#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b CLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contrib ution to the reciprocal Dif-estimate. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download CLATDF + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE CLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV, */ /* JPIV ) */ /* INTEGER IJOB, LDZ, N */ /* REAL RDSCAL, RDSUM */ /* INTEGER IPIV( * ), JPIV( * ) */ /* COMPLEX RHS( * ), Z( LDZ, * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > CLATDF computes the contribution to the reciprocal Dif-estimate */ /* > by solving for x in Z * x = b, where b is chosen such that the norm */ /* > of x is as large as possible. It is assumed that LU decomposition */ /* > of Z has been computed by CGETC2. On entry RHS = f holds the */ /* > contribution from earlier solved sub-systems, and on return RHS = x. */ /* > */ /* > The factorization of Z returned by CGETC2 has the form */ /* > Z = P * L * U * Q, where P and Q are permutation matrices. L is lower */ /* > triangular with unit diagonal elements and U is upper triangular. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] IJOB */ /* > \verbatim */ /* > IJOB is INTEGER */ /* > IJOB = 2: First compute an approximative null-vector e */ /* > of Z using CGECON, e is normalized and solve for */ /* > Zx = +-e - f with the sign giving the greater value of */ /* > 2-norm(x). About 5 times as expensive as Default. */ /* > IJOB .ne. 2: Local look ahead strategy where */ /* > all entries of the r.h.s. b is chosen as either +1 or */ /* > -1. Default. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix Z. */ /* > \endverbatim */ /* > */ /* > \param[in] Z */ /* > \verbatim */ /* > Z is COMPLEX array, dimension (LDZ, N) */ /* > On entry, the LU part of the factorization of the n-by-n */ /* > matrix Z computed by CGETC2: Z = P * L * U * Q */ /* > \endverbatim */ /* > */ /* > \param[in] LDZ */ /* > \verbatim */ /* > LDZ is INTEGER */ /* > The leading dimension of the array Z. LDA >= f2cmax(1, N). */ /* > \endverbatim */ /* > */ /* > \param[in,out] RHS */ /* > \verbatim */ /* > RHS is COMPLEX array, dimension (N). */ /* > On entry, RHS contains contributions from other subsystems. */ /* > On exit, RHS contains the solution of the subsystem with */ /* > entries according to the value of IJOB (see above). */ /* > \endverbatim */ /* > */ /* > \param[in,out] RDSUM */ /* > \verbatim */ /* > RDSUM is REAL */ /* > On entry, the sum of squares of computed contributions to */ /* > the Dif-estimate under computation by CTGSYL, where the */ /* > scaling factor RDSCAL (see below) has been factored out. */ /* > On exit, the corresponding sum of squares updated with the */ /* > contributions from the current sub-system. */ /* > If TRANS = 'T' RDSUM is not touched. */ /* > NOTE: RDSUM only makes sense when CTGSY2 is called by CTGSYL. */ /* > \endverbatim */ /* > */ /* > \param[in,out] RDSCAL */ /* > \verbatim */ /* > RDSCAL is REAL */ /* > On entry, scaling factor used to prevent overflow in RDSUM. */ /* > On exit, RDSCAL is updated w.r.t. the current contributions */ /* > in RDSUM. */ /* > If TRANS = 'T', RDSCAL is not touched. */ /* > NOTE: RDSCAL only makes sense when CTGSY2 is called by */ /* > CTGSYL. */ /* > \endverbatim */ /* > */ /* > \param[in] IPIV */ /* > \verbatim */ /* > IPIV is INTEGER array, dimension (N). */ /* > The pivot indices; for 1 <= i <= N, row i of the */ /* > matrix has been interchanged with row IPIV(i). */ /* > \endverbatim */ /* > */ /* > \param[in] JPIV */ /* > \verbatim */ /* > JPIV is INTEGER array, dimension (N). */ /* > The pivot indices; for 1 <= j <= N, column j of the */ /* > matrix has been interchanged with column JPIV(j). