#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b CSYTRF_RK computes the factorization of a complex symmetric indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS3 blocked algorithm). */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download CSYTRF_RK + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE CSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, */ /* INFO ) */ /* CHARACTER UPLO */ /* INTEGER INFO, LDA, LWORK, N */ /* INTEGER IPIV( * ) */ /* COMPLEX A( LDA, * ), E ( * ), WORK( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > CSYTRF_RK computes the factorization of a complex symmetric matrix A */ /* > using the bounded Bunch-Kaufman (rook) diagonal pivoting method: */ /* > */ /* > A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), */ /* > */ /* > where U (or L) is unit upper (or lower) triangular matrix, */ /* > U**T (or L**T) is the transpose of U (or L), P is a permutation */ /* > matrix, P**T is the transpose of P, and D is symmetric and block */ /* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */ /* > */ /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */ /* > For more information see Further Details section. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > Specifies whether the upper or lower triangular part of the */ /* > symmetric matrix A is stored: */ /* > = 'U': Upper triangular */ /* > = 'L': Lower triangular */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX array, dimension (LDA,N) */ /* > On entry, the symmetric matrix A. */ /* > If UPLO = 'U': the leading N-by-N upper triangular part */ /* > of A contains the upper triangular part of the matrix A, */ /* > and the strictly lower triangular part of A is not */ /* > referenced. */ /* > */ /* > If UPLO = 'L': the leading N-by-N lower triangular part */ /* > of A contains the lower triangular part of the matrix A, */ /* > and the strictly upper triangular part of A is not */ /* > referenced. */ /* > */ /* > On exit, contains: */ /* > a) ONLY diagonal elements of the symmetric block diagonal */ /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */ /* > (superdiagonal (or subdiagonal) elements of D */ /* > are stored on exit in array E), and */ /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */ /* > If UPLO = 'L': factor L in the subdiagonal part of A. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] E */ /* > \verbatim */ /* > E is COMPLEX array, dimension (N) */ /* > On exit, contains the superdiagonal (or subdiagonal) */ /* > elements of the symmetric block diagonal matrix D */ /* > with 1-by-1 or 2-by-2 diagonal blocks, where */ /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */ /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */ /* > */ /* > NOTE: For 1-by-1 diagonal block D(k), where */ /* > 1 <= k <= N, the element E(k) is set to 0 in both */ /* > UPLO = 'U' or UPLO = 'L' cases. */ /* > \endverbatim */ /* > */ /* > \param[out] IPIV */ /* > \verbatim */ /* > IPIV is INTEGER array, dimension (N) */ /* > IPIV describes the permutation matrix P in the factorization */ /* > of matrix A as follows. The absolute value of IPIV(k) */ /* > represents the index of row and column that were */ /* > interchanged with the k-th row and column. The value of UPLO */ /* > describes the order in which the interchanges were applied. */ /* > Also, the sign of IPIV represents the block structure of */ /* > the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 */ /* > diagonal blocks which correspond to 1 or 2 interchanges */ /* > at each factorization step. For more info see Further */ /* > Details section. */ /* > */ /* > If UPLO = 'U', */ /* > ( in factorization order, k decreases from N to 1 ): */ /* > a) A single positive entry IPIV(k) > 0 means: */ /* > D(k,k) is a 1-by-1 diagonal block. */ /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */ /* > interchanged in the matrix A(1:N,1:N); */ /* > If IPIV(k) = k, no interchange occurred. */ /* > */ /* > b) A pair of consecutive negative entries */ /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */ /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */ /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */ /* > 1) If -IPIV(k) != k, rows and columns */ /* > k and -IPIV(k) were interchanged */ /* > in the matrix A(1:N,1:N). */ /* > If -IPIV(k) = k, no interchange occurred. */ /* > 2) If -IPIV(k-1) != k-1, rows