], &ldwrku, &work[ir], &ldwrkr, cdum, &c__1, &rwork[irwork], info); /* Multiply right singular vectors of L in WORK(IU) by */ /* Q in VT, storing result in A */ /* (CWorkspace: need M*M) */ /* (RWorkspace: 0) */ cgemm_("N", "N", m, n, m, &c_b2, &work[iu], &ldwrku, & vt[vt_offset], ldvt, &c_b1, &a[a_offset], lda); /* Copy right singular vectors of A from A to VT */ clacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); /* Copy left singular vectors of A from WORK(IR) to A */ clacpy_("F", m, m, &work[ir], &ldwrkr, &a[a_offset], lda); } else { /* Insufficient workspace for a fast algorithm */ itau = 1; iwork = itau + *m; /* Compute A=L*Q, copying result to VT */ /* (CWorkspace: need 2*M, prefer M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); /* Generate Q in VT */ /* (CWorkspace: need M+N, prefer M+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & work[iwork], &i__2, &ierr); ie = 1; itauq = itau; itaup = itauq + *m; iwork = itaup + *m; /* Zero out above L in A */ i__2 = *m - 1; i__3 = *m - 1; claset_("U", &i__2, &i__3, &c_b1, &c_b1, &a[(a_dim1 << 1) + 1], lda); /* Bidiagonalize L in A */ /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Multiply right bidiagonalizing vectors in A by Q */ /* in VT */ /* (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunmbr_("P", "L", "C", m, n, m, &a[a_offset], lda, & work[itaup], &vt[vt_offset], ldvt, &work[ iwork], &i__2, &ierr); /* Generate left bidiagonalizing vectors in A */ /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq], &work[iwork], &i__2, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of A in A and computing right */ /* singular vectors of A in VT */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, n, m, &c__0, &s[1], &rwork[ie], &vt[ vt_offset], ldvt, &a[a_offset], lda, cdum, & c__1, &rwork[irwork], info); } } else if (wntuas) { /* Path 9t(N much larger than M, JOBU='S' or 'A', */ /* JOBVT='A') */ /* N right singular vectors to be computed in VT and */ /* M left singular vectors to be computed in U */ /* Computing MAX */ i__2 = *n + *m, i__3 = *m * 3; if (*lwork >= *m * *m + f2cmax(i__2,i__3)) { /* Sufficient workspace for a fast algorithm */ iu = 1; if (*lwork >= wrkbl + *lda * *m) { /* WORK(IU) is LDA by M */ ldwrku = *lda; } else { /* WORK(IU) is M by M */ ldwrku = *m; } itau = iu + ldwrku * *m; iwork = itau + *m; /* Compute A=L*Q, copying result to VT */ /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); /* Generate Q in VT */ /* (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & work[iwork], &i__2, &ierr); /* Copy L to WORK(IU), zeroing out above it */ clacpy_("L", m, m, &a[a_offset], lda, &work[iu], & ldwrku); i__2 = *m - 1; i__3 = *m - 1; claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[iu + ldwrku], &ldwrku); ie = 1; itauq = itau; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize L in WORK(IU), copying result to U */ /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &work[iu], &ldwrku, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); clacpy_("L", m, m, &work[iu], &ldwrku, &u[u_offset], ldu); /* Generate right bidiagonalizing vectors in WORK(IU) */ /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup] , &work[iwork], &i__2, &ierr); /* Generate left bidiagonalizing vectors in U */ /* (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], &work[iwork], &i__2, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of L in U and computing right */ /* singular vectors of L in WORK(IU) */ /* (CWorkspace: need M*M) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, m, m, &c__0, &s[1], &rwork[ie], &work[ iu], &ldwrku, &u[u_offset], ldu, cdum, &c__1, &rwork[irwork], info); /* Multiply right singular vectors of L in WORK(IU) by */ /* Q in VT, storing result in A */ /* (CWorkspace: need M*M) */ /* (RWorkspace: 0) */ cgemm_("N", "N", m, n, m, &c_b2, &work[iu], &ldwrku, & vt[vt_offset], ldvt, &c_b1, &a[a_offset], lda); /* Copy right singular vectors of A from A to VT */ clacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); } else { /* Insufficient workspace for a fast algorithm */ itau = 1; iwork = itau + *m; /* Compute A=L*Q, copying result to VT */ /* (CWorkspace: need 2*M, prefer M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[ iwork], &i__2, &ierr); clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); /* Generate Q in VT */ /* (CWorkspace: need M+N, prefer M+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], & work[iwork], &i__2, &ierr); /* Copy L to U, zeroing out above it */ clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu); i__2 = *m - 