#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b CLAHR2 reduces the specified number of first columns of a general rectangular matrix A so that elements below the specified subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part */ /* of A. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download CLAHR2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE CLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY ) */ /* INTEGER K, LDA, LDT, LDY, N, NB */ /* COMPLEX A( LDA, * ), T( LDT, NB ), TAU( NB ), */ /* $ Y( LDY, NB ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > CLAHR2 reduces the first NB columns of A complex general n-BY-(n-k+1) */ /* > matrix A so that elements below the k-th subdiagonal are zero. The */ /* > reduction is performed by an unitary similarity transformation */ /* > Q**H * A * Q. The routine returns the matrices V and T which determine */ /* > Q as a block reflector I - V*T*v**H, and also the matrix Y = A * V * T. */ /* > */ /* > This is an auxiliary routine called by CGEHRD. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > The offset for the reduction. Elements below the k-th */ /* > subdiagonal in the first NB columns are reduced to zero. */ /* > K < N. */ /* > \endverbatim */ /* > */ /* > \param[in] NB */ /* > \verbatim */ /* > NB is INTEGER */ /* > The number of columns to be reduced. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX array, dimension (LDA,N-K+1) */ /* > On entry, the n-by-(n-k+1) general matrix A. */ /* > On exit, the elements on and above the k-th subdiagonal in */ /* > the first NB columns are overwritten with the corresponding */ /* > elements of the reduced matrix; the elements below the k-th */ /* > subdiagonal, with the array TAU, represent the matrix Q as a */ /* > product of elementary reflectors. The other columns of A are */ /* > unchanged. See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] TAU */ /* > \verbatim */ /* > TAU is COMPLEX array, dimension (NB) */ /* > The scalar factors of the elementary reflectors. See Further */ /* > Details. */ /* > \endverbatim */ /* > */ /* > \param[out] T */ /* > \verbatim */ /* > T is COMPLEX array, dimension (LDT,NB) */ /* > The upper triangular matrix T. */ /* > \endverbatim */ /* > */ /* > \param[in] LDT */ /* > \verbatim */ /* > LDT is INTEGER */ /* > The leading dimension of the array T. LDT >= NB. */ /* > \endverbatim */ /* > */ /* > \param[out] Y */ /* > \verbatim */ /* > Y is COMPLEX array, dimension (LDY,NB) */ /* > The n-by-nb matrix Y. */ /* > \endverbatim */ /* > */ /* > \param[in] LDY */ /* > \verbatim */ /* > LDY is INTEGER */ /* > The leading dimension of the array Y. LDY >= N. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup complexOTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The matrix Q is represented as a product of nb elementary reflectors */ /* > */ /* > Q = H(1) H(2) . . . H(nb). */ /* > */ /* > Each H(i) has the form */ /* > */ /* > H(i) = I - tau * v * v**H */ /* > */ /* > where tau is a complex scalar, and v is a complex vector with */ /* > v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */ /* > A(i+k+1:n,i), and tau in TAU(i). */ /* > */ /* > The elements of the vectors v together form the (n-k+1)-by-nb matrix */ /* > V which is needed, with T and Y, to apply the transformation to the */ /* > unreduced part of the matrix, using an update of the form: */ /* > A := (I - V*T*V**H) * (A - Y*V**H). */ /* > */ /* > The contents of A on exit are illustrated by the following example */ /* > with n = 7, k = 3 and nb = 2: */ /* > */ /* > ( a a a a a ) */ /* > ( a a a a a ) */ /* > ( a a a a a ) */ /* > ( h h a a a ) */ /* > ( v1 h a a a ) */ /* > ( v1 v2 a a a ) */ /* > ( v1 v2 a a a ) */ /* > */ /* > where a denotes an element of the original matrix A, h denotes a */ /* > modified element of the upper Hessenberg matrix H, and vi denotes an */ /* > element of the vector defining H(i). */ /* > */ /* > This subroutine is a slight modification of LAPACK-3.0's DLAHRD */ /* > incorporating improvements proposed by Quintana-Orti and Van de */ /* > Gejin. Note that the entries of A(1:K,2:NB) differ from those */ /* > returned by the original LAPACK-3.0's DLAHRD routine. (This */ /* > subroutine is not backward compatible with LAPACK-3.0's DLAHRD.) */ /* > \endverbatim */ /* > \par References: */ /* ================ */ /* > */ /* > Gregorio Quintana-Orti and Robert van de Geijn, "Improving the */ /* > performance of reduction to Hessenberg form," ACM Transactions on */ /* > Mathematical Software, 32(2):180-194, June 2006. */ /* > */ /* ===================================================================== */ /* Subroutine */ int clahr2_(integer *n, integer *k, integer *nb, complex *a, integer *lda, complex *tau, complex *t, integer *ldt, complex *y, integer *ldy) { /* System generated locals */ integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2, i__3; complex q__1; /* Local variables */ integer i__; extern /* Subroutine */ int cscal_(integer *, complex *, complex *, integer *), cgemm_(char *, char *, integer *, integer *, integer * , complex *, complex *, integer *, complex *, integer *, complex * , complex *, integer *), cgemv_(char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *), ccopy_(integer *, complex *, integer *, complex *, integer *), ctrmm_(char *, char * , char *, char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *), caxpy_(integer *, complex *, complex *, integer *, complex *, integer *), ctrmv_(char *, char *, char *, integer *, complex *, integer *, complex *, integer *); complex ei; extern /* Subroutine */ int clarfg_(integer *, complex *, complex *, integer *, complex *), clacgv_(integer *, complex *, integer *), clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *); /* -- LAPACK auxiliary routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Quick return if possible */ /* Parameter adjustments */ --tau; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; t_dim1 = *ldt; t_offset = 1 + t_dim1 * 1; t -= t_offset; y_dim1 = *ldy; y_offset = 1 + y_dim1 * 1; y -= y_offset; /* Function Body */ if (*n <= 1) { return 0; } i__1 = *nb; for (i__ = 1; i__ <= i__1; ++i__) { if (i__ > 1) { /* Update A(K+1:N,I) */ /* Update I-th column of A - Y * V**H */ i__2 = i__ - 1; clacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda); i__2 = *n - *k; i__3 = i__ - 1; q__1.r = -1.f, q__1.i = 0.f; cgemv_("NO TRANSPOSE", &i__2, &i__3, &q__1, &y[*k + 1 + y_dim1], ldy, &a[*k + i__ - 1 + a_dim1], lda, &c_b2, &a[*k + 1 + i__ * a_dim1], &c__1); i__2 = i__ - 1; clacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda); /* Apply I - V * T**H * V**H to this column (call it b) from the */ /* left, using the last column of T as workspace */ /* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows) */ /* ( V2 ) ( b2 ) */ /* where V1 is unit lower triangular */ /* w := V1**H * b1 */ i__2 = i__ - 1; ccopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 + 1], &c__1); i__2 = i__ - 1; ctrmv_("Lower", "Conjugate transpose", "UNIT", &i__2, &a[*k + 1 + a_dim1], lda, &t[*nb * t_dim1 + 1], &c__1); /* w := w + V2**H * b2 */ i__2 = *n - *k - i__ + 1; i__3 = i__ - 1; cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*k + i__ + a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b2, & t[*nb * t_dim1 + 1], &c__1); /* w := T**H * w */ i__2 = i__ - 1; ctrmv_("Upper", "Conjugate transpose", "NON-UNIT", &i__2, &t[ t_offset], ldt, &t[*nb * t_dim1 + 1], &c__1); /* b2 := b2 - V2*w */ i__2 = *n - *k - i__ + 1; i__3 = i__ - 1; q__1.r = -1.f, q__1.i = 0.f; cgemv_("NO TRANSPOSE", &i__2, &i__3, &q__1, &a[*k + i__ + a_dim1], lda, &t[*nb * t_dim1 + 1], &c__1, &c_b2, &a[*k + i__ + i__ * a_dim1], &c__1); /* b1 := b1 - V1*w */ i__2 = i__ - 1; ctrmv_("Lower", "NO TRANSPOSE", "UNIT", &i__2, &a[*k + 1 + a_dim1] , lda, &t[*nb * t_dim1 + 1], &c__1); i__2 = i__ - 1; q__1.r = -1.f, q__1.i = 0.f; caxpy_(&i__2, &q__1, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__ * a_dim1], &c__1); i__2 = *k + i__ - 1 + (i__ - 1) * a_dim1; a[i__2].r = ei.r, a[i__2].i = ei.i; } /* Generate the elementary reflector H(I) to annihilate */ /* A(K+I+1:N,I) */ i__2 = *n - *k - i__ + 1; /* Computing MIN */ i__3 = *k + i__ + 1; clarfg_(&i__2, &a[*k + i__ + i__ * a_dim1], &a[f2cmin(i__3,*n) + i__ * a_dim1], &c__1, &tau[i__]); i__2 = *k + i__ + i__ * a_dim1; ei.r = a[i__2].r, ei.i = a[i__2].i; i__2 = *k + i__ + i__ * a_dim1; a[i__2].r = 1.f, a[i__2].i = 0.f; /* Compute Y(K+1:N,I) */ i__2 = *n - *k; i__3 = *n - *k - i__ + 1; cgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b2, &a[*k + 1 + (i__ + 1) * a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b1, &y[* k + 1 + i__ * y_dim1], &c__1); i__2 = *n - *k - i__ + 1; i__3 = i__ - 1; cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*k + i__ + a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b1, &t[ i__ * t_dim1 + 1], &c__1); i__2 = *n - *k; i__3 = i__ - 1; q__1.r = -1.f, q__1.i = 0.f; cgemv_("NO TRANSPOSE", &i__2, &i__3, &q__1, &y[*k + 1 + y_dim1], ldy, &t[i__ * t_dim1 + 1], &c__1, &c_b2, &y[*k + 1 + i__ * y_dim1], &c__1); i__2 = *n - *k; cscal_(&i__2, &tau[i__], &y[*k + 1 + i__ * y_dim1], &c__1); /* Compute T(1:I,I) */ i__2 = i__ - 1; i__3 = i__; q__1.r = -tau[i__3].r, q__1.i = -tau[i__3].i; cscal_(&i__2, &q__1, &t[i__ * t_dim1 + 1], &c__1); i__2 = i__ - 1; ctrmv_("Upper", "No Transpose", "NON-UNIT", &i__2, &t[t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1) ; i__2 = i__ + i__ * t_dim1; i__3 = i__; t[i__2].r = tau[i__3].r, t[i__2].i = tau[i__3].i; /* L10: */ } i__1 = *k + *nb + *nb * a_dim1; a[i__1].r = ei.r, a[i__1].i = ei.i; /* Compute Y(1:K,1:NB) */ clacpy_("ALL", k, nb, &a[(a_dim1 << 1) + 1], lda, &y[y_offset], ldy); ctrmm_("RIGHT", "Lower", "NO TRANSPOSE", "UNIT", k, nb, &c_b2, &a[*k + 1 + a_dim1], lda, &y[y_offset], ldy); if (*n > *k + *nb) { i__1 = *n - *k - *nb; cgemm_("NO TRANSPOSE", "NO TRANSPOSE", k, nb, &i__1, &c_b2, &a[(*nb + 2) * a_dim1 + 1], lda, &a[*k + 1 + *nb + a_dim1], lda, &c_b2, &y[y_offset], ldy); } ctrmm_("RIGHT", "Upper", "NO TRANSPOSE", "NON-UNIT", k, nb, &c_b2, &t[ t_offset], ldt, &y[y_offset], ldy); return 0; /* End of CLAHR2 */ } /* clahr2_ */