#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b DLANSF returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the ele ment of largest absolute value of a symmetric matrix in RFP format. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLANSF + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* DOUBLE PRECISION FUNCTION DLANSF( NORM, TRANSR, UPLO, N, A, WORK ) */ /* CHARACTER NORM, TRANSR, UPLO */ /* INTEGER N */ /* DOUBLE PRECISION A( 0: * ), WORK( 0: * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLANSF returns the value of the one norm, or the Frobenius norm, or */ /* > the infinity norm, or the element of largest absolute value of a */ /* > real symmetric matrix A in RFP format. */ /* > \endverbatim */ /* > */ /* > \return DLANSF */ /* > \verbatim */ /* > */ /* > DLANSF = ( f2cmax(abs(A(i,j))), NORM = 'M' or 'm' */ /* > ( */ /* > ( norm1(A), NORM = '1', 'O' or 'o' */ /* > ( */ /* > ( normI(A), NORM = 'I' or 'i' */ /* > ( */ /* > ( normF(A), NORM = 'F', 'f', 'E' or 'e' */ /* > */ /* > where norm1 denotes the one norm of a matrix (maximum column sum), */ /* > normI denotes the infinity norm of a matrix (maximum row sum) and */ /* > normF denotes the Frobenius norm of a matrix (square root of sum of */ /* > squares). Note that f2cmax(abs(A(i,j))) is not a matrix norm. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] NORM */ /* > \verbatim */ /* > NORM is CHARACTER*1 */ /* > Specifies the value to be returned in DLANSF as described */ /* > above. */ /* > \endverbatim */ /* > */ /* > \param[in] TRANSR */ /* > \verbatim */ /* > TRANSR is CHARACTER*1 */ /* > Specifies whether the RFP format of A is normal or */ /* > transposed format. */ /* > = 'N': RFP format is Normal; */ /* > = 'T': RFP format is Transpose. */