#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b CPBTRF */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download CPBTRF + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE CPBTRF( UPLO, N, KD, AB, LDAB, INFO ) */ /* CHARACTER UPLO */ /* INTEGER INFO, KD, LDAB, N */ /* COMPLEX AB( LDAB, * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > CPBTRF computes the Cholesky factorization of a complex Hermitian */ /* > positive definite band matrix A. */ /* > */ /* > The factorization has the form */ /* > A = U**H * U, if UPLO = 'U', or */ /* > A = L * L**H, if UPLO = 'L', */ /* > where U is an upper triangular matrix and L is lower triangular. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > = 'U': Upper triangle of A is stored; */ /* > = 'L': Lower triangle of A is stored. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] KD */ /* > \verbatim */ /* > KD is INTEGER */ /* > The number of superdiagonals of the matrix A if UPLO = 'U', */ /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] AB */ /* > \verbatim */ /* > AB is COMPLEX array, dimension (LDAB,N) */ /* > On entry, the upper or lower triangle of the Hermitian band */ /* > matrix A, stored in the first KD+1 rows of the array. The */ /* > j-th column of A is stored in the j-th column of the array AB */ /* > as follows: */ /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */ /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */ /* > */ /* > On exit, if INFO = 0, the triangular factor U or L from the */ /* > Cholesky factorization A = U**H*U or A = L*L**H of the band */ /* > matrix A, in the same storage format as A. */ /* > \endverbatim */ /* > */ /* > \param[in] LDAB */ /* > \verbatim */ /* > LDAB is INTEGER */ /* > The leading dimension of the array AB. LDAB >= KD+1. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > > 0: if INFO = i, the leading minor of order i is not */ /* > positive definite, and the factorization could not be */ /* > completed. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup complexOTHERcomputational */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The band storage scheme is illustrated by the following example, when */ /* > N = 6, KD = 2, and UPLO = 'U': */ /* > */ /* > On entry: On exit: */ /* > */ /* > * * a13 a24 a35 a46 * * u13 u24 u35 u46 */ /* > * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */ /* > a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */ /* > */ /* > Similarly, if UPLO = 'L' the format of A is as follows: */ /* > */ /* > On entry: On exit: */ /* > */ /* > a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 */ /* > a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * */ /* > a31 a42 a53 a64 * * l31 l42 l53 l64 * * */ /* > */ /* > Array elements marked * are not used by the routine. */ /* > \endverbatim */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989 */ /* ===================================================================== */ /* Subroutine */ int cpbtrf_(char *uplo, integer *n, integer *kd, complex *ab, integer *ldab, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6; complex q__1; /* Local variables */ complex work[1056] /* was [33][32] */; integer i__, j; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *), cherk_(char *, char *, integer *, integer *, real *, complex *, integer *, real * , complex *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *); integer i2, i3; extern /* Subroutine */ int cpbtf2_(char *, integer *, integer *, complex *, integer *, integer *), cpotf2_(char *, integer *, complex *, integer *, integer *); integer ib, nb, ii, jj; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); /* -- LAPACK computational routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1 * 1; ab -= ab_offset; /* Function Body */ *info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kd < 0) { *info = -3; } else if (*ldab < *kd + 1) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("CPBTRF", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Determine the block size for this environment */ nb = ilaenv_(&c__1, "CPBTRF", uplo, n, kd, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); /* The block size must not exceed the semi-bandwidth KD, and must not */ /* exceed the limit set by the size of the local array WORK. */ nb = f2cmin(nb,32); if (nb <= 1 || nb > *kd) { /* Use unblocked code */ cpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info); } else { /* Use blocked code */ if (lsame_(uplo, "U")) { /* Compute the Cholesky factorization of a Hermitian band */ /* matrix, given the upper triangle of the matrix in band */ /* storage. */ /* Zero the upper triangle of the work array. */ i__1 = nb; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * 33 - 34; work[i__3].r = 0.f, work[i__3].i = 0.f; /* L10: */ } /* L20: */ } /* Process the band matrix one diagonal block at a time. */ i__1 = *n; i__2 = nb; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = nb, i__4 = *n - i__ + 1; ib = f2cmin(i__3,i__4); /* Factorize the diagonal block */ i__3 = *ldab - 1; cpotf2_(uplo, &ib, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ii); if (ii != 0) { *info = i__ + ii - 1; goto L150; } if (i__ + ib <= *n) { /* Update the relevant part of the trailing submatrix. */ /* If A11 denotes the diagonal block which has just been */ /* factorized, then we need to update the remaining */ /* blocks in the diagram: */ /* A11 A12 A13 */ /* A22 A23 */ /* A33 */ /* The numbers of rows and columns in the partitioning */ /* are IB, I2, I3 respectively. The blocks A12, A22 and */ /* A23 are empty if IB = KD. The upper triangle of A13 */ /* lies outside the band. */ /* Computing MIN */ i__3 = *kd - ib, i__4 = *n - i__ - ib + 1; i2 = f2cmin(i__3,i__4); /* Computing MIN */ i__3 = ib, i__4 = *n - i__ - *kd + 1; i3 = f2cmin(i__3,i__4); if (i2 > 0) { /* Update A12 */ i__3 = *ldab - 1; i__4 = *ldab - 1; ctrsm_("Left", "Upper", "Conjugate transpose", "Non-" "unit", &ib, &i2, &c_b1, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__4); /* Update A22 */ i__3 = *ldab - 1; i__4 = *ldab - 1; cherk_("Upper", "Conjugate transpose", &i2, &ib, & c_b21, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__3, &c_b22, &ab[*kd + 1 + (i__ + ib) * ab_dim1], &i__4); } if (i3 > 0) { /* Copy the lower triangle of A13 into the work array. */ i__3 = i3; for (jj = 1; jj <= i__3; ++jj) { i__4 = ib; for (ii = jj; ii <= i__4; ++ii) { i__5 = ii + jj * 33 - 34; i__6 = ii - jj + 1 + (jj + i__ + *kd - 1) * ab_dim1; work[i__5].r = ab[i__6].r, work[i__5].i = ab[ i__6].i; /* L30: */ } /* L40: */ } /* Update A13 (in the work array). */ i__3 = *ldab - 1; ctrsm_("Left", "Upper", "Conjugate transpose", "Non-" "unit", &ib, &i3, &c_b1, &ab[*kd + 1 + i__ * ab_dim1], &i__3, work, &c__33); /* Update A23 */ if (i2 > 0) { q__1.r = -1.f, q__1.i = 0.f; i__3 = *ldab - 1; i__4 = *ldab - 1; cgemm_("Conjugate transpose", "No transpose", &i2, &i3, &ib, &q__1, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__3, work, &c__33, & c_b1, &ab[ib + 1 + (i__ + *kd) * ab_dim1], &i__4); } /* Update A33 */ i__3 = *ldab - 1; cherk_("Upper", "Conjugate