and columns */ /* > k-1 and -IPIV(k-1) were interchanged */ /* > in the matrix A(1:N,1:N). */ /* > If -IPIV(k-1) = k-1, no interchange occurred. */ /* > */ /* > c) In both cases a) and b), always ABS( IPIV(k) ) <= k. */ /* > */ /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */ /* > */ /* > If UPLO = 'L', */ /* > ( in factorization order, k increases from 1 to N ): */ /* > a) A single positive entry IPIV(k) > 0 means: */ /* > D(k,k) is a 1-by-1 diagonal block. */ /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */ /* > interchanged in the matrix A(1:N,1:N). */ /* > If IPIV(k) = k, no interchange occurred. */ /* > */ /* > b) A pair of consecutive negative entries */ /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */ /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */ /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */ /* > 1) If -IPIV(k) != k, rows and columns */ /* > k and -IPIV(k) were interchanged */ /* > in the matrix A(1:N,1:N). */ /* > If -IPIV(k) = k, no interchange occurred. */ /* > 2) If -IPIV(k+1) != k+1, rows and columns */ /* > k-1 and -IPIV(k-1) were interchanged */ /* > in the matrix A(1:N,1:N). */ /* > If -IPIV(k+1) = k+1, no interchange occurred. */ /* > */ /* > c) In both cases a) and b), always ABS( IPIV(k) ) >= k. */ /* > */ /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX array, dimension ( MAX(1,LWORK) ). */ /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* > \endverbatim */ /* > */ /* > \param[in] LWORK */ /* > \verbatim */ /* > LWORK is INTEGER */ /* > The length of WORK. LWORK >=1. For best performance */ /* > LWORK >= N*NB, where NB is the block size returned */ /* > by ILAENV. */ /* > */ /* > If LWORK = -1, then a workspace query is assumed; */ /* > the routine only calculates the optimal size of the WORK */ /* > array, returns this value as the first entry of the WORK */ /* > array, and no error message related to LWORK is issued */ /* > by XERBLA. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > */ /* > < 0: If INFO = -k, the k-th argument had an illegal value */ /* > */ /* > > 0: If INFO = k, the matrix A is singular, because: */ /* > If UPLO = 'U': column k in the upper */ /* > triangular part of A contains all zeros. */ /* > If UPLO = 'L': column k in the lower */ /* > triangular part of A contains all zeros. */ /* > */ /* > Therefore D(k,k) is exactly zero, and superdiagonal */ /* > elements of column k of U (or subdiagonal elements of */ /* > column k of L ) are all zeros. The factorization has */ /* > been completed, but the block diagonal matrix D is */ /* > exactly singular, and division by zero will occur if */ /* > it is used to solve a system of equations. */ /* > */ /* > NOTE: INFO only stores the first occurrence of */ /* > a singularity, any subsequent occurrence of singularity */ /* > is not stored in INFO even though the factorization */ /* > always completes. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup complexSYcomputational */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > TODO: put correct description */ /* > \endverbatim */ /* > \par Contributors: */ /* ================== */ /* > */ /* > \verbatim */ /* > */ /* > December 2016, Igor Kozachenko, */ /* > Computer Science Division, */ /* > University of California, Berkeley */ /* > */ /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */ /* > School of Mathematics, */ /* > University of Manchester */ /* > */ /* > \endverbatim */ /* ===================================================================== */ /* Subroutine */ int csytrf_rk_(char *uplo, integer *n, complex *a, integer * lda, complex *e, integer *ipiv, complex *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ integer i__, k; extern /* Subroutine */ int csytf2_rk_(char *, integer *, complex *, integer *, complex *, integer *, integer *); extern logical lsame_(char *, char *); integer nbmin, iinfo; extern /* Subroutine */ int cswap_(integer *, complex *, integer *, complex *, integer *); logical upper; extern /* Subroutine */ int clasyf_rk_(char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *); integer kb, nb, ip; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); integer ldwork, lwkopt; logical lquery; integer iws; /* -- LAPACK computational routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --e; --ipiv; --work; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); lquery = *lwork == -1; if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < f2cmax(1,*n)) { *info = -4; } else if (*lwork < 1 && ! lquery) { *info = -8; } if (*info == 0) { /* Determine the block size */ nb = ilaenv_(&c__1, "CSYTRF_RK", uplo, n, &c_n1, &c_n1, &c_n1, ( ftnlen)9, (ftnlen)1); lwkopt = *n * nb; work[1].r = (real) lwkopt, work[1].i = 0.f; } if (*info != 0) { i__1 = -(*info); xerbla_("CSYTRF_RK", &i__1, (ftnlen)9); return 0; } else if (lquery) { return 0; } nbmin = 2; ldwork = *n; if (nb > 1 && nb < *n) { iws = ldwork * nb; if (*lwork < iws) { /* Computing MAX */ i__1 = *lwork / ldwork; nb = f2cmax(i__1,1); /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, "CSYTRF_RK", uplo, n, &c_n1, & c_n1, &c_n1, (ftnlen)9, (ftnlen)1); nbmin = f2cmax(i__1,i__2); } } else { iws = 1; } if (nb < nbmin) { nb = *n; } if (upper) { /* Factorize A as U*D*U**T using the upper triangle of A */ /* K is the main loop index, decreasing from N to 1 in steps of */ /* KB, where KB is the number of columns factorized by CLASYF_RK; */ /* KB is either NB or NB-1, or K for the last block */ k = *n; L10: /* If K < 1, exit from loop */ if (k < 1) { goto L15; } if (k > nb) { /* Factorize columns k-kb+1:k of A and use blocked code to */ /* update columns 1:k-kb */ clasyf_rk_(uplo, &k, &nb, &kb, &a[a_offset], lda, &e[1], &ipiv[1] , &work[1], &ldwork, &iinfo); } else { /* Use unblocked code to factorize columns 1:k of A */ csytf2_rk_(uplo, &k, &a[a_offset], lda, &e[1], &ipiv[1], &iinfo); kb = k; } /* Set INFO on the first occurrence of a zero pivot */ if (*info == 0 && iinfo > 0) { *info = iinfo; } /* No need to adjust IPIV */ /* Apply permutations to the leading panel 1:k-1 */ /* Read IPIV from the last block factored, i.e. */ /* indices k-kb+1:k and apply row permutations to the */ /* last k+1 colunms k+1:N after that block */ /* (We can do the simple loop over IPIV with decrement -1, */ /* since the ABS value of IPIV( I ) represents the row index */ /* of the interchange with row i in both 1x1 and 2x2 pivot cases) */ if (k < *n) { i__1 = k - kb + 1; for (i__ = k; i__ >= i__1; --i__) { ip = (i__2 = ipiv[i__], abs(i__2)); if (ip != i__) { i__2 = *n - k; cswap_(&i__2, &a[i__ + (k + 1) * a_dim1], lda, &a[ip + (k + 1) * a_dim1], lda); } } } /* Decrease K and return to the start of the main loop */ k -= kb; goto L10; /* This label is the exit from main loop over K decreasing */ /* from N to 1 in steps of KB */ L15: ; } else { /* Factorize A as L*D*L**T using the lower triangle of A */ /* K is the main loop index, increasing from 1 to N in steps of */ /* KB, where KB is the number of columns factorized by CLASYF_RK; */ /* KB is either NB or NB-1, or N-K+1 for the last block */ k = 1; L20: /* If K > N, exit from loop */ if (k > *n) { goto L35; } if (k <= *n - nb) { /* Factorize columns k:k+kb-1 of A and use blocked code to */ /* update columns k+kb:n */ i__1 = *n - k + 1; clasyf_rk_(uplo, &i__1, &nb, &kb, &a[k + k * a_dim1], lda, &e[k], &ipiv[k], &work[1], &ldwork, &iinfo); } else { /* Use unblocked code to factorize columns k:n of A */ i__1 = *n - k + 1; csytf2_rk_(uplo, &i__1, &a[k + k * a_dim1], lda, &e[k], &ipiv[k], &iinfo); kb = *n - k + 1; } /* Set INFO on the first occurrence of a zero pivot */ if (*info == 0 && iinfo > 0) { *info = iinfo + k - 1; } /* Adjust IPIV */ i__1 = k + kb - 1; for (i__ = k; i__ <= i__1; ++i__) { if (ipiv[i__] > 0) { ipiv[i__] = ipiv[i__] + k - 1; } else { ipiv[i__] = ipiv[i__] - k + 1; } } /* Apply permutations to the leading panel 1:k-1 */ /* Read IPIV from the last block factored, i.e. */ /* indices k:k+kb-1 and apply row permutations to the */ /* first k-1 colunms 1:k-1 before that block */ /* (We can do the simple loop over IPIV with increment 1, */ /* since the ABS value of IPIV( I ) represents the row index */ /* of the interchange with row i in both 1x1 and 2x2 pivot cases) */ if (k > 1) { i__1 = k + kb - 1; for (i__ = k; i__ <= i__1; ++i__) { ip = (i__2 = ipiv[i__], abs(i__2)); if (ip != i__) { i__2 = k - 1; cswap_(&i__2, &a[i__ + a_dim1], lda, &a[ip + a_dim1], lda) ; } } } /* Increase K and return to the start of the main loop */ k += kb; goto L20; /* This label is the exit from main loop over K increasing */ /* from 1 to N in steps of KB */ L35: /* End Lower */ ; } work[1].r = (real) lwkopt, work[1].i = 0.f; return 0; /* End of CSYTRF_RK */ } /* csytrf_rk__ */