#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b CLAED7 used by sstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download CLAED7 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE CLAED7( N, CUTPNT, QSIZ, TLVLS, CURLVL, CURPBM, D, Q, */ /* LDQ, RHO, INDXQ, QSTORE, QPTR, PRMPTR, PERM, */ /* GIVPTR, GIVCOL, GIVNUM, WORK, RWORK, IWORK, */ /* INFO ) */ /* INTEGER CURLVL, CURPBM, CUTPNT, INFO, LDQ, N, QSIZ, */ /* $ TLVLS */ /* REAL RHO */ /* INTEGER GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ), */ /* $ IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * ) */ /* REAL D( * ), GIVNUM( 2, * ), QSTORE( * ), RWORK( * ) */ /* COMPLEX Q( LDQ, * ), WORK( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > CLAED7 computes the updated eigensystem of a diagonal */ /* > matrix after modification by a rank-one symmetric matrix. This */ /* > routine is used only for the eigenproblem which requires all */ /* > eigenvalues and optionally eigenvectors of a dense or banded */ /* > Hermitian matrix that has been reduced to tridiagonal form. */ /* > */ /* > T = Q(in) ( D(in) + RHO * Z*Z**H ) Q**H(in) = Q(out) * D(out) * Q**H(out) */ /* > */ /* > where Z = Q**Hu, u is a vector of length N with ones in the */ /* > CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */ /* > */ /* > The eigenvectors of the original matrix are stored in Q, and the */ /* > eigenvalues are in D. The algorithm consists of three stages: */ /* > */ /* > The first stage consists of deflating the size of the problem */ /* > when there are multiple eigenvalues or if there is a zero in */ /* > the Z vector. For each such occurrence the dimension of the */ /* > secular equation problem is reduced by one. This stage is */ /* > performed by the routine SLAED2. */ /* > */ /* > The second stage consists of calculating the updated */ /* > eigenvalues. This is done by finding the roots of the secular */ /* > equation via the routine SLAED4 (as called by SLAED3). */ /* > This routine also calculates the eigenvectors of the current */ /* > problem. */ /* > */ /* > The final stage consists of computing the updated eigenvectors */ /* > directly using the updated eigenvalues. The eigenvectors for */ /* > the current problem are multiplied with the eigenvectors from */ /* > the overall problem. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] CUTPNT */ /* > \verbatim */ /* > CUTPNT is INTEGER */ /* > Contains the location of the last eigenvalue in the leading */ /* > sub-matrix. f2cmin(1,N) <= CUTPNT <= N. */ /* > \endverbatim */ /* > */ /* > \param[in] QSIZ */ /* > \verbatim */ /* > QSIZ is INTEGER */ /* > The dimension of the unitary matrix used to reduce */ /* > the full matrix to tridiagonal form. QSIZ >= N. */ /* > \endverbatim */ /* > */ /* > \param[in] TLVLS */ /* > \verbatim */ /* > TLVLS is INTEGER */ /* > The total number of merging levels in the overall divide and */ /* > conquer tree. */ /* > \endverbatim */ /* > */ /* > \param[in] CURLVL */ /* > \verbatim */ /* > CURLVL is INTEGER */ /* > The current level in the overall merge routine, */ /* > 0 <= curlvl <= tlvls. */ /* > \endverbatim */ /* > */ /* > \param[in] CURPBM */ /* > \verbatim */ /* > CURPBM is INTEGER */ /* > The current problem in the current level in the overall */ /* > merge routine (counting from upper left to lower right). */ /* > \endverbatim */ /* > */ /* > \param[in,out] D */ /* > \verbatim */ /* > D is REAL array, dimension (N) */ /* > On entry, the eigenvalues of the rank-1-perturbed matrix. */ /* > On exit, the eigenvalues of the repaired matrix. */ /* > \endverbatim */ /* > */ /* > \param[in,out] Q */ /* > \verbatim */ /* > Q is COMPLEX array, dimension (LDQ,N) */ /* > On entry, the eigenvectors