#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b CUNGTSQR_ROW */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download CUNGTSQR_ROW + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* > */ /* Definition: */ /* =========== */ /* SUBROUTINE CUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK, */ /* $ LWORK, INFO ) */ /* IMPLICIT NONE */ /* INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB */ /* COMPLEX A( LDA, * ), T( LDT, * ), WORK( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > CUNGTSQR_ROW generates an M-by-N complex matrix Q_out with */ /* > orthonormal columns from the output of CLATSQR. These N orthonormal */ /* > columns are the first N columns of a product of complex unitary */ /* > matrices Q(k)_in of order M, which are returned by CLATSQR in */ /* > a special format. */ /* > */ /* > Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ). */ /* > */ /* > The input matrices Q(k)_in are stored in row and column blocks in A. */ /* > See the documentation of CLATSQR for more details on the format of */ /* > Q(k)_in, where each Q(k)_in is represented by block Householder */ /* > transformations. This routine calls an auxiliary routine CLARFB_GETT, */ /* > where the computation is performed on each individual block. The */ /* > algorithm first sweeps NB-sized column blocks from the right to left */ /* > starting in the bottom row block and continues to the top row block */ /* > (hence _ROW in the routine name). This sweep is in reverse order of */ /* > the order in which CLATSQR generates the output blocks. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix A. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix A. M >= N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] MB */ /* > \verbatim */ /* > MB is INTEGER */ /* > The row block size used by CLATSQR to return */ /* > arrays A and T. MB > N. */ /* > (Note that if MB > M, then M is used instead of MB */ /* > as the row block size). */ /* > \endverbatim */ /* > */ /* > \param[in] NB */ /* > \verbatim */ /* > NB is INTEGER */ /* > The column block size used by CLATSQR to return */ /* > arrays A and T. NB >= 1. */ /* > (Note that if NB > N, then N is used instead of NB */ /* > as the column block size). */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX array, dimension (LDA,N) */ /* > */ /* > On entry: */ /* > */ /* > The elements on and above the diagonal are not used as */ /* > input. The elements below the diagonal represent the unit */ /* > lower-trapezoidal blocked matrix V computed by CLATSQR */ /* > that defines the input matrices Q_in(k) (ones on the */ /* > diagonal are not stored). See CLATSQR for more details. */ /* > */ /* > On exit: */ /* > */ /* > The array A contains an M-by-N orthonormal matrix Q_out, */ /* > i.e the columns of A are orthogonal unit vectors. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */ /* > \endverbatim */ /* > */ /* > \param[in] T */ /* > \verbatim */ /* > T is COMPLEX array, */ /* > dimension (LDT, N * NIRB) */ /* > where NIRB = Number_of_input_row_blocks */ /* > = MAX( 1, CEIL((M-N)/(MB-N)) ) */ /* > Let NICB = Number_of_input_col_blocks */ /* > = CEIL(N/NB) */ /* > */ /* > The upper-triangular block reflectors used to define the */ /* > input matrices Q_in(k), k=(1:NIRB*NICB). The block */ /* > reflectors are stored in compact form in NIRB block */ /* > reflector sequences. Each of the NIRB block reflector */ /* > sequences is stored in a larger NB-by-N column block of T */ /* > and consists of NICB smaller NB-by-NB upper-triangular */ /* > column blocks. See CLATSQR for more details on the format */ /* > of T. */ /* > \endverbatim */ /* > */ /* > \param[in] LDT */ /* > \verbatim */ /* > LDT is INTEGER */ /* > The leading dimension of the array T. */ /* > LDT >= f2cmax(1,f2cmin(NB,N)). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > (workspace) COMPLEX array, dimension (MAX(1,LWORK)) */ /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* > \endverbatim */ /* > */ /* > \param[in] LWORK */ /* > \verbatim */ /* > The dimension of the array WORK. */ /* > LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)), */ /* > where NBLOCAL=MIN(NB,N). */ /* > If LWORK = -1, then a workspace query is assumed. */ /* > The routine only calculates the optimal size of the WORK */ /* > array, returns this value as the first entry of the WORK */ /* > array, and no error message related to LWORK is issued */ /* > by XERBLA. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > \endverbatim */ /* > */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complexOTHERcomputational */ /* > \par Contributors: */ /* ================== */ /* > */ /* > \verbatim */ /* > */ /* > November 2020, Igor Kozachenko, */ /* > Computer Science Division, */ /* > University of California, Berkeley */ /* > */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int cungtsqr_row_(integer *m, integer *n, integer *mb, integer *nb, complex *a, integer *lda, complex *t, integer *ldt, complex *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, t_dim1, t_offset, i__1, i__2, i__3, i__4, i__5; complex q__1; /* Local variables */ integer jb_t__, itmp, lworkopt; complex dummy[1] /* was [1][1] */; integer ib_bottom__, ib, kb; extern /* Subroutine */ int claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *, ftnlen); integer mb1, mb2, m_plus_one__; logical lquery; integer num_all_row_blocks__, imb, knb, nblocal, kb_last__; extern /* Subroutine */ int clarfb_gett_(char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *); /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* ===================================================================== */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; t_dim1 = *ldt; t_offset = 1 + t_dim1 * 1; t -= t_offset; --work; /* Function Body */ *info = 0; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0 || *m < *n) { *info = -2; } else if (*mb <= *n) { *info = -3; } else if (*nb < 1) { *info = -4; } else if (*lda < f2cmax(1,*m)) { *info = -6; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = f2cmin(*nb,*n); if (*ldt < f2cmax(i__1,i__2)) { *info = -8; } else if (*lwork < 1 && ! lquery) { *info = -10; } } nblocal = f2cmin(*nb,*n); /* Determine the workspace size. */ if (*info == 0) { /* Computing MAX */ i__1 = nblocal, i__2 = *n - nblocal; lworkopt = nblocal * f2cmax(i__1,i__2); } /* Handle error in the input parameters and handle the workspace query. */ if (*info != 0) { i__1 = -(*info); xerbla_("CUNGTSQR_ROW", &i__1, (ftnlen)12); return 0; } else if (lquery) { q__1.r = (real) lworkopt, q__1.i = 0.f; work[1].r = q__1.r, work[1].i = q__1.i; return 0; } /* Quick return if possible */ if (f2cmin(*m,*n) == 0) { q__1.r = (real) lworkopt, q__1.i = 0.f; work[1].r = q__1.r, work[1].i = q__1.i; return 0; } /* (0) Set the upper-triangular part of the matrix A to zero and */ /* its diagonal elements to one. */ claset_("U", m, n, &c_b2, &c_b1, &a[a_offset], lda); /* KB_LAST is the column index of the last column block reflector */ /* in the matrices T and V. */ kb_last__ = (*n - 1) / nblocal * nblocal + 1; /* (1) Bottom-up loop over row blocks of A, except the top row block. */ /* NOTE: If MB>=M, then the loop is never executed. */ if (*mb < *m) { /* MB2 is the row blocking size for the row blocks before the */ /* first top row block in the matrix A. IB is the row index for */ /* the row blocks in the matrix A before the first top row block. */ /* IB_BOTTOM is the row index for the last bottom row block */ /* in the matrix A. JB_T is the column index of the corresponding */ /* column block in the matrix T. */ /* Initialize variables. */ /* NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A */ /* including the first row block. */ mb2 = *mb - *n; m_plus_one__ = *m + 1; itmp = (*m - *mb - 1) / mb2; ib_bottom__ = itmp * mb2 + *mb + 1; num_all_row_blocks__ = itmp + 2; jb_t__ = num_all_row_blocks__ * *n + 1; i__1 = *mb + 1; i__2 = -mb2; for (ib = ib_bottom__; i__2 < 0 ? ib >= i__1 : ib <= i__1; ib += i__2) { /* Determine the block size IMB for the current row block */ /* in the matrix A. */ /* Computing MIN */ i__3 = m_plus_one__ - ib; imb = f2cmin(i__3,mb2); /* Determine the column index JB_T for the current column block */ /* in the matrix T. */ jb_t__ -= *n; /* Apply column blocks of H in the row block from right to left. */ /* KB is the column index of the current column block reflector */ /* in the matrices T and V. */ i__3 = -nblocal; for (kb = kb_last__; i__3 < 0 ? kb >= 1 : kb <= 1; kb += i__3) { /* Determine the size of the current column block KNB in */ /* the matrices T and V. */ /* Computing MIN */ i__4 = nblocal, i__5 = *n - kb + 1; knb = f2cmin(i__4,i__5); i__4 = *n - kb + 1; clarfb_gett_("I", &imb, &i__4, &knb, &t[(jb_t__ + kb - 1) * t_dim1 + 1], ldt, &a[kb + kb * a_dim1], lda, &a[ib + kb * a_dim1], lda, &work[1], &knb); } } } /* (2) Top row block of A. */ /* NOTE: If MB>=M, then we have only one row block of A of size M */ /* and we work on the entire matrix A. */ mb1 = f2cmin(*mb,*m); /* Apply column blocks of H in the top row block from right to left. */ /* KB is the column index of the current block reflector in */ /* the matrices T and V. */ i__2 = -nblocal; for (kb = kb_last__; i__2 < 0 ? kb >= 1 : kb <= 1; kb += i__2) { /* Determine the size of the current column block KNB in */ /* the matrices T and V. */ /* Computing MIN */ i__1 = nblocal, i__3 = *n - kb + 1; knb = f2cmin(i__1,i__3); if (mb1 - kb - knb + 1 == 0) { /* In SLARFB_GETT parameters, when M=0, then the matrix B */ /* does not exist, hence we need to pass a dummy array */ /* reference DUMMY(1,1) to B with LDDUMMY=1. */ i__1 = *n - kb + 1; clarfb_gett_("N", &c__0, &i__1, &knb, &t[kb * t_dim1 + 1], ldt, & a[kb + kb * a_dim1], lda, dummy, &c__1, &work[1], &knb); } else { i__1 = mb1 - kb - knb + 1; i__3 = *n - kb + 1; clarfb_gett_("N", &i__1, &i__3, &knb, &t[kb * t_dim1 + 1], ldt, & a[kb + kb * a_dim1], lda, &a[kb + knb + kb * a_dim1], lda, &work[1], &knb); } } q__1.r = (real) lworkopt, q__1.i = 0.f; work[1].r = q__1.r, work[1].i = q__1.i; return 0; /* End of CUNGTSQR_ROW */ } /* cungtsqr_row__ */