transpose", &i3, &ib, & c_b21, work, &c__33, &c_b22, &ab[*kd + 1 + ( i__ + *kd) * ab_dim1], &i__3); /* Copy the lower triangle of A13 back into place. */ i__3 = i3; for (jj = 1; jj <= i__3; ++jj) { i__4 = ib; for (ii = jj; ii <= i__4; ++ii) { i__5 = ii - jj + 1 + (jj + i__ + *kd - 1) * ab_dim1; i__6 = ii + jj * 33 - 34; ab[i__5].r = work[i__6].r, ab[i__5].i = work[ i__6].i; /* L50: */ } /* L60: */ } } } /* L70: */ } } else { /* Compute the Cholesky factorization of a Hermitian band */ /* matrix, given the lower triangle of the matrix in band */ /* storage. */ /* Zero the lower triangle of the work array. */ i__2 = nb; for (j = 1; j <= i__2; ++j) { i__1 = nb; for (i__ = j + 1; i__ <= i__1; ++i__) { i__3 = i__ + j * 33 - 34; work[i__3].r = 0.f, work[i__3].i = 0.f; /* L80: */ } /* L90: */ } /* Process the band matrix one diagonal block at a time. */ i__2 = *n; i__1 = nb; for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) { /* Computing MIN */ i__3 = nb, i__4 = *n - i__ + 1; ib = f2cmin(i__3,i__4); /* Factorize the diagonal block */ i__3 = *ldab - 1; cpotf2_(uplo, &ib, &ab[i__ * ab_dim1 + 1], &i__3, &ii); if (ii != 0) { *info = i__ + ii - 1; goto L150; } if (i__ + ib <= *n) { /* Update the relevant part of the trailing submatrix. */ /* If A11 denotes the diagonal block which has just been */ /* factorized, then we need to update the remaining */ /* blocks in the diagram: */ /* A11 */ /* A21 A22 */ /* A31 A32 A33 */ /* The numbers of rows and columns in the partitioning */ /* are IB, I2, I3 respectively. The blocks A21, A22 and */ /* A32 are empty if IB = KD. The lower triangle of A31 */ /* lies outside the band. */ /* Computing MIN */ i__3 = *kd - ib, i__4 = *n - i__ - ib + 1; i2 = f2cmin(i__3,i__4); /* Computing MIN */ i__3 = ib, i__4 = *n - i__ - *kd + 1; i3 = f2cmin(i__3,i__4); if (i2 > 0) { /* Update A21 */ i__3 = *ldab - 1; i__4 = *ldab - 1; ctrsm_("Right", "Lower", "Conjugate transpose", "Non" "-unit", &i2, &ib, &c_b1, &ab[i__ * ab_dim1 + 1], &i__3, &ab[ib + 1 + i__ * ab_dim1], &i__4); /* Update A22 */ i__3 = *ldab - 1; i__4 = *ldab - 1; cherk_("Lower", "No transpose", &i2, &ib, &c_b21, &ab[ ib + 1 + i__ * ab_dim1], &i__3, &c_b22, &ab[( i__ + ib) * ab_dim1 + 1], &i__4); } if (i3 > 0) { /* Copy the upper triangle of A31 into the work array. */ i__3 = ib; for (jj = 1; jj <= i__3; ++jj) { i__4 = f2cmin(jj,i3); for (ii = 1; ii <= i__4; ++ii) { i__5 = ii + jj * 33 - 34; i__6 = *kd + 1 - jj + ii + (jj + i__ - 1) * ab_dim1; work[i__5].r = ab[i__6].r, work[i__5].i = ab[ i__6].i; /* L100: */ } /* L110: */ } /* Update A31 (in the work array). */ i__3 = *ldab - 1; ctrsm_("Right", "Lower", "Conjugate transpose", "Non" "-unit", &i3, &ib, &c_b1, &ab[i__ * ab_dim1 + 1], &i__3, work, &c__33); /* Update A32 */ if (i2 > 0) { q__1.r = -1.f, q__1.i = 0.f; i__3 = *ldab - 1; i__4 = *ldab - 1; cgemm_("No transpose", "Conjugate transpose", &i3, &i2, &ib, &q__1, work, &c__33, &ab[ib + 1 + i__ * ab_dim1], &i__3, &c_b1, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__4); } /* Update A33 */ i__3 = *ldab - 1; cherk_("Lower", "No transpose", &i3, &ib, &c_b21, work, &c__33, &c_b22, &ab[(i__ + *kd) * ab_dim1 + 1], &i__3); /* Copy the upper triangle of A31 back into place. */ i__3 = ib; for (jj = 1; jj <= i__3; ++jj) { i__4 = f2cmin(jj,i3); for (ii = 1; ii <= i__4; ++ii) { i__5 = *kd + 1 - jj + ii + (jj + i__ - 1) * ab_dim1; i__6 = ii + jj * 33 - 34; ab[i__5].r = work[i__6].r, ab[i__5].i = work[ i__6].i; /* L120: */ } /* L130: */ } } } /* L140: */ } } } return 0; L150: return 0; /* End of CPBTRF */ } /* cpbtrf_ */