#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b CGGRQF */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download CGGRQF + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE CGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, */ /* LWORK, INFO ) */ /* INTEGER INFO, LDA, LDB, LWORK, M, N, P */ /* COMPLEX A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ), */ /* $ WORK( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > CGGRQF computes a generalized RQ factorization of an M-by-N matrix A */ /* > and a P-by-N matrix B: */ /* > */ /* > A = R*Q, B = Z*T*Q, */ /* > */ /* > where Q is an N-by-N unitary matrix, Z is a P-by-P unitary */ /* > matrix, and R and T assume one of the forms: */ /* > */ /* > if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N, */ /* > N-M M ( R21 ) N */ /* > N */ /* > */ /* > where R12 or R21 is upper triangular, and */ /* > */ /* > if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P, */ /* > ( 0 ) P-N P N-P */ /* > N */ /* > */ /* > where T11 is upper triangular. */ /* > */ /* > In particular, if B is square and nonsingular, the GRQ factorization */ /* > of A and B implicitly gives the RQ factorization of A*inv(B): */ /* > */ /* > A*inv(B) = (R*inv(T))*Z**H */ /* > */ /* > where inv(B) denotes the inverse of the matrix B, and Z**H denotes the */ /* > conjugate transpose of the matrix Z. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix A. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] P */ /* > \verbatim */ /* > P is INTEGER */ /* > The number of rows of the matrix B. P >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrices A and B. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX array, dimension (LDA,N) */ /* > On entry, the M-by-N matrix A. */ /* > On exit, if M <= N, the upper triangle of the subarray */ /* > A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; */ /* > if M > N, the elements on and above the (M-N)-th subdiagonal */ /* > contain the M-by-N upper trapezoidal matrix R; the remaining */ /* > elements, with the array TAUA, represent the unitary */ /* > matrix Q as a product of elementary reflectors (see Further */ /* > Details). */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] TAUA */ /* > \verbatim */ /* > TAUA is COMPLEX array, dimension (f2cmin(M,N)) */ /* > The scalar factors of the elementary reflectors which */ /* > represent the unitary matrix Q (see Further Details). */ /* > \endverbatim */ /* > */ /* > \param[in,out] B */ /* > \verbatim */ /* > B is COMPLEX array, dimension (LDB,N) */ /* > On entry, the P-by-N matrix B. */ /* > On exit, the elements on and above the diagonal of the array */ /* > contain the f2cmin(P,N)-by-N upper trapezoidal matrix T (T is */ /* > upper triangular if P >= N); the elements below the diagonal, */ /* > with the array TAUB, represent the unitary matrix Z as a */ /* > product of elementary reflectors (see Further Details). */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > The leading dimension of the array B. LDB >= f2cmax(1,P). */ /* > \endverbatim */ /* > */ /* > \param[out] TAUB */ /* > \verbatim */ /* > TAUB is COMPLEX array, dimension (f2cmin(P,N)) */ /* > The scalar factors of the elementary reflectors which */ /* > represent the unitary matrix Z (see Further Details). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */ /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* > \endverbatim */ /* > */ /* > \param[in] LWORK */ /* > \verbatim */ /* > LWORK is INTEGER */ /* > The dimension of the array WORK. LWORK >= f2cmax(1,N,M,P). */ /* > For optimum performance LWORK >= f2cmax(N,M,P)*f2cmax(NB1,NB2,NB3), */ /* > where NB1 is the optimal blocksize for the RQ factorization */ /* > of an M-by-N matrix, NB2 is the optimal blocksize for the */ /* > QR factorization of a P-by-N matrix, and NB3 is the optimal */ /* > blocksize for a call of CUNMRQ. */ /* > */ /* > If LWORK = -1, then a workspace query is assumed; the routine */ /* > only calculates the optimal size of the WORK array, returns */ /* > this value as the first entry of the WORK array, and no error */ /* > message related to LWORK is issued by XERBLA. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO=-i, the i-th argument had an illegal value. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup complexOTHERcomputational */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The matrix Q is represented as a product of elementary reflectors */ /* > */ /* > Q = H(1) H(2) . . . H(k), where k = f2cmin(m,n). */ /* > */ /* > Each H(i) has the form */ /* > */ /* > H(i) = I - taua * v * v**H */ /* > */ /* > where taua is a complex scalar, and v is a complex vector with */ /* > v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in */ /* > A(m-k+i,1:n-k+i-1), and taua in TAUA(i). */ /* > To form Q explicitly, use LAPACK subroutine CUNGRQ. */ /* > To use Q to update another matrix, use LAPACK subroutine CUNMRQ. */ /* > */ /* > The matrix Z is represented as a product of elementary reflectors */ /* > */ /* > Z = H(1) H(2) . . . H(k), where k = f2cmin(p,n). */ /* > */ /* > Each H(i) has the form */ /* > */ /* > H(i) = I - taub * v * v**H */ /* > */ /* > where taub is a complex scalar, and v is a complex vector with */ /* > v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), */ /* > and taub in TAUB(i). */ /* > To form Z explicitly, use LAPACK subroutine CUNGQR. */ /* > To use Z to update another matrix, use LAPACK subroutine CUNMQR. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int cggrqf_(integer *m, integer *p, integer *n, complex *a, integer *lda, complex *taua, complex *b, integer *ldb, complex *taub, complex *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; /* Local variables */ integer lopt, nb; extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cgerqf_( integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), xerbla_(char *, integer *, ftnlen); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); integer nb1, nb2, nb3; extern /* Subroutine */ int cunmrq_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK computational routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --taua; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --taub; --work; /* Function Body */ *info = 0; nb1 = ilaenv_(&c__1, "CGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); nb2 = ilaenv_(&c__1, "CGEQRF", " ", p, n, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); nb3 = ilaenv_(&c__1, "CUNMRQ", " ", m, n, p, &c_n1, (ftnlen)6, (ftnlen)1); /* Computing MAX */ i__1 = f2cmax(nb1,nb2); nb = f2cmax(i__1,nb3); /* Computing MAX */ i__1 = f2cmax(*n,*m); lwkopt = f2cmax(i__1,*p) * nb; work[1].r = (real) lwkopt, work[1].i = 0.f; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*p < 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < f2cmax(1,*m)) { *info = -5; } else if (*ldb < f2cmax(1,*p)) { *info = -8; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = f2cmax(1,*m), i__1 = f2cmax(i__1,*p); if (*lwork < f2cmax(i__1,*n) && ! lquery) { *info = -11; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGGRQF", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* RQ factorization of M-by-N matrix A: A = R*Q */ cgerqf_(m, n, &a[a_offset], lda, &taua[1], &work[1], lwork, info); lopt = work[1].r; /* Update B := B*Q**H */ i__1 = f2cmin(*m,*n); /* Computing MAX */ i__2 = 1, i__3 = *m - *n + 1; cunmrq_("Right", "Conjugate Transpose", p, n, &i__1, &a[f2cmax(i__2,i__3) + a_dim1], lda, &taua[1], &b[b_offset], ldb, &work[1], lwork, info); /* Computing MAX */ i__1 = lopt, i__2 = (integer) work[1].r; lopt = f2cmax(i__1,i__2); /* QR factorization of P-by-N matrix B: B = Z*T */ cgeqrf_(p, n, &b[b_offset], ldb, &taub[1], &work[1], lwork, info); /* Computing MAX */ i__2 = lopt, i__3 = (integer) work[1].r; i__1 = f2cmax(i__2,i__3); work[1].r = (real) i__1, work[1].i = 0.f; return 0; /* End of CGGRQF */ } /* cggrqf_ */