#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b DGBTF2 computes the LU factorization of a general band matrix using the unblocked version of th e algorithm. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DGBTF2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO ) */ /* INTEGER INFO, KL, KU, LDAB, M, N */ /* INTEGER IPIV( * ) */ /* DOUBLE PRECISION AB( LDAB, * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DGBTF2 computes an LU factorization of a real m-by-n band matrix A */ /* > using partial pivoting with row interchanges. */ /* > */ /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix A. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] KL */ /* > \verbatim */ /* > KL is INTEGER */ /* > The number of subdiagonals within the band of A. KL >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] KU */ /* > \verbatim */ /* > KU is INTEGER */ /* > The number of superdiagonals within the band of A. KU >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] AB */ /* > \verbatim */ /* > AB is DOUBLE PRECISION array, dimension (LDAB,N) */ /* > On entry, the matrix A in band storage, in rows KL+1 to */ /* > 2*KL+KU+1; rows 1 to KL of the array need not be set. */ /* > The j-th column of A is stored in the j-th column of the */ /* > array AB as follows: */ /* > AB(kl+ku+1+i-j,j) = A(i,j) for f2cmax(1,j-ku)<=i<=f2cmin(m,j+kl) */ /* > */ /* > On exit, details of the factorization: U is stored as an */ /* > upper triangular band matrix with KL+KU superdiagonals in */ /* > rows 1 to KL+KU+1, and the multipliers used during the */ /* > factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */ /* > See below for further details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDAB */ /* > \verbatim */ /* > LDAB is INTEGER */ /* > The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */ /* > \endverbatim */ /* > */ /* > \param[out] IPIV */ /* > \verbatim */ /* > IPIV is INTEGER array, dimension (f2cmin(M,N)) */ /* > The pivot indices; for 1 <= i <= f2cmin(M,N), row i of the */ /* > matrix was interchanged with row IPIV(i). */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > > 0: if INFO = +i, U(i,i) is exactly zero. The factorization */ /* > has been completed, but the factor U is exactly */ /* > singular, and division by zero will occur if it is used */ /* > to solve a system of equations. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup doubleGBcomputational */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The band storage scheme is illustrated by the following example, when */ /* > M = N = 6, KL = 2, KU = 1: */ /* > */ /* > On entry: On exit: */ /* > */ /* > * * * + + + * * * u14 u25 u36 */ /* > * * + + + + * * u13 u24 u35 u46 */ /* > * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */ /* > a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */ /* > a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * */ /* > a31 a42 a53 a64 * * m31 m42 m53 m64 * * */ /* > */ /* > Array elements marked * are not used by the routine; elements marked */ /* > + need not be set on entry, but are required by the routine to store */ /* > elements of U, because of fill-in resulting from the row */ /* > interchanges. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int dgbtf2_(integer *m, integer *n, integer *kl, integer *ku, doublereal *ab, integer *ldab, integer *ipiv, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4; doublereal d__1; /* Local variables */ extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); integer i__, j; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *), dswap_(integer *, doublereal *, integer *, doublereal *, integer *); integer km, jp, ju, kv; extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); /* -- LAPACK computational routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* KV is the number of superdiagonals in the factor U, allowing for */ /* fill-in. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1 * 1; ab -= ab_offset; --ipiv; /* Function Body */ kv = *ku + *kl; /* Test the input parameters. */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kl < 0) { *info = -3; } else if (*ku < 0) { *info = -4; } else if (*ldab < *kl + kv + 1) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("DGBTF2", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } /* Gaussian elimination with partial pivoting */ /* Set fill-in elements in columns KU+2 to KV to zero. */ i__1 = f2cmin(kv,*n); for (j = *ku + 2; j <= i__1; ++j) { i__2 = *kl; for (i__ = kv - j + 2; i__ <= i__2; ++i__) { ab[i__ + j * ab_dim1] = 0.; /* L10: */ } /* L20: */ } /* JU is the index of the last column affected by the current stage */ /* of the factorization. */ ju = 1; i__1 = f2cmin(*m,*n); for (j = 1; j <= i__1; ++j) { /* Set fill-in elements in column J+KV to zero. */ if (j + kv <= *n) { i__2 = *kl; for (i__ = 1; i__ <= i__2; ++i__) { ab[i__ + (j + kv) * ab_dim1] = 0.; /* L30: */ } } /* Find pivot and test for singularity. KM is the number of */ /* subdiagonal elements in the current column. */ /* Computing MIN */ i__2 = *kl, i__3 = *m - j; km = f2cmin(i__2,i__3); i__2 = km + 1; jp = idamax_(&i__2, &ab[kv + 1 + j * ab_dim1], &c__1); ipiv[j] = jp + j - 1; if (ab[kv + jp + j * ab_dim1] != 0.) { /* Computing MAX */ /* Computing MIN */ i__4 = j + *ku + jp - 1; i__2 = ju, i__3 = f2cmin(i__4,*n); ju = f2cmax(i__2,i__3); /* Apply interchange to columns J to JU. */ if (jp != 1) { i__2 = ju - j + 1; i__3 = *ldab - 1; i__4 = *ldab - 1; dswap_(&i__2, &ab[kv + jp + j * ab_dim1], &i__3, &ab[kv + 1 + j * ab_dim1], &i__4); } if (km > 0) { /* Compute multipliers. */ d__1 = 1. / ab[kv + 1 + j * ab_dim1]; dscal_(&km, &d__1, &ab[kv + 2 + j * ab_dim1], &c__1); /* Update trailing submatrix within the band. */ if (ju > j) { i__2 = ju - j; i__3 = *ldab - 1; i__4 = *ldab - 1; dger_(&km, &i__2, &c_b9, &ab[kv + 2 + j * ab_dim1], &c__1, &ab[kv + (j + 1) * ab_dim1], &i__3, &ab[kv + 1 + (j + 1) * ab_dim1], &i__4); } } } else { /* If pivot is zero, set INFO to the index of the pivot */ /* unless a zero pivot has already been found. */ if (*info == 0) { *info = j; } } /* L40: */ } return 0; /* End of DGBTF2 */ } /* dgbtf2_ */