#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b CUNCSD2BY1 */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download CUNCSD2BY1 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE CUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11, */ /* X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T, */ /* LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK, */ /* INFO ) */ /* CHARACTER JOBU1, JOBU2, JOBV1T */ /* INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21, */ /* $ M, P, Q */ /* INTEGER LRWORK, LRWORKMIN, LRWORKOPT */ /* REAL RWORK(*) */ /* REAL THETA(*) */ /* COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*), */ /* $ X11(LDX11,*), X21(LDX21,*) */ /* INTEGER IWORK(*) */ /* > \par Purpose: */ /* ============= */ /* > */ /* >\verbatim */ /* > */ /* > CUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with */ /* > orthonormal columns that has been partitioned into a 2-by-1 block */ /* > structure: */ /* > */ /* > [ I1 0 0 ] */ /* > [ 0 C 0 ] */ /* > [ X11 ] [ U1 | ] [ 0 0 0 ] */ /* > X = [-----] = [---------] [----------] V1**T . */ /* > [ X21 ] [ | U2 ] [ 0 0 0 ] */ /* > [ 0 S 0 ] */ /* > [ 0 0 I2] */ /* > */ /* > X11 is P-by-Q. The unitary matrices U1, U2, and V1 are P-by-P, */ /* > (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R */ /* > nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which */ /* > R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a */ /* > K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0). */ /* > */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] JOBU1 */ /* > \verbatim */ /* > JOBU1 is CHARACTER */ /* > = 'Y': U1 is computed; */ /* > otherwise: U1 is not computed. */ /* > \endverbatim */ /* > */ /* > \param[in] JOBU2 */ /* > \verbatim */ /* > JOBU2 is CHARACTER */ /* > = 'Y': U2 is computed; */ /* > otherwise: U2 is not computed. */ /* > \endverbatim */ /* > */ /* > \param[in] JOBV1T */ /* > \verbatim */ /* > JOBV1T is CHARACTER */ /* > = 'Y': V1T is computed; */ /* > otherwise: V1T is not computed. */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows in X. */ /* > \endverbatim */ /* > */ /* > \param[in] P */ /* > \verbatim */ /* > P is INTEGER */ /* > The number of rows in X11. 0 <= P <= M. */ /* > \endverbatim */ /* > */ /* > \param[in] Q */ /* > \verbatim */ /* > Q is INTEGER */ /* > The number of columns in X11 and X21. 0 <= Q <= M. */ /* > \endverbatim */ /* > */ /* > \param[in,out] X11 */ /* > \verbatim */ /* > X11 is COMPLEX array, dimension (LDX11,Q) */ /* > On entry, part of the unitary matrix whose CSD is desired. */ /* > \endverbatim */ /* > */ /* > \param[in] LDX11 */ /* > \verbatim */ /* > LDX11 is INTEGER */ /* > The leading dimension of X11. LDX11 >= MAX(1,P). */ /* > \endverbatim */ /* > */ /* > \param[in,out] X21 */ /* > \verbatim */ /* > X21 is COMPLEX array, dimension (LDX21,Q) */ /* > On entry, part of the unitary matrix whose CSD is desired. */ /* > \endverbatim */ /* > */ /* > \param[in] LDX21 */ /* > \verbatim */ /* > LDX21 is INTEGER */ /* > The leading dimension of X21. LDX21 >= MAX(1,M-P). */ /* > \endverbatim */ /* > */ /* > \param[out] THETA */ /* > \verbatim */ /* > THETA is REAL array, dimension (R), in which R = */ /* > MIN(P,M-P,Q,M-Q). */ /* > C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and */ /* > S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). */ /* > \endverbatim */ /* > */ /* > \param[out] U1 */ /* > \verbatim */ /* > U1 is COMPLEX array, dimension (P) */ /* > If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1. */ /* > \endverbatim */ /* > */ /* > \param[in] LDU1 */ /* > \verbatim */ /* > LDU1 is INTEGER */ /* > The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= */ /* > MAX(1,P). */ /* > \endverbatim */ /* > */ /* > \param[out] U2 */ /* > \verbatim */ /* > U2 is COMPLEX array, dimension (M-P) */ /* > If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary */ /* > matrix U2. */ /* > \endverbatim */ /* > */ /* > \param[in] LDU2 */ /* > \verbatim */ /* > LDU2 is INTEGER */ /* > The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= */ /* > MAX(1,M-P). */ /* > \endverbatim */ /* > */ /* > \param[out] V1T */ /* > \verbatim */ /* > V1T is COMPLEX array, dimension (Q) */ /* > If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary */ /* > matrix V1**T. */ /* > \endverbatim */ /* > */ /* > \param[in] LDV1T */ /* > \verbatim */ /* > LDV1T is INTEGER */ /* > The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= */ /* > MAX(1,Q). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */ /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* > \endverbatim */ /* > */ /* > \param[in] LWORK */ /* > \verbatim */ /* > LWORK is INTEGER */ /* > The dimension of the array WORK. */ /* > */ /* > If LWORK = -1, then a workspace query is assumed; the routine */ /* > only calculates the optimal size of the WORK array, returns */ /* > this value as the first entry of the work array, and no error */ /* > message related to LWORK is issued by XERBLA. */ /* > \endverbatim */ /* > */ /* > \param[out] RWORK */ /* > \verbatim */ /* > RWORK is REAL array, dimension (MAX(1,LRWORK)) */ /* > On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */ /* > If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1), */ /* > ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), */ /* > define the matrix in intermediate bidiagonal-block form */ /* > remaining after nonconvergence. INFO specifies the number */ /* > of nonzero PHI's. */ /* > \endverbatim */ /* > */ /* > \param[in] LRWORK */ /* > \verbatim */ /* > LRWORK is INTEGER */ /* > The dimension of the array RWORK. */ /* > */ /* > If LRWORK = -1, then a workspace query is assumed; the routine */ /* > only calculates the optimal size of the RWORK array, returns */ /* > this value as the first entry of the work array, and no error */ /* > message related to LRWORK is issued by XERBLA. */ /* > \endverbatim */ /* > \param[out] IWORK */ /* > \verbatim */ /* > IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q)) */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit. */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > > 0: CBBCSD did not converge. See the description of WORK */ /* > above for details. */ /* > \endverbatim */ /* > \par References: */ /* ================ */ /* > */ /* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */ /* > Algorithms, 50(1):33-65, 2009. */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date June 2016 */ /* > \ingroup complexOTHERcomputational */ /* ===================================================================== */ /* Subroutine */ int cuncsd2by1_(char *jobu1, char *jobu2, char *jobv1t, integer *m, integer *p, integer *q, complex *x11, integer *ldx11, complex *x21, integer *ldx21, real *theta, complex *u1, integer *ldu1, complex *u2, integer *ldu2, complex *v1t, integer *ldv1t, complex * work, integer *lwork, real *rwork, integer *lrwork, integer *iwork, integer *info) { /* System generated locals */ integer u1_dim1, u1_offset, u2_dim1, u2_offset, v1t_dim1, v1t_offset, x11_dim1, x11_offset, x21_dim1, x21_offset, i__1, i__2, i__3; /* Local variables */ integer ib11d, ib11e, ib12d, ib12e, ib21d, ib21e, ib22d, ib22e; complex cdum[1] /* was [1][1] */; integer iphi, lworkmin, lworkopt, i__, j, r__; extern logical lsame_(char *, char *); extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *); integer childinfo, lorglqmin, lorgqrmin, lorglqopt, lrworkmin, itaup1, itaup2, itauq1, lorgqropt; logical wantu1, wantu2; extern /* Subroutine */ int cbbcsd_(char *, char *, char *, char *, char * , integer *, integer *, integer *, real *, real *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, real *, real *, real *, real *, real *, real *, real *, integer *, integer *); integer lrworkopt, ibbcsd, lbbcsd, iorbdb, lorbdb; extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *, ftnlen), clapmr_(logical *, integer *, integer *, complex *, integer *, integer *), clapmt_(logical *, integer *, integer *, complex *, integer *, integer *), cunglq_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); integer iorglq; extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); integer lorglq, iorgqr, lorgqr; extern /* Subroutine */ int cunbdb1_(integer *, integer *, integer *, complex *, integer *, complex *, integer *, real *, real *, complex *, complex *, complex *, complex *, integer *, integer *), cunbdb2_(integer *, integer *, integer *, complex *, integer *, complex *, integer *, real *, real *, complex *, complex *, complex *, complex *, integer *, integer *); logical lquery; extern /* Subroutine */ int cunbdb3_(integer *, integer *, integer *, complex *, integer *, complex *, integer *, real *, real *, complex *, complex *, complex *, complex *, integer *, integer *), cunbdb4_(integer *, integer *, integer *, complex *, integer *, complex *, integer *, real *, real *, complex *, complex *, complex *, complex *, complex *, integer *, integer *); logical wantv1t; real dum[1]; /* -- LAPACK computational routine (version 3.7.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* June 2016 */ /* ===================================================================== */ /* Test input arguments */ /* Parameter adjustments */ x11_dim1 = *ldx11; x11_offset = 1 + x11_dim1 * 1; x11 -= x11_offset; x21_dim1 = *ldx21; x21_offset = 1 + x21_dim1 * 1; x21 -= x21_offset; --theta; u1_dim1 = *ldu1; u1_offset = 1 + u1_dim1 * 1; u1 -= u1_offset; u2_dim1 = *ldu2; u2_offset = 1 + u2_dim1 * 1; u2 -= u2_offset; v1t_dim1 = *ldv1t; v1t_offset = 1 + v1t_dim1 * 1; v1t -= v1t_offset; --work; --rwork; --iwork; /* Function Body */ *info = 0; wantu1 = lsame_(jobu1, "Y"); wantu2 = lsame_(jobu2, "Y"); wantv1t = lsame_(jobv1t, "Y"); lquery = *lwork == -1; if (*m < 0) { *info = -4; } else if (*p < 0 || *p > *m) { *info = -5; } else if (*q < 0 || *q > *m) { *info = -6; } else if (*ldx11 < f2cmax(1,*p)) { *info = -8; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = *m - *p; if (*ldx21 < f2cmax(i__1,i__2)) { *info = -10; } else if (wantu1 && *ldu1 < f2cmax(1,*p)) { *info = -13; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = *m - *p; if (wantu2 && *ldu2 < f2cmax(i__1,i__2)) { *info = -15; } else if (wantv1t && *ldv1t < f2cmax(1,*q)) { *info = -17; } } } /* Computing MIN */ i__1 = *p, i__2 = *m - *p, i__1 = f2cmin(i__1,i__2), i__1 = f2cmin(i__1,*q), i__2 = *m - *q; r__ = f2cmin(i__1,i__2); /* Compute workspace */ /* WORK layout: */ /* |-----------------------------------------| */ /* | LWORKOPT (1) | */ /* |-----------------------------------------| */ /* | TAUP1 (MAX(1,P)) | */ /* | TAUP2 (MAX(1,M-P)) | */ /* | TAUQ1 (MAX(1,Q)) | */ /* |-----------------------------------------| */ /* | CUNBDB WORK | CUNGQR WORK | CUNGLQ WORK | */ /* | | | | */ /* | | | | */ /* | | | | */ /* | | | | */ /* |-----------------------------------------| */ /* RWORK layout: */ /* |------------------| */ /* | LRWORKOPT (1) | */ /* |------------------| */ /* | PHI (MAX(1,R-1)) | */ /* |------------------| */ /* | B11D (R) | */ /* | B11E (R-1) | */ /* | B12D (R) | */ /* | B12E (R-1) | */ /* | B21D (R) | */ /* | B21E (R-1) | */ /* | B22D (R) | */ /* | B22E (R-1) | */ /* | CBBCSD RWORK | */ /* |------------------| */ if (*info == 0) { iphi = 2; /* Computing MAX */ i__1 = 1, i__2 = r__ - 1; ib11d = iphi + f2cmax(i__1,i__2); ib11e = ib11d + f2cmax(1,r__); /* Computing MAX */ i__1 = 1, i__2 = r__ - 1; ib12d = ib11e + f2cmax(i__1,i__2); ib12e = ib12d + f2cmax(1,r__); /* Computing MAX */ i__1 = 1, i__2 = r__ - 1; ib21d = ib12e + f2cmax(i__1,i__2); ib21e = ib21d + f2cmax(1,r__); /* Computing MAX */ i__1 = 1, i__2 = r__ - 1; ib22d = ib21e + f2cmax(i__1,i__2); ib22e = ib22d + f2cmax(1,r__); /* Computing MAX */ i__1 = 1, i__2 = r__ - 1; ibbcsd = ib22e + f2cmax(i__1,i__2); itaup1 = 2; itaup2 = itaup1 + f2cmax(1,*p); /* Computing MAX */ i__1 = 1, i__2 = *m - *p; itauq1 = itaup2 + f2cmax(i__1,i__2); iorbdb = itauq1 + f2cmax(1,*q); iorgqr = itauq1 + f2cmax(1,*q); iorglq = itauq1 + f2cmax(1,*q); lorgqrmin = 1; lorgqropt = 1; lorglqmin = 1; lorglqopt = 1; if (r__ == *q) { cunbdb1_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &theta[1], dum, cdum, cdum, cdum, &work[1], &c_n1, &childinfo); lorbdb = (integer) work[1].r; if (wantu1 && *p > 0) { cungqr_(p, p, q, &u1[u1_offset], ldu1, cdum, &work[1], &c_n1, &childinfo); lorgqrmin = f2cmax(lorgqrmin,*p); /* Computing MAX */ i__1 = lorgqropt, i__2 = (integer) work[1].r; lorgqropt = f2cmax(i__1,i__2); } if (wantu2 && *m - *p > 0) { i__1 = *m - *p; i__2 = *m - *p; cungqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, cdum, &work[1], &c_n1, &childinfo); /* Computing MAX */ i__1 = lorgqrmin, i__2 = *m - *p; lorgqrmin = f2cmax(i__1,i__2); /* Computing MAX */ i__1 = lorgqropt, i__2 = (integer) work[1].r; lorgqropt = f2cmax(i__1,i__2); } if (wantv1t && *q > 0) { i__1 = *q - 1; i__2 = *q - 1; i__3 = *q - 1; cunglq_(&i__1, &i__2, &i__3, &v1t[v1t_offset], ldv1t, cdum, & work[1], &c_n1, &childinfo); /* Computing MAX */ i__1 = lorglqmin, i__2 = *q - 1; lorglqmin = f2cmax(i__1,i__2); /* Computing MAX */ i__1 = lorglqopt, i__2 = (integer) work[1].r; lorglqopt = f2cmax(i__1,i__2); } cbbcsd_(jobu1, jobu2, jobv1t, "N", "N", m, p, q, &theta[1], dum, & u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[ v1t_offset], ldv1t, cdum, &c__1, dum, dum, dum, dum, dum, dum, dum, dum, &rwork[1], &c_n1, &childinfo); lbbcsd = (integer) rwork[1]; } else if (r__ == *p) { cunbdb2_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &theta[1], dum, cdum, cdum, cdum, &work[1], &c_n1, &childinfo); lorbdb = (integer) work[1].r; if (wantu1 && *p > 0) { i__1 = *p - 1; i__2 = *p - 1; i__3 = *p - 1; cungqr_(&i__1, &i__2, &i__3, &u1[(u1_dim1 << 1) + 2], ldu1, cdum, &work[1], &c_n1, &childinfo); /* Computing MAX */ i__1 = lorgqrmin, i__2 = *p - 1; lorgqrmin = f2cmax(i__1,i__2); /* Computing MAX */ i__1 = lorgqropt, i__2 = (integer) work[1].r; lorgqropt = f2cmax(i__1,i__2); } if (wantu2 && *m - *p > 0) { i__1 = *m - *p; i__2 = *m - *p; cungqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, cdum, &work[1], &c_n1, &childinfo); /* Computing MAX */ i__1 = lorgqrmin, i__2 = *m - *p; lorgqrmin = f2cmax(i__1,i__2); /* Computing MAX */ i__1 = lorgqropt, i__2 = (integer) work[1].r; lorgqropt = f2cmax(i__1,i__2); } if (wantv1t && *q > 0) { cunglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, cdum, &work[1], & c_n1, &childinfo); lorglqmin = f2cmax(lorglqmin,*q); /* Computing MAX */ i__1 = lorglqopt, i__2 = (integer) work[1].r; lorglqopt = f2cmax(i__1,i__2); } cbbcsd_(jobv1t, "N", jobu1, jobu2, "T", m, q, p, &theta[1], dum, & v1t[v1t_offset], ldv1t, cdum, &c__1, &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, dum, dum, dum, dum, dum, dum, dum, dum, &rwork[1], &c_n1, &childinfo); lbbcsd = (integer) rwork[1]; } else if (r__ == *m - *p) { cunbdb3_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &theta[1], dum, cdum, cdum, cdum, &work[1], &c_n1, &childinfo); lorbdb = (integer) work[1].r; if (wantu1 && *p > 0) { cungqr_(p, p, q, &u1[u1_offset], ldu1, cdum, &work[1], &c_n1, &childinfo); lorgqrmin = f2cmax(lorgqrmin,*p); /* Computing MAX */ i__1 = lorgqropt, i__2 = (integer) work[1].r; lorgqropt = f2cmax(i__1,i__2); } if (wantu2 && *m - *p > 0) { i__1 = *m - *p - 1; i__2 = *m - *p - 1; i__3 = *m - *p - 1; cungqr_(&i__1, &i__2, &i__3, &u2[(u2_dim1 << 1) + 2], ldu2, cdum, &work[1], &c_n1, &childinfo); /* Computing MAX */ i__1 = lorgqrmin, i__2 = *m - *p - 1; lorgqrmin = f2cmax(i__1,i__2); /* Computing MAX */ i__1 = lorgqropt, i__2 = (integer) work[1].r; lorgqropt = f2cmax(i__1,i__2); } if (wantv1t && *q > 0) { cunglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, cdum, &work[1], & c_n1, &childinfo); lorglqmin = f2cmax(lorglqmin,*q); /* Computing MAX */ i__1 = lorglqopt, i__2 = (integer) work[1].r; lorglqopt = f2cmax(i__1,i__2); } i__1 = *m - *q; i__2 = *m - *p; cbbcsd_("N", jobv1t, jobu2, jobu1, "T", m, &i__1, &i__2, &theta[1] , dum, cdum, &c__1, &v1t[v1t_offset], ldv1t, &u2[ u2_offset], ldu2, &u1[u1_offset], ldu1, dum, dum, dum, dum, dum, dum, dum, dum, &rwork[1], &c_n1, &childinfo); lbbcsd = (integer) rwork[1]; } else { cunbdb4_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &theta[1], dum, cdum, cdum, cdum, cdum, &work[1], & c_n1, &childinfo); lorbdb = *m + (integer) work[1].r; if (wantu1 && *p > 0) { i__1 = *m - *q; cungqr_(p, p, &i__1, &u1[u1_offset], ldu1, cdum, &work[1], & c_n1, &childinfo); lorgqrmin = f2cmax(lorgqrmin,*p); /* Computing MAX */ i__1 = lorgqropt, i__2 = (integer) work[1].r; lorgqropt = f2cmax(i__1,i__2); } if (wantu2 && *m - *p > 0) { i__1 = *m - *p; i__2 = *m - *p; i__3 = *m - *q; cungqr_(&i__1, &i__2, &i__3, &u2[u2_offset], ldu2, cdum, & work[1], &c_n1, &childinfo); /* Computing MAX */ i__1 = lorgqrmin, i__2 = *m - *p; lorgqrmin = f2cmax(i__1,i__2); /* Computing MAX */ i__1 = lorgqropt, i__2 = (integer) work[1].r; lorgqropt = f2cmax(i__1,i__2); } if (wantv1t && *q > 0) { cunglq_(q, q, q, &v1t[v1t_offset], ldv1t, cdum, &work[1], & c_n1, &childinfo); lorglqmin = f2cmax(lorglqmin,*q); /* Computing MAX */ i__1 = lorglqopt, i__2 = (integer) work[1].r; lorglqopt = f2cmax(i__1,i__2); } i__1 = *m - *p; i__2 = *m - *q; cbbcsd_(jobu2, jobu1, "N", jobv1t, "N", m, &i__1, &i__2, &theta[1] , dum, &u2[u2_offset], ldu2, &u1[u1_offset], ldu1, cdum, & c__1, &v1t[v1t_offset], ldv1t, dum, dum, dum, dum, dum, dum, dum, dum, &rwork[1], &c_n1, &childinfo); lbbcsd = (integer) rwork[1]; } lrworkmin = ibbcsd + lbbcsd - 1; lrworkopt = lrworkmin; rwork[1] = (real) lrworkopt; /* Computing MAX */ i__1 = iorbdb + lorbdb - 1, i__2 = iorgqr + lorgqrmin - 1, i__1 = f2cmax( i__1,i__2), i__2 = iorglq + lorglqmin - 1; lworkmin = f2cmax(i__1,i__2); /* Computing MAX */ i__1 = iorbdb + lorbdb - 1, i__2 = iorgqr + lorgqropt - 1, i__1 = f2cmax( i__1,i__2), i__2 = iorglq + lorglqopt - 1; lworkopt = f2cmax(i__1,i__2); work[1].r = (real) lworkopt, work[1].i = 0.f; if (*lwork < lworkmin && ! lquery) { *info = -19; } } if (*info != 0) { i__1 = -(*info); xerbla_("CUNCSD2BY1", &i__1, (ftnlen)10); return 0; } else if (lquery) { return 0; } lorgqr = *lwork - iorgqr + 1; lorglq = *lwork - iorglq + 1; /* Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q, */ /* in which R = MIN(P,M-P,Q,M-Q) */ if (r__ == *q) { /* Case 1: R = Q */ /* Simultaneously bidiagonalize X11 and X21 */ cunbdb1_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, & theta[1], &rwork[iphi], &work[itaup1], &work[itaup2], &work[ itauq1], &work[iorbdb], &lorbdb, &childinfo); /* Accumulate Householder reflectors */ if (wantu1 && *p > 0) { clacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1); cungqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[ iorgqr], &lorgqr, &childinfo); } if (wantu2 && *m - *p > 0) { i__1 = *m - *p; clacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset], ldu2); i__1 = *m - *p; i__2 = *m - *p; cungqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], & work[iorgqr], &lorgqr, &childinfo); } if (wantv1t && *q > 0) { i__1 = v1t_dim1 + 1; v1t[i__1].r = 1.f, v1t[i__1].i = 0.f; i__1 = *q; for (j = 2; j <= i__1; ++j) { i__2 = j * v1t_dim1 + 1; v1t[i__2].r = 0.f, v1t[i__2].i = 0.f; i__2 = j + v1t_dim1; v1t[i__2].r = 0.f, v1t[i__2].i = 0.f; } i__1 = *q - 1; i__2 = *q - 1; clacpy_("U", &i__1, &i__2, &x21[(x21_dim1 << 1) + 1], ldx21, &v1t[ (v1t_dim1 << 1) + 2], ldv1t); i__1 = *q - 1; i__2 = *q - 1; i__3 = *q - 1; cunglq_(&i__1, &i__2, &i__3, &v1t[(v1t_dim1 << 1) + 2], ldv1t, & work[itauq1], &work[iorglq], &lorglq, &childinfo); } /* Simultaneously diagonalize X11 and X21. */ cbbcsd_(jobu1, jobu2, jobv1t, "N", "N", m, p, q, &theta[1], &rwork[ iphi], &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[ v1t_offset], ldv1t, cdum, &c__1, &rwork[ib11d], &rwork[ib11e], &rwork[ib12d], &rwork[ib12e], &rwork[ib21d], &rwork[ib21e], & rwork[ib22d], &rwork[ib22e], &rwork[ibbcsd], &lbbcsd, & childinfo); /* Permute rows and columns to place zero submatrices in */ /* preferred positions */ if (*q > 0 && wantu2) { i__1 = *q; for (i__ = 1; i__ <= i__1; ++i__) { iwork[i__] = *m - *p - *q + i__; } i__1 = *m - *p; for (i__ = *q + 1; i__ <= i__1; ++i__) { iwork[i__] = i__ - *q; } i__1 = *m - *p; i__2 = *m - *p; clapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]); } } else if (r__ == *p) { /* Case 2: R = P */ /* Simultaneously bidiagonalize X11 and X21 */ cunbdb2_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, & theta[1], &rwork[iphi], &work[itaup1], &work[itaup2], &work[ itauq1], &work[iorbdb], &lorbdb, &childinfo); /* Accumulate Householder reflectors */ if (wantu1 && *p > 0) { i__1 = u1_dim1 + 1; u1[i__1].r = 1.f, u1[i__1].i = 0.f; i__1 = *p; for (j = 2; j <= i__1; ++j) { i__2 = j * u1_dim1 + 1; u1[i__2].r = 0.f, u1[i__2].i = 0.f; i__2 = j + u1_dim1; u1[i__2].r = 0.f, u1[i__2].i = 0.f; } i__1 = *p - 1; i__2 = *p - 1; clacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &u1[( u1_dim1 << 1) + 2], ldu1); i__1 = *p - 1; i__2 = *p - 1; i__3 = *p - 1; cungqr_(&i__1, &i__2, &i__3, &u1[(u1_dim1 << 1) + 2], ldu1, &work[ itaup1], &work[iorgqr], &lorgqr, &childinfo); } if (wantu2 && *m - *p > 0) { i__1 = *m - *p; clacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset], ldu2); i__1 = *m - *p; i__2 = *m - *p; cungqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], & work[iorgqr], &lorgqr, &childinfo); } if (wantv1t && *q > 0) { clacpy_("U", p, q, &x11[x11_offset], ldx11, &v1t[v1t_offset], ldv1t); cunglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[ iorglq], &lorglq, &childinfo); } /* Simultaneously diagonalize X11 and X21. */ cbbcsd_(jobv1t, "N", jobu1, jobu2, "T", m, q, p, &theta[1], &rwork[ iphi], &v1t[v1t_offset], ldv1t, cdum, &c__1, &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &rwork[ib11d], &rwork[ib11e], & rwork[ib12d], &rwork[ib12e], &rwork[ib21d], &rwork[ib21e], & rwork[ib22d], &rwork[ib22e], &rwork[ibbcsd], &lbbcsd, & childinfo); /* Permute rows and columns to place identity submatrices in */ /* preferred positions */ if (*q > 0 && wantu2) { i__1 = *q; for (i__ = 1; i__ <= i__1; ++i__) { iwork[i__] = *m - *p - *q + i__; } i__1 = *m - *p; for (i__ = *q + 1; i__ <= i__1; ++i__) { iwork[i__] = i__ - *q; } i__1 = *m - *p; i__2 = *m - *p; clapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]); } } else if (r__ == *m - *p) { /* Case 3: R = M-P */ /* Simultaneously bidiagonalize X11 and X21 */ cunbdb3_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, & theta[1], &rwork[iphi], &work[itaup1], &work[itaup2], &work[ itauq1], &work[iorbdb], &lorbdb, &childinfo); /* Accumulate Householder reflectors */ if (wantu1 && *p > 0) { clacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1); cungqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[ iorgqr], &lorgqr, &childinfo); } if (wantu2 && *m - *p > 0) { i__1 = u2_dim1 + 1; u2[i__1].r = 1.f, u2[i__1].i = 0.f; i__1 = *m - *p; for (j = 2; j <= i__1; ++j) { i__2 = j * u2_dim1 + 1; u2[i__2].r = 0.f, u2[i__2].i = 0.f; i__2 = j + u2_dim1; u2[i__2].r = 0.f, u2[i__2].i = 0.f; } i__1 = *m - *p - 1; i__2 = *m - *p - 1; clacpy_("L", &i__1, &i__2, &x21[x21_dim1 + 2], ldx21, &u2[( u2_dim1 << 1) + 2], ldu2); i__1 = *m - *p - 1; i__2 = *m - *p - 1; i__3 = *m - *p - 1; cungqr_(&i__1, &i__2, &i__3, &u2[(u2_dim1 << 1) + 2], ldu2, &work[ itaup2], &work[iorgqr], &lorgqr, &childinfo); } if (wantv1t && *q > 0) { i__1 = *m - *p; clacpy_("U", &i__1, q, &x21[x21_offset], ldx21, &v1t[v1t_offset], ldv1t); cunglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[ iorglq], &lorglq, &childinfo); } /* Simultaneously diagonalize X11 and X21. */ i__1 = *m - *q; i__2 = *m - *p; cbbcsd_("N", jobv1t, jobu2, jobu1, "T", m, &i__1, &i__2, &theta[1], & rwork[iphi], cdum, &c__1, &v1t[v1t_offset], ldv1t, &u2[ u2_offset], ldu2, &u1[u1_offset], ldu1, &rwork[ib11d], &rwork[ ib11e], &rwork[ib12d], &rwork[ib12e], &rwork[ib21d], &rwork[ ib21e], &rwork[ib22d], &rwork[ib22e], &rwork[ibbcsd], &lbbcsd, &childinfo); /* Permute rows and columns to place identity submatrices in */ /* preferred positions */ if (*q > r__) { i__1 = r__; for (i__ = 1; i__ <= i__1; ++i__) { iwork[i__] = *q - r__ + i__; } i__1 = *q; for (i__ = r__ + 1; i__ <= i__1; ++i__) { iwork[i__] = i__ - r__; } if (wantu1) { clapmt_(&c_false, p, q, &u1[u1_offset], ldu1, &iwork[1]); } if (wantv1t) { clapmr_(&c_false, q, q, &v1t[v1t_offset], ldv1t, &iwork[1]); } } } else { /* Case 4: R = M-Q */ /* Simultaneously bidiagonalize X11 and X21 */ i__1 = lorbdb - *m; cunbdb4_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, & theta[1], &rwork[iphi], &work[itaup1], &work[itaup2], &work[ itauq1], &work[iorbdb], &work[iorbdb + *m], &i__1, &childinfo) ; /* Accumulate Householder reflectors */ if (wantu1 && *p > 0) { ccopy_(p, &work[iorbdb], &c__1, &u1[u1_offset], &c__1); i__1 = *p; for (j = 2; j <= i__1; ++j) { i__2 = j * u1_dim1 + 1; u1[i__2].r = 0.f, u1[i__2].i = 0.f; } i__1 = *p - 1; i__2 = *m - *q - 1; clacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &u1[( u1_dim1 << 1) + 2], ldu1); i__1 = *m - *q; cungqr_(p, p, &i__1, &u1[u1_offset], ldu1, &work[itaup1], &work[ iorgqr], &lorgqr, &childinfo); } if (wantu2 && *m - *p > 0) { i__1 = *m - *p; ccopy_(&i__1, &work[iorbdb + *p], &c__1, &u2[u2_offset], &c__1); i__1 = *m - *p; for (j = 2; j <= i__1; ++j) { i__2 = j * u2_dim1 + 1; u2[i__2].r = 0.f, u2[i__2].i = 0.f; } i__1 = *m - *p - 1; i__2 = *m - *q - 1; clacpy_("L", &i__1, &i__2, &x21[x21_dim1 + 2], ldx21, &u2[( u2_dim1 << 1) + 2], ldu2); i__1 = *m - *p; i__2 = *m - *p; i__3 = *m - *q; cungqr_(&i__1, &i__2, &i__3, &u2[u2_offset], ldu2, &work[itaup2], &work[iorgqr], &lorgqr, &childinfo); } if (wantv1t && *q > 0) { i__1 = *m - *q; clacpy_("U", &i__1, q, &x21[x21_offset], ldx21, &v1t[v1t_offset], ldv1t); i__1 = *p - (*m - *q); i__2 = *q - (*m - *q); clacpy_("U", &i__1, &i__2, &x11[*m - *q + 1 + (*m - *q + 1) * x11_dim1], ldx11, &v1t[*m - *q + 1 + (*m - *q + 1) * v1t_dim1], ldv1t); i__1 = -(*p) + *q; i__2 = *q - *p; clacpy_("U", &i__1, &i__2, &x21[*m - *q + 1 + (*p + 1) * x21_dim1] , ldx21, &v1t[*p + 1 + (*p + 1) * v1t_dim1], ldv1t); cunglq_(q, q, q, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[ iorglq], &lorglq, &childinfo); } /* Simultaneously diagonalize X11 and X21. */ i__1 = *m - *p; i__2 = *m - *q; cbbcsd_(jobu2, jobu1, "N", jobv1t, "N", m, &i__1, &i__2, &theta[1], & rwork[iphi], &u2[u2_offset], ldu2, &u1[u1_offset], ldu1, cdum, &c__1, &v1t[v1t_offset], ldv1t, &rwork[ib11d], &rwork[ib11e], &rwork[ib12d], &rwork[ib12e], &rwork[ib21d], &rwork[ib21e], & rwork[ib22d], &rwork[ib22e], &rwork[ibbcsd], &lbbcsd, & childinfo); /* Permute rows and columns to place identity submatrices in */ /* preferred positions */ if (*p > r__) { i__1 = r__; for (i__ = 1; i__ <= i__1; ++i__) { iwork[i__] = *p - r__ + i__; } i__1 = *p; for (i__ = r__ + 1; i__ <= i__1; ++i__) { iwork[i__] = i__ - r__; } if (wantu1) { clapmt_(&c_false, p, p, &u1[u1_offset], ldu1, &iwork[1]); } if (wantv1t) { clapmr_(&c_false, p, q, &v1t[v1t_offset], ldv1t, &iwork[1]); } } } return 0; /* End of CUNCSD2BY1 */ } /* cuncsd2by1_ */