#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b CUNM22 multiplies a general matrix by a banded unitary matrix. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download CUNM22 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE CUNM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC, */ /* $ WORK, LWORK, INFO ) */ /* CHARACTER SIDE, TRANS */ /* INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO */ /* COMPLEX Q( LDQ, * ), C( LDC, * ), WORK( * ) */ /* > \par Purpose */ /* ============ */ /* > */ /* > \verbatim */ /* > */ /* > CUNM22 overwrites the general complex M-by-N matrix C with */ /* > */ /* > SIDE = 'L' SIDE = 'R' */ /* > TRANS = 'N': Q * C C * Q */ /* > TRANS = 'C': Q**H * C C * Q**H */ /* > */ /* > where Q is a complex unitary matrix of order NQ, with NQ = M if */ /* > SIDE = 'L' and NQ = N if SIDE = 'R'. */ /* > The unitary matrix Q processes a 2-by-2 block structure */ /* > */ /* > [ Q11 Q12 ] */ /* > Q = [ ] */ /* > [ Q21 Q22 ], */ /* > */ /* > where Q12 is an N1-by-N1 lower triangular matrix and Q21 is an */ /* > N2-by-N2 upper triangular matrix. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] SIDE */ /* > \verbatim */ /* > SIDE is CHARACTER*1 */ /* > = 'L': apply Q or Q**H from the Left; */ /* > = 'R': apply Q or Q**H from the Right. */ /* > \endverbatim */ /* > */ /* > \param[in] TRANS */ /* > \verbatim */ /* > TRANS is CHARACTER*1 */ /* > = 'N': apply Q (No transpose); */ /* > = 'C': apply Q**H (Conjugate transpose). */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix C. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix C. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N1 */ /* > \param[in] N2 */ /* > \verbatim */ /* > N1 is INTEGER */ /* > N2 is INTEGER */ /* > The dimension of Q12 and Q21, respectively. N1, N2 >= 0. */ /* > The following requirement must be satisfied: */ /* > N1 + N2 = M if SIDE = 'L' and N1 + N2 = N if SIDE = 'R'. */ /* > \endverbatim */ /* > */ /* > \param[in] Q */ /* > \verbatim */ /* > Q is COMPLEX array, dimension */ /* > (LDQ,M) if SIDE = 'L' */ /* > (LDQ,N) if SIDE = 'R' */ /* > \endverbatim */ /* > */ /* > \param[in] LDQ */ /* > \verbatim */ /* > LDQ is INTEGER */ /* > The leading dimension of the array Q. */ /* > LDQ >= f2cmax(1,M) if SIDE = 'L'; LDQ >= f2cmax(1,N) if SIDE = 'R'. */ /* > \endverbatim */ /* > */ /* > \param[in,out] C */ /* > \verbatim */ /* > C is COMPLEX array, dimension (LDC,N) */ /* > On entry, the M-by-N matrix C. */ /* > On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. */ /* > \endverbatim */ /* > */ /* > \param[in] LDC */ /* > \verbatim */ /* > LDC is INTEGER */ /* > The leading dimension of the array C. LDC >= f2cmax(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */ /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* > \endverbatim */ /* > */ /* > \param[in] LWORK */ /* > \verbatim */ /* > LWORK is INTEGER */ /* > The dimension of the array WORK. */ /* > If SIDE = 'L', LWORK >= f2cmax(1,N); */ /* > if SIDE = 'R', LWORK >= f2cmax(1,M). */ /* > For optimum performance LWORK >= M*N. */ /* > */ /* > If LWORK = -1, then a workspace query is assumed; the routine */ /* > only calculates the optimal size of the WORK array, returns */ /* > this value as the first entry of the WORK array, and no error */ /* > message related to LWORK is issued by XERBLA. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date January 2015 */ /* > \ingroup complexOTHERcomputational */ /* ===================================================================== */ /* Subroutine */ int cunm22_(char *side, char *trans, integer *m, integer *n, integer *n1, integer *n2, complex *q, integer *ldq, complex *c__, integer *ldc, complex *work, integer *lwork, integer *info) { /* System generated locals */ integer q_dim1, q_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4; complex q__1; /* Local variables */ logical left; integer i__; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int ctrmm_(char *, char *, char *, char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *); integer nb, nq, nw; extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *, ftnlen); logical notran; integer ldwork, lwkopt; logical lquery; integer len; /* -- LAPACK computational routine (version 3.7.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* January 2015 */ /* ===================================================================== */ /* Test the input arguments */ /* Parameter adjustments */ q_dim1 = *ldq; q_offset = 1 + q_dim1 * 1; q -= q_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1 * 1; c__ -= c_offset; --work; /* Function Body */ *info = 0; left = lsame_(side, "L"); notran = lsame_(trans, "N"); lquery = *lwork == -1; /* NQ is the order of Q; */ /* NW is the minimum dimension of WORK. */ if (left) { nq = *m; } else { nq = *n; } nw = nq; if (*n1 == 0 || *n2 == 0) { nw = 1; } if (! left && ! lsame_(side, "R")) { *info = -1; } else if (! lsame_(trans, "N") && ! lsame_(trans, "C")) { *info = -2; } else if (*m < 0) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*n1 < 0 || *n1 + *n2 != nq) { *info = -5; } else if (*n2 < 0) { *info = -6; } else if (*ldq < f2cmax(1,nq)) { *info = -8; } else if (*ldc < f2cmax(1,*m)) { *info = -10; } else if (*lwork < nw && ! lquery) { *info = -12; } if (*info == 0) { lwkopt = *m * *n; q__1.r = (real) lwkopt, q__1.i = 0.f; work[1].r = q__1.r, work[1].i = q__1.i; } if (*info != 0) { i__1 = -(*info); xerbla_("CUNM22", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { work[1].r = 1.f, work[1].i = 0.f; return 0; } /* Degenerate cases (N1 = 0 or N2 = 0) are handled using CTRMM. */ if (*n1 == 0) { ctrmm_(side, "Upper", trans, "Non-Unit", m, n, &c_b1, &q[q_offset], ldq, &c__[c_offset], ldc); work[1].r = 1.f, work[1].i = 0.f; return 0; } else if (*n2 == 0) { ctrmm_(side, "Lower", trans, "Non-Unit", m, n, &c_b1, &q[q_offset], ldq, &c__[c_offset], ldc); work[1].r = 1.f, work[1].i = 0.f; return 0; } /* Compute the largest chunk size available from the workspace. */ /* Computing MAX */ i__1 = 1, i__2 = f2cmin(*lwork,lwkopt) / nq; nb = f2cmax(i__1,i__2); if (left) { if (notran) { i__1 = *n; i__2 = nb; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = nb, i__4 = *n - i__ + 1; len = f2cmin(i__3,i__4); ldwork = *m; /* Multiply bottom part of C by Q12. */ clacpy_("All", n1, &len, &c__[*n2 + 1 + i__ * c_dim1], ldc, & work[1], &ldwork); ctrmm_("Left", "Lower", "No Transpose", "Non-Unit", n1, &len, &c_b1, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[1], & ldwork); /* Multiply top part of C by Q11. */ cgemm_("No Transpose", "No Transpose", n1, &len, n2, &c_b1, & q[q_offset], ldq, &c__[i__ * c_dim1 + 1], ldc, &c_b1, &work[1], &ldwork); /* Multiply top part of C by Q21. */ clacpy_("All", n2, &len, &c__[i__ * c_dim1 + 1], ldc, &work[* n1 + 1], &ldwork); ctrmm_("Left", "Upper", "No Transpose", "Non-Unit", n2, &len, &c_b1, &q[*n1 + 1 + q_dim1], ldq, &work[*n1 + 1], & ldwork); /* Multiply bottom part of C by Q22. */ cgemm_("No Transpose", "No Transpose", n2, &len, n1, &c_b1, & q[*n1 + 1 + (*n2 + 1) * q_dim1], ldq, &c__[*n2 + 1 + i__ * c_dim1], ldc, &c_b1, &work[*n1 + 1], &ldwork); /* Copy everything back. */ clacpy_("All", m, &len, &work[1], &ldwork, &c__[i__ * c_dim1 + 1], ldc); } } else { i__2 = *n; i__1 = nb; for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) { /* Computing MIN */ i__3 = nb, i__4 = *n - i__ + 1; len = f2cmin(i__3,i__4); ldwork = *m; /* Multiply bottom part of C by Q21**H. */ clacpy_("All", n2, &len, &c__[*n1 + 1 + i__ * c_dim1], ldc, & work[1], &ldwork); ctrmm_("Left", "Upper", "Conjugate", "Non-Unit", n2, &len, & c_b1, &q[*n1 + 1 + q_dim1], ldq, &work[1], &ldwork); /* Multiply top part of C by Q11**H. */ cgemm_("Conjugate", "No Transpose", n2, &len, n1, &c_b1, &q[ q_offset], ldq, &c__[i__ * c_dim1 + 1], ldc, &c_b1, & work[1], &ldwork); /* Multiply top part of C by Q12**H. */ clacpy_("All", n1, &len, &c__[i__ * c_dim1 + 1], ldc, &work[* n2 + 1], &ldwork); ctrmm_("Left", "Lower", "Conjugate", "Non-Unit", n1, &len, & c_b1, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[*n2 + 1], &ldwork); /* Multiply bottom part of C by Q22**H. */ cgemm_("Conjugate", "No Transpose", n1, &len, n2, &c_b1, &q[* n1 + 1 + (*n2 + 1) * q_dim1], ldq, &c__[*n1 + 1 + i__ * c_dim1], ldc, &c_b1, &work[*n2 + 1], &ldwork); /* Copy everything back. */ clacpy_("All", m, &len, &work[1], &ldwork, &c__[i__ * c_dim1 + 1], ldc); } } } else { if (notran) { i__1 = *m; i__2 = nb; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = nb, i__4 = *m - i__ + 1; len = f2cmin(i__3,i__4); ldwork = len; /* Multiply right part of C by Q21. */ clacpy_("All", &len, n2, &c__[i__ + (*n1 + 1) * c_dim1], ldc, &work[1], &ldwork); ctrmm_("Right", "Upper", "No Transpose", "Non-Unit", &len, n2, &c_b1, &q[*n1 + 1 + q_dim1], ldq, &work[1], &ldwork); /* Multiply left part of C by Q11. */ cgemm_("No Transpose", "No Transpose", &len, n2, n1, &c_b1, & c__[i__ + c_dim1], ldc, &q[q_offset], ldq, &c_b1, & work[1], &ldwork); /* Multiply left part of C by Q12. */ clacpy_("All", &len, n1, &c__[i__ + c_dim1], ldc, &work[*n2 * ldwork + 1], &ldwork); ctrmm_("Right", "Lower", "No Transpose", "Non-Unit", &len, n1, &c_b1, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[*n2 * ldwork + 1], &ldwork); /* Multiply right part of C by Q22. */ cgemm_("No Transpose", "No Transpose", &len, n1, n2, &c_b1, & c__[i__ + (*n1 + 1) * c_dim1], ldc, &q[*n1 + 1 + (*n2 + 1) * q_dim1], ldq, &c_b1, &work[*n2 * ldwork + 1], & ldwork); /* Copy everything back. */ clacpy_("All", &len, n, &work[1], &ldwork, &c__[i__ + c_dim1], ldc); } } else { i__2 = *m; i__1 = nb; for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) { /* Computing MIN */ i__3 = nb, i__4 = *m - i__ + 1; len = f2cmin(i__3,i__4); ldwork = len; /* Multiply right part of C by Q12**H. */ clacpy_("All", &len, n1, &c__[i__ + (*n2 + 1) * c_dim1], ldc, &work[1], &ldwork); ctrmm_("Right", "Lower", "Conjugate", "Non-Unit", &len, n1, & c_b1, &q[(*n2 + 1) * q_dim1 + 1], ldq, &work[1], & ldwork); /* Multiply left part of C by Q11**H. */ cgemm_("No Transpose", "Conjugate", &len, n1, n2, &c_b1, &c__[ i__ + c_dim1], ldc, &q[q_offset], ldq, &c_b1, &work[1] , &ldwork); /* Multiply left part of C by Q21**H. */ clacpy_("All", &len, n2, &c__[i__ + c_dim1], ldc, &work[*n1 * ldwork + 1], &ldwork); ctrmm_("Right", "Upper", "Conjugate", "Non-Unit", &len, n2, & c_b1, &q[*n1 + 1 + q_dim1], ldq, &work[*n1 * ldwork + 1], &ldwork); /* Multiply right part of C by Q22**H. */ cgemm_("No Transpose", "Conjugate", &len, n2, n1, &c_b1, &c__[ i__ + (*n2 + 1) * c_dim1], ldc, &q[*n1 + 1 + (*n2 + 1) * q_dim1], ldq, &c_b1, &work[*n1 * ldwork + 1], & ldwork); /* Copy everything back. */ clacpy_("All", &len, n, &work[1], &ldwork, &c__[i__ + c_dim1], ldc); } } } q__1.r = (real) lwkopt, q__1.i = 0.f; work[1].r = q__1.r, work[1].i = q__1.i; return 0; /* End of CUNM22 */ } /* cunm22_ */