of the rank-1-perturbed matrix. */ /* > On exit, the eigenvectors of the repaired tridiagonal matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] LDQ */ /* > \verbatim */ /* > LDQ is INTEGER */ /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[in] RHO */ /* > \verbatim */ /* > RHO is REAL */ /* > Contains the subdiagonal element used to create the rank-1 */ /* > modification. */ /* > \endverbatim */ /* > */ /* > \param[out] INDXQ */ /* > \verbatim */ /* > INDXQ is INTEGER array, dimension (N) */ /* > This contains the permutation which will reintegrate the */ /* > subproblem just solved back into sorted order, */ /* > ie. D( INDXQ( I = 1, N ) ) will be in ascending order. */ /* > \endverbatim */ /* > */ /* > \param[out] IWORK */ /* > \verbatim */ /* > IWORK is INTEGER array, dimension (4*N) */ /* > \endverbatim */ /* > */ /* > \param[out] RWORK */ /* > \verbatim */ /* > RWORK is REAL array, */ /* > dimension (3*N+2*QSIZ*N) */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX array, dimension (QSIZ*N) */ /* > \endverbatim */ /* > */ /* > \param[in,out] QSTORE */ /* > \verbatim */ /* > QSTORE is REAL array, dimension (N**2+1) */ /* > Stores eigenvectors of submatrices encountered during */ /* > divide and conquer, packed together. QPTR points to */ /* > beginning of the submatrices. */ /* > \endverbatim */ /* > */ /* > \param[in,out] QPTR */ /* > \verbatim */ /* > QPTR is INTEGER array, dimension (N+2) */ /* > List of indices pointing to beginning of submatrices stored */ /* > in QSTORE. The submatrices are numbered starting at the */ /* > bottom left of the divide and conquer tree, from left to */ /* > right and bottom to top. */ /* > \endverbatim */ /* > */ /* > \param[in] PRMPTR */ /* > \verbatim */ /* > PRMPTR is INTEGER array, dimension (N lg N) */ /* > Contains a list of pointers which indicate where in PERM a */ /* > level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) */ /* > indicates the size of the permutation and also the size of */ /* > the full, non-deflated problem. */ /* > \endverbatim */ /* > */ /* > \param[in] PERM */ /* > \verbatim */ /* > PERM is INTEGER array, dimension (N lg N) */ /* > Contains the permutations (from deflation and sorting) to be */ /* > applied to each eigenblock. */ /* > \endverbatim */ /* > */ /* > \param[in] GIVPTR */ /* > \verbatim */ /* > GIVPTR is INTEGER array, dimension (N lg N) */ /* > Contains a list of pointers which indicate where in GIVCOL a */ /* > level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) */ /* > indicates the number of Givens rotations. */ /* > \endverbatim */ /* > */ /* > \param[in] GIVCOL */ /* > \verbatim */ /* > GIVCOL is INTEGER array, dimension (2, N lg N) */ /* > Each pair of numbers indicates a pair of columns to take place */ /* > in a Givens rotation. */ /* > \endverbatim */ /* > */ /* > \param[in] GIVNUM */ /* > \verbatim */ /* > GIVNUM is REAL array, dimension (2, N lg N) */ /* > Each number indicates the S value to be used in the */ /* > corresponding Givens rotation. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit. */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > > 0: if INFO = 1, an eigenvalue did not converge */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date June 2016 */ /* > \ingroup complexOTHERcomputational */ /* ===================================================================== */ /* Subroutine */ int claed7_(integer *n, integer *cutpnt, integer *qsiz, integer *tlvls, integer *curlvl, integer *curpbm, real *d__, complex * q, integer *ldq, real *rho, integer *indxq, real *qstore, integer * qptr, integer *prmptr, integer *perm, integer *givptr, integer * givcol, real *givnum, complex *work, real *rwork, integer *iwork, integer *info) { /* System generated locals */ integer q_dim1, q_offset, i__1, i__2; /* Local variables */ integer indx, curr, i__, k, indxc, indxp, n1, n2; extern /* Subroutine */ int claed8_(integer *, integer *, integer *, complex *, integer *, real *, real *, integer *, real *, real *, complex *, integer *, real *, integer *, integer *, integer *, integer *, integer *, integer *, real *, integer *), slaed9_( integer *, integer *, integer *, integer *, real *, real *, integer *, real *, real *, real *, real *, integer *, integer *), slaeda_(integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, real *, real *, integer *, real * , real *, integer *); integer idlmda, iq, iw; extern /* Subroutine */ int clacrm_(integer *, integer *, complex *, integer *, real *, integer *, complex *, integer *, real *); integer iz; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slamrg_( integer *, integer *, real *, integer *, integer *, integer *); integer coltyp, ptr; /* -- LAPACK computational routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* June 2016 */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1 * 1; q -= q_offset; --indxq; --qstore; --qptr; --prmptr; --perm; --givptr; givcol -= 3; givnum -= 3; --work; --rwork; --iwork; /* Function Body */ *info = 0; /* IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN */ /* INFO = -1 */ /* ELSE IF( N.LT.0 ) THEN */ if (*n < 0) { *info = -1; } else if (f2cmin(1,*n) > *cutpnt || *n < *cutpnt) { *info = -2; } else if (*qsiz < *n) { *info = -3; } else if (*ldq < f2cmax(1,*n)) { *info = -9; } if (*info != 0) { i__1 = -(*info); xerbla_("CLAED7", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* The following values are for bookkeeping purposes only. They are */ /* integer pointers which indicate the portion of the workspace */ /* used by a particular array in SLAED2 and SLAED3. */ iz = 1; idlmda = iz + *n; iw = idlmda + *n; iq = iw + *n; indx = 1; indxc = indx + *n; coltyp = indxc + *n; indxp = coltyp + *n; /* Form the z-vector which consists of the last row of Q_1 and the */ /* first row of Q_2. */ ptr = pow_ii(&c__2, tlvls) + 1; i__1 = *curlvl - 1; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *tlvls - i__; ptr += pow_ii(&c__2, &i__2); /* L10: */ } curr = ptr + *curpbm; slaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], & givcol[3], &givnum[3], &qstore[1], &qptr[1], &rwork[iz], &rwork[ iz + *n], info); /* When solving the final problem, we no longer need the stored data, */ /* so we will overwrite the data from this level onto the previously */ /* used storage space. */ if (*curlvl == *tlvls) { qptr[curr] = 1; prmptr[curr] = 1; givptr[curr] = 1; } /* Sort and Deflate eigenvalues. */ claed8_(&k, n, qsiz, &q[q_offset], ldq, &d__[1], rho, cutpnt, &rwork[iz], &rwork[idlmda], &work[1], qsiz, &rwork[iw], &iwork[indxp], &iwork[ indx], &indxq[1], &perm[prmptr[curr]], &givptr[curr + 1], &givcol[ (givptr[curr] << 1) + 1], &givnum[(givptr[curr] << 1) + 1], info); prmptr[curr + 1] = prmptr[curr] + *n; givptr[curr + 1] += givptr[curr]; /* Solve Secular Equation. */ if (k != 0) { slaed9_(&k, &c__1, &k, n, &d__[1], &rwork[iq], &k, rho, &rwork[idlmda] , &rwork[iw], &qstore[qptr[curr]], &k, info); clacrm_(qsiz, &k, &work[1], qsiz, &qstore[qptr[curr]], &k, &q[ q_offset], ldq, &rwork[iq]); /* Computing 2nd power */ i__1 = k; qptr[curr + 1] = qptr[curr] + i__1 * i__1; if (*info != 0) { return 0; } /* Prepare the INDXQ sorting premutation. */ n1 = k; n2 = *n - k; slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]); } else { qptr[curr + 1] = qptr[curr]; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { indxq[i__] = i__; /* L20: */ } } return 0; /* End of CLAED7 */ } /* claed7_ */