1; i__3 = *m - 1; claset_("U", &i__2, &i__3, &c_b1, &c_b1, &u[(u_dim1 << 1) + 1], ldu); ie = 1; itauq = itau; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize L in U */ /* (CWorkspace: need 3*M, prefer 2*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &u[u_offset], ldu, &s[1], &rwork[ie], & work[itauq], &work[itaup], &work[iwork], & i__2, &ierr); /* Multiply right bidiagonalizing vectors in U by Q */ /* in VT */ /* (CWorkspace: need 2*M+N, prefer 2*M+N*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cunmbr_("P", "L", "C", m, n, m, &u[u_offset], ldu, & work[itaup], &vt[vt_offset], ldvt, &work[ iwork], &i__2, &ierr); /* Generate left bidiagonalizing vectors in U */ /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], &work[iwork], &i__2, &ierr); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing left */ /* singular vectors of A in U and computing right */ /* singular vectors of A in VT */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, n, m, &c__0, &s[1], &rwork[ie], &vt[ vt_offset], ldvt, &u[u_offset], ldu, cdum, & c__1, &rwork[irwork], info); } } } } else { /* N .LT. MNTHR */ /* Path 10t(N greater than M, but not much larger) */ /* Reduce to bidiagonal form without LQ decomposition */ ie = 1; itauq = 1; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize A */ /* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */ /* (RWorkspace: M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &work[itaup], &work[iwork], &i__2, &ierr); if (wntuas) { /* If left singular vectors desired in U, copy result to U */ /* and generate left bidiagonalizing vectors in U */ /* (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB) */ /* (RWorkspace: 0) */ clacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu); i__2 = *lwork - iwork + 1; cungbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[ iwork], &i__2, &ierr); } if (wntvas) { /* If right singular vectors desired in VT, copy result to */ /* VT and generate right bidiagonalizing vectors in VT */ /* (CWorkspace: need 2*M+NRVT, prefer 2*M+NRVT*NB) */ /* (RWorkspace: 0) */ clacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt); if (wntva) { nrvt = *n; } if (wntvs) { nrvt = *m; } i__2 = *lwork - iwork + 1; cungbr_("P", &nrvt, n, m, &vt[vt_offset], ldvt, &work[itaup], &work[iwork], &i__2, &ierr); } if (wntuo) { /* If left singular vectors desired in A, generate left */ /* bidiagonalizing vectors in A */ /* (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("Q", m, m, n, &a[a_offset], lda, &work[itauq], &work[ iwork], &i__2, &ierr); } if (wntvo) { /* If right singular vectors desired in A, generate right */ /* bidiagonalizing vectors in A */ /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */ /* (RWorkspace: 0) */ i__2 = *lwork - iwork + 1; cungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[ iwork], &i__2, &ierr); } irwork = ie + *m; if (wntuas || wntuo) { nru = *m; } if (wntun) { nru = 0; } if (wntvas || wntvo) { ncvt = *n; } if (wntvn) { ncvt = 0; } if (! wntuo && ! wntvo) { /* Perform bidiagonal QR iteration, if desired, computing */ /* left singular vectors in U and computing right singular */ /* vectors in VT */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &vt[ vt_offset], ldvt, &u[u_offset], ldu, cdum, &c__1, & rwork[irwork], info); } else if (! wntuo && wntvo) { /* Perform bidiagonal QR iteration, if desired, computing */ /* left singular vectors in U and computing right singular */ /* vectors in A */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &a[ a_offset], lda, &u[u_offset], ldu, cdum, &c__1, & rwork[irwork], info); } else { /* Perform bidiagonal QR iteration, if desired, computing */ /* left singular vectors in A and computing right singular */ /* vectors in VT */ /* (CWorkspace: 0) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &rwork[ie], &vt[ vt_offset], ldvt, &a[a_offset], lda, cdum, &c__1, & rwork[irwork], info); } } } /* Undo scaling if necessary */ if (iscl == 1) { if (anrm > bignum) { slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], & minmn, &ierr); } if (*info != 0 && anrm > bignum) { i__2 = minmn - 1; slascl_("G", &c__0, &c__0, &bignum, &anrm, &i__2, &c__1, &rwork[ ie], &minmn, &ierr); } if (anrm < smlnum) { slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], & minmn, &ierr); } if (*info != 0 && anrm < smlnum) { i__2 = minmn - 1; slascl_("G", &c__0, &c__0, &smlnum, &anrm, &i__2, &c__1, &rwork[ ie], &minmn, &ierr); } } /* Return optimal workspace in WORK(1) */ work[1].r = (real) maxwrk, work[1].i = 0.f; return 0; /* End of CGESVD */ } /* cgesvd_ */