#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b DLALN2 solves a 1-by-1 or 2-by-2 linear system of equations of the specified form. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLALN2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B, */ /* LDB, WR, WI, X, LDX, SCALE, XNORM, INFO ) */ /* LOGICAL LTRANS */ /* INTEGER INFO, LDA, LDB, LDX, NA, NW */ /* DOUBLE PRECISION CA, D1, D2, SCALE, SMIN, WI, WR, XNORM */ /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), X( LDX, * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLALN2 solves a system of the form (ca A - w D ) X = s B */ /* > or (ca A**T - w D) X = s B with possible scaling ("s") and */ /* > perturbation of A. (A**T means A-transpose.) */ /* > */ /* > A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA */ /* > real diagonal matrix, w is a real or complex value, and X and B are */ /* > NA x 1 matrices -- real if w is real, complex if w is complex. NA */ /* > may be 1 or 2. */ /* > */ /* > If w is complex, X and B are represented as NA x 2 matrices, */ /* > the first column of each being the real part and the second */ /* > being the imaginary part. */ /* > */ /* > "s" is a scaling factor (<= 1), computed by DLALN2, which is */ /* > so chosen that X can be computed without overflow. X is further */ /* > scaled if necessary to assure that norm(ca A - w D)*norm(X) is less */ /* > than overflow. */ /* > */ /* > If both singular values of (ca A - w D) are less than SMIN, */ /* > SMIN*identity will be used instead of (ca A - w D). If only one */ /* > singular value is less than SMIN, one element of (ca A - w D) will be */ /* > perturbed enough to make the smallest singular value roughly SMIN. */ /* > If both singular values are at least SMIN, (ca A - w D) will not be */ /* > perturbed. In any case, the perturbation will be at most some small */ /* > multiple of f2cmax( SMIN, ulp*norm(ca A - w D) ). The singular values */ /* > are computed by infinity-norm approximations, and thus will only be */ /* > correct to a factor of 2 or so. */ /* > */ /* > Note: all input quantities are assumed to be smaller than overflow */ /* > by a reasonable factor. (See BIGNUM.) */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] LTRANS */ /* > \verbatim */ /* > LTRANS is LOGICAL */ /* > =.TRUE.: A-transpose will be used. */ /* > =.FALSE.: A will be used (not transposed.) */ /* > \endverbatim */ /* > */ /* > \param[in] NA */ /* > \verbatim */ /* > NA is INTEGER */ /* > The size of the matrix A. It may (only) be 1 or 2. */ /* > \endverbatim */ /* > */ /* > \param[in] NW */ /* > \verbatim */ /* > NW is INTEGER */ /* > 1 if "w" is real, 2 if "w" is complex. It may only be 1 */ /* > or 2. */ /* > \endverbatim */ /* > */ /* > \param[in] SMIN */ /* > \verbatim */ /* > SMIN is DOUBLE PRECISION */ /* > The desired lower bound on the singular values of A. This */ /* > should be a safe distance away from underflow or overflow, */ /* > say, between (underflow/machine precision) and (machine */ /* > precision * overflow ). (See BIGNUM and ULP.) */ /* > \endverbatim */ /* > */ /* > \param[in] CA */ /* > \verbatim */ /* > CA is DOUBLE PRECISION */ /* > The coefficient c, which A is multiplied by. */ /* > \endverbatim */ /* > */ /* > \param[in] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,NA) */ /* > The NA x NA matrix A. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of A. It must be at least NA. */ /* > \endverbatim */ /* > */ /* > \param[in] D1 */ /* > \verbatim */ /* > D1 is DOUBLE PRECISION */ /* > The 1,1 element in the diagonal matrix D. */ /* > \endverbatim */ /* > */ /* > \param[in] D2 */ /* > \verbatim */ /* > D2 is DOUBLE PRECISION */ /* > The 2,2 element in the diagonal matrix D. Not used if NA=1. */ /* > \endverbatim */ /* > */ /* > \param[in] B */ /* > \verbatim */ /* > B is DOUBLE PRECISION array, dimension (LDB,NW) */ /* > The NA x NW matrix B (right-hand side). If NW=2 ("w" is */ /* > complex), column 1 contains the real part of B and column 2 */ /* > contains the imaginary part. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > The leading dimension of B. It must be at least NA. */ /* > \endverbatim */ /* > */ /* > \param[in] WR */ /* > \verbatim */ /* > WR is DOUBLE PRECISION */ /* > The real part of the scalar "w". */ /* > \endverbatim */ /* > */ /* > \param[in] WI */ /* > \verbatim */ /* > WI is DOUBLE PRECISION */ /* > The imaginary part of the scalar "w". Not used if NW=1. */ /* > \endverbatim */ /* > */ /* > \param[out] X */ /* > \verbatim */ /* > X is DOUBLE PRECISION array, dimension (LDX,NW) */ /* > The NA x NW matrix X (unknowns), as computed by DLALN2. */ /* > If NW=2 ("w" is complex), on exit, column 1 will contain */ /* > the real part of X and column 2 will contain the imaginary */ /* > part. */ /* > \endverbatim */ /* > */ /* > \param[in] LDX */ /* > \verbatim */ /* > LDX is INTEGER */ /* > The leading dimension of X. It must be at least NA. */ /* > \endverbatim */ /* > */ /* > \param[out] SCALE */ /* > \verbatim */ /* > SCALE is DOUBLE PRECISION */ /* > The scale factor that B must be multiplied by to insure */ /* > that overflow does not occur when computing X. Thus, */ /* > (ca A - w D) X will be SCALE*B, not B (ignoring */ /* > perturbations of A.) It will be at most 1. */ /* > \endverbatim */ /* > */ /* > \param[out] XNORM */ /* > \verbatim */ /* > XNORM is DOUBLE PRECISION */ /* > The infinity-norm of X, when X is regarded as an NA x NW */ /* > real matrix. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > An error flag. It will be set to zero if no error occurs, */ /* > a negative number if an argument is in error, or a positive */ /* > number if ca A - w D had to be perturbed. */ /* > The possible values are: */ /* > = 0: No error occurred, and (ca A - w D) did not have to be */ /* > perturbed. */ /* > = 1: (ca A - w D) had to be perturbed to make its smallest */ /* > (or only) singular value greater than SMIN. */ /* > NOTE: In the interests of speed, this routine does not */ /* > check the inputs for errors. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup doubleOTHERauxiliary */ /* ===================================================================== */ /* Subroutine */ int dlaln2_(logical *ltrans, integer *na, integer *nw, doublereal *smin, doublereal *ca, doublereal *a, integer *lda, doublereal *d1, doublereal *d2, doublereal *b, integer *ldb, doublereal *wr, doublereal *wi, doublereal *x, integer *ldx, doublereal *scale, doublereal *xnorm, integer *info) { /* Initialized data */ static logical zswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ }; static logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ }; static integer ipivot[16] /* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2, 4,3,2,1 }; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset; doublereal d__1, d__2, d__3, d__4, d__5, d__6; static doublereal equiv_0[4], equiv_1[4]; /* Local variables */ doublereal bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s; integer j; doublereal u22abs; integer icmax; doublereal bnorm, cnorm, smini; #define ci (equiv_0) #define cr (equiv_1) extern doublereal dlamch_(char *); extern /* Subroutine */ int dladiv_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); doublereal bignum, bi1, bi2, br1, br2, smlnum, xi1, xi2, xr1, xr2, ci21, ci22, cr21, cr22, li21, csi, ui11, lr21, ui12, ui22; #define civ (equiv_0) doublereal csr, ur11, ur12, ur22; #define crv (equiv_1) /* -- LAPACK auxiliary routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; /* Function Body */ /* Compute BIGNUM */ smlnum = 