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date June 2016 */ /* > \ingroup complexOTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > This routine is a further developed implementation of algorithm */ /* > BSOLVE in [1] using complete pivoting in the LU factorization. */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */ /* > Umea University, S-901 87 Umea, Sweden. */ /* > \par References: */ /* ================ */ /* > */ /* > [1] Bo Kagstrom and Lars Westin, */ /* > Generalized Schur Methods with Condition Estimators for */ /* > Solving the Generalized Sylvester Equation, IEEE Transactions */ /* > on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */ /* > */ /* > [2] Peter Poromaa, */ /* > On Efficient and Robust Estimators for the Separation */ /* > between two Regular Matrix Pairs with Applications in */ /* > Condition Estimation. Report UMINF-95.05, Department of */ /* > Computing Science, Umea University, S-901 87 Umea, Sweden, */ /* > 1995. */ /* ===================================================================== */ /* Subroutine */ int clatdf_(integer *ijob, integer *n, complex *z__, integer *ldz, complex *rhs, real *rdsum, real *rdscal, integer *ipiv, integer *jpiv) { /* System generated locals */ integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5; complex q__1, q__2, q__3; /* Local variables */ integer info; complex temp, work[8]; integer i__, j, k; extern /* Subroutine */ int cscal_(integer *, complex *, complex *, integer *); real scale; extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer *, complex *, integer *); extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *); complex pmone; extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, integer *, complex *, integer *); real rtemp, sminu, rwork[2], splus; extern /* Subroutine */ int cgesc2_(integer *, complex *, integer *, complex *, integer *, integer *, real *); complex bm, bp; extern /* Subroutine */ int cgecon_(char *, integer *, complex *, integer *, real *, real *, complex *, real *, integer *); complex xm[2], xp[2]; extern /* Subroutine */ int classq_(integer *, complex *, integer *, real *, real *), claswp_(integer *, complex *, integer *, integer *, integer *, integer *, integer *); extern real scasum_(integer *, complex *, integer *); /* -- LAPACK auxiliary routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* June 2016 */ /* ===================================================================== */ /* Parameter adjustments */ z_dim1 = *ldz; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; --rhs; --ipiv; --jpiv; /* Function Body */ if (*ijob != 2) { /* Apply permutations IPIV to RHS */ i__1 = *n - 1; claswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1); /* Solve for L-part choosing RHS either to +1 or -1. */ q__1.r = -1.f, q__1.i = 0.f; pmone.r = q__1.r, pmone.i = q__1.i; i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = j; q__1.r = rhs[i__2].r + 1.f, q__1.i = rhs[i__2].i + 0.f; bp.r = q__1.r, bp.i = q__1.i; i__2 = j; q__1.r = rhs[i__2].r - 1.f, q__1.i = rhs[i__2].i + 0.f; bm.r = q__1.r, bm.i = q__1.i; splus = 1.f; /* Lockahead for L- part RHS(1:N-1) = +-1 */ /* SPLUS and SMIN computed more efficiently than in BSOLVE[1]. */ i__2 = *n - j; cdotc_(&q__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1 + j * z_dim1], &c__1); splus += q__1.r; i__2 = *n - j; cdotc_(&q__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], &c__1); sminu = q__1.r; i__2 = j; splus *= rhs[i__2].r; if (splus > sminu) { i__2 = j; rhs[i__2].r = bp.r, rhs[i__2].i = bp.i; } else if (sminu > splus) { i__2 = j; rhs[i__2].r = bm.r, rhs[i__2].i = bm.i; } else { /* In this case the updating sums are equal and we can */ /* choose RHS(J) +1 or -1. The first time this happens we */ /* choose -1, thereafter +1. This is a simple way to get */ /* good estimates of matrices like Byers well-known example */ /* (see [1]). (Not done in BSOLVE.) */ i__2 = j; i__3 = j; q__1.r = rhs[i__3].r + pmone.r, q__1.i = rhs[i__3].i + pmone.i; rhs[i__2].r = q__1.r, rhs[i__2].i = q__1.i; pmone.r = 1.f, pmone.i = 0.f; } /* Compute the remaining r.h.s. */ i__2 = j; q__1.r = -rhs[i__2].r, q__1.i = -rhs[i__2].i; temp.r = q__1.r, temp.i = q__1.i; i__2 = *n - j; caxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], &c__1); /* L10: */ } /* Solve for U- part, lockahead for RHS(N) = +-1. This is not done */ /* In BSOLVE and will hopefully give us a better estimate because */ /* any ill-conditioning of the original matrix is transferred to U */ /* and not to L. U(N, N) is an approximation to sigma_min(LU). */ i__1 = *n - 1; ccopy_(&i__1, &rhs[1], &c__1, work, &c__1); i__1 = *n - 1; i__2 = *n; q__1.r = rhs[i__2].r + 1.f, q__1.i = rhs[i__2].i + 0.f; work[i__1].r = q__1.r, work[i__1].i = q__1.i; i__1 = *n; i__2 = *n; q__1.r = rhs[i__2].r - 1.f, q__1.i = rhs[i__2].i + 0.f; rhs[i__1].r = q__1.r, rhs[i__1].i = q__1.i; splus = 0.f; sminu = 0.f; for (i__ = *n; i__ >= 1; --i__) { c_div(&q__1, &c_b1, &z__[i__ + i__ * z_dim1]); temp.r = q__1.r, temp.i = q__1.i; i__1 = i__ - 1; i__2 = i__ - 1; q__1.r = work[i__2].r * temp.r - work[i__2].i * temp.i, q__1.i = work[i__2].r * temp.i + work[i__2].i * temp.r; work[i__1].r = q__1.r, work[i__1].i = q__1.i; i__1 = i__; i__2 = i__; q__1.r = rhs[i__2].r * temp.r - rhs[i__2].i * temp.i, q__1.i = rhs[i__2].r * temp.i + rhs[i__2].i * temp.r; rhs[i__1].r = q__1.r, rhs[i__1].i = q__1.i; i__1 = *n; for (k = i__ + 1; k <= i__1; ++k) { i__2 = i__ - 1; i__3 = i__ - 1; i__4 = k - 1; i__5 = i__ + k * z_dim1; q__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, q__3.i = z__[i__5].r * temp.i + z__[i__5].i * temp.r; q__2.r = work[i__4].r * q__3.r - work[i__4].i * q__3.i, q__2.i = work[i__4].r * q__3.i + work[i__4].i * q__3.r; q__1.r = work[i__3].r - q__2.r, q__1.i = work[i__3].i - q__2.i; work[i__2].r = q__1.r, work[i__2].i = q__1.i; i__2 = i__; i__3 = i__; i__4 = k; i__5 = i__ + k * z_dim1; q__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, q__3.i = z__[i__5].r * temp.i + z__[i__5].i * temp.r; q__2.r = rhs[i__4].r * q__3.r - rhs[i__4].i * q__3.i, q__2.i = rhs[i__4].r * q__3.i + rhs[i__4].i * q__3.r; q__1.r = rhs[i__3].r - q__2.r, q__1.i = rhs[i__3].i - q__2.i; rhs[i__2].r = q__1.r, rhs[i__2].i = q__1.i; /* L20: */ } splus += c_abs(&work[i__ - 1]); sminu += c_abs(&rhs[i__]); /* L30: */ } if (splus > sminu) { ccopy_(n, work, &c__1, &rhs[1], &c__1); } /* Apply the permutations JPIV to the computed solution (RHS) */ i__1 = *n - 1; claswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1); /* Compute the sum of squares */ classq_(n, &rhs[1], &c__1, rdscal, rdsum); return 0; } /* ENTRY IJOB = 2 */ /* Compute approximate nullvector XM of Z */ cgecon_("I", n, &z__[z_offset], ldz, &c_b24, &rtemp, work, rwork, &info); ccopy_(n, &work[*n], &c__1, xm, &c__1); /* Compute RHS */ i__1 = *n - 1; claswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1); cdotc_(&q__3, n, xm, &c__1, xm, &c__1); c_sqrt(&q__2, &q__3); c_div(&q__1, &c_b1, &q__2); temp.r = q__1.r, temp.i = q__1.i; cscal_(n, &temp, xm, &c__1); ccopy_(n, xm, &c__1, xp, &c__1); caxpy_(n, &c_b1, &rhs[1], &c__1, xp, &c__1); q__1.r = -1.f, q__1.i = 0.f; caxpy_(n, &q__1, xm, &c__1, &rhs[1], &c__1); cgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &scale); cgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &scale); if (scasum_(n, xp, &c__1) > scasum_(n, &rhs[1], &c__1)) { ccopy_(n, xp, &c__1, &rhs[1], &c__1); } /* Compute the sum of squares */ classq_(n, &rhs[1], &c__1, rdscal, rdsum); return 0; /* End of CLATDF */ } /* clatdf_ */