2. * dlamch_("Safe minimum"); bignum = 1. / smlnum; smini = f2cmax(*smin,smlnum); /* Don't check for input errors */ *info = 0; /* Standard Initializations */ *scale = 1.; if (*na == 1) { /* 1 x 1 (i.e., scalar) system C X = B */ if (*nw == 1) { /* Real 1x1 system. */ /* C = ca A - w D */ csr = *ca * a[a_dim1 + 1] - *wr * *d1; cnorm = abs(csr); /* If | C | < SMINI, use C = SMINI */ if (cnorm < smini) { csr = smini; cnorm = smini; *info = 1; } /* Check scaling for X = B / C */ bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)); if (cnorm < 1. && bnorm > 1.) { if (bnorm > bignum * cnorm) { *scale = 1. / bnorm; } } /* Compute X */ x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / csr; *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)); } else { /* Complex 1x1 system (w is complex) */ /* C = ca A - w D */ csr = *ca * a[a_dim1 + 1] - *wr * *d1; csi = -(*wi) * *d1; cnorm = abs(csr) + abs(csi); /* If | C | < SMINI, use C = SMINI */ if (cnorm < smini) { csr = smini; csi = 0.; cnorm = smini; *info = 1; } /* Check scaling for X = B / C */ bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 << 1) + 1], abs(d__2)); if (cnorm < 1. && bnorm > 1.) { if (bnorm > bignum * cnorm) { *scale = 1. / bnorm; } } /* Compute X */ d__1 = *scale * b[b_dim1 + 1]; d__2 = *scale * b[(b_dim1 << 1) + 1]; dladiv_(&d__1, &d__2, &csr, &csi, &x[x_dim1 + 1], &x[(x_dim1 << 1) + 1]); *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 << 1) + 1], abs(d__2)); } } else { /* 2x2 System */ /* Compute the real part of C = ca A - w D (or ca A**T - w D ) */ cr[0] = *ca * a[a_dim1 + 1] - *wr * *d1; cr[3] = *ca * a[(a_dim1 << 1) + 2] - *wr * *d2; if (*ltrans) { cr[2] = *ca * a[a_dim1 + 2]; cr[1] = *ca * a[(a_dim1 << 1) + 1]; } else { cr[1] = *ca * a[a_dim1 + 2]; cr[2] = *ca * a[(a_dim1 << 1) + 1]; } if (*nw == 1) { /* Real 2x2 system (w is real) */ /* Find the largest element in C */ cmax = 0.; icmax = 0; for (j = 1; j <= 4; ++j) { if ((d__1 = crv[j - 1], abs(d__1)) > cmax) { cmax = (d__1 = crv[j - 1], abs(d__1)); icmax = j; } /* L10: */ } /* If norm(C) < SMINI, use SMINI*identity. */ if (cmax < smini) { /* Computing MAX */ d__3 = (d__1 = b[b_dim1 + 1], abs(d__1)), d__4 = (d__2 = b[ b_dim1 + 2], abs(d__2)); bnorm = f2cmax(d__3,d__4); if (smini < 1. && bnorm > 1.) { if (bnorm > bignum * smini) { *scale = 1. / bnorm; } } temp = *scale / smini; x[x_dim1 + 1] = temp * b[b_dim1 + 1]; x[x_dim1 + 2] = temp * b[b_dim1 + 2]; *xnorm = temp * bnorm; *info = 1; return 0; } /* Gaussian elimination with complete pivoting. */ ur11 = crv[icmax - 1]; cr21 = crv[ipivot[(icmax << 2) - 3] - 1]; ur12 = crv[ipivot[(icmax << 2) - 2] - 1]; cr22 = crv[ipivot[(icmax << 2) - 1] - 1]; ur11r = 1. / ur11; lr21 = ur11r * cr21; ur22 = cr22 - ur12 * lr21; /* If smaller pivot < SMINI, use SMINI */ if (abs(ur22) < smini) { ur22 = smini; *info = 1; } if (rswap[icmax - 1]) { br1 = b[b_dim1 + 2]; br2 = b[b_dim1 + 1]; } else { br1 = b[b_dim1 + 1]; br2 = b[b_dim1 + 2]; } br2 -= lr21 * br1; /* Computing MAX */ d__2 = (d__1 = br1 * (ur22 * ur11r), abs(d__1)), d__3 = abs(br2); bbnd = f2cmax(d__2,d__3); if (bbnd > 1. && abs(ur22) < 1.) { if (bbnd >= bignum * abs(ur22)) { *scale = 1. / bbnd; } } xr2 = br2 * *scale / ur22; xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12); if (zswap[icmax - 1]) { x[x_dim1 + 1] = xr2; x[x_dim1 + 2] = xr1; } else { x[x_dim1 + 1] = xr1; x[x_dim1 + 2] = xr2; } /* Computing MAX */ d__1 = abs(xr1), d__2 = abs(xr2); *xnorm = f2cmax(d__1,d__2); /* Further scaling if norm(A) norm(X) > overflow */ if (*xnorm > 1. && cmax > 1.) { if (*xnorm > bignum / cmax) { temp = cmax / bignum; x[x_dim1 + 1] = temp * x[x_dim1 + 1]; x[x_dim1 + 2] = temp * x[x_dim1 + 2]; *xnorm = temp * *xnorm; *scale = temp * *scale; } } } else { /* Complex 2x2 system (w is complex) */ /* Find the largest element in C */ ci[0] = -(*wi) * *d1; ci[1] = 0.; ci[2] = 0.; ci[3] = -(*wi) * *d2; cmax = 0.; icmax = 0; for (j = 1; j <= 4; ++j) { if ((d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1], abs( d__2)) > cmax) { cmax = (d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1] , abs(d__2)); icmax = j; } /* L20: */ } /* If norm(C) < SMINI, use SMINI*identity. */ if (cmax < smini) { /* Computing MAX */ d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 << 1) + 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 + 2], abs(d__3)) + (d__4 = b[(b_dim1 << 1) + 2], abs(d__4)); bnorm = f2cmax(d__5,d__6); if (smini < 1. && bnorm > 1.) { if (bnorm > bignum * smini) { *scale = 1. / bnorm; } } temp = *scale / smini; x[x_dim1 + 1] = temp * b[b_dim1 + 1]; x[x_dim1 + 2] = temp * b[b_dim1 + 2]; x[(x_dim1 << 1) + 1] = temp * b[(b_dim1 << 1) + 1]; x[(x_dim1 << 1) + 2] = temp * b[(b_dim1 << 1) + 2]; *xnorm = temp * bnorm; *info = 1; return 0; } /* Gaussian elimination with complete pivoting. */ ur11 = crv[icmax - 1]; ui11 = civ[icmax - 1]; cr21 = crv[ipivot[(icmax << 2) - 3] - 1]; ci21 = civ[ipivot[(icmax << 2) - 3] - 1]; ur12 = crv[ipivot[(icmax << 2) - 2] - 1]; ui12 = civ[ipivot[(icmax << 2) - 2] - 1]; cr22 = crv[ipivot[(icmax << 2) - 1] - 1]; ci22 = civ[ipivot[(icmax << 2) - 1] - 1]; if (icmax == 1 || icmax == 4) { /* Code when off-diagonals of pivoted C are real */ if (abs(ur11) > abs(ui11)) { temp = ui11 / ur11; /* Computing 2nd power */ d__1 = temp; ur11r = 1. / (ur11 * (d__1 * d__1 + 1.)); ui11r = -temp * ur11r; } else { temp = ur11 / ui11; /* Computing 2nd power */ d__1 = temp; ui11r = -1. / (ui11 * (d__1 * d__1 + 1.)); ur11r = -temp * ui11r; } lr21 = cr21 * ur11r; li21 = cr21 * ui11r; ur12s = ur12 * ur11r; ui12s = ur12 * ui11r; ur22 = cr22 - ur12 * lr21; ui22 = ci22 - ur12 * li21; } else { /* Code when diagonals of pivoted C are real */ ur11r = 1. / ur11; ui11r = 0.; lr21 = cr21 * ur11r; li21 = ci21 * ur11r; ur12s = ur12 * ur11r; ui12s = ui12 * ur11r; ur22 = cr22 - ur12 * lr21 + ui12 * li21; ui22 = -ur12 * li21 - ui12 * lr21; } u22abs = abs(ur22) + abs(ui22); /* If smaller pivot < SMINI, use SMINI */ if (u22abs < smini) { ur22 = smini; ui22 = 0.; *info = 1; } if (rswap[icmax - 1]) { br2 = b[b_dim1 + 1]; br1 = b[b_dim1 + 2]; bi2 = b[(b_dim1 << 1) + 1]; bi1 = b[(b_dim1 << 1) + 2]; } else { br1 = b[b_dim1 + 1]; br2 = b[b_dim1 + 2]; bi1 = b[(b_dim1 << 1) + 1]; bi2 = b[(b_dim1 << 1) + 2]; } br2 = br2 - lr21 * br1 + li21 * bi1; bi2 = bi2 - li21 * br1 - lr21 * bi1; /* Computing MAX */ d__1 = (abs(br1) + abs(bi1)) * (u22abs * (abs(ur11r) + abs(ui11r)) ), d__2 = abs(br2) + abs(bi2); bbnd = f2cmax(d__1,d__2); if (bbnd > 1. && u22abs < 1.) { if (bbnd >= bignum * u22abs) { *scale = 1. / bbnd; br1 = *scale * br1; bi1 = *scale * bi1; br2 = *scale * br2; bi2 = *scale * bi2; } } dladiv_(&br2, &bi2, &ur22, &ui22, &xr2, &xi2); xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2; xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2; if (zswap[icmax - 1]) { x[x_dim1 + 1] = xr2; x[x_dim1 + 2] = xr1; x[(x_dim1 << 1) + 1] = xi2; x[(x_dim1 << 1) + 2] = xi1; } else { x[x_dim1 + 1] = xr1; x[x_dim1 + 2] = xr2; x[(x_dim1 << 1) + 1] = xi1; x[(x_dim1 << 1) + 2] = xi2; } /* Computing MAX */ d__1 = abs(xr1) + abs(xi1), d__2 = abs(xr2) + abs(xi2); *xnorm = f2cmax(d__1,d__2); /* Further scaling if norm(A) norm(X) > overflow */ if (*xnorm > 1. && cmax > 1.) { if (*xnorm > bignum / cmax) { temp = cmax / bignum; x[x_dim1 + 1] = temp * x[x_dim1 + 1]; x[x_dim1 + 2] = temp * x[x_dim1 + 2]; x[(x_dim1 << 1) + 1] = temp * x[(x_dim1 << 1) + 1]; x[(x_dim1 << 1) + 2] = temp * x[(x_dim1 << 1) + 2]; *xnorm = temp * *xnorm; *scale = temp * *scale; } } } } return 0; /* End of DLALN2 */ } /* dlaln2_ */ #undef crv #undef civ #undef cr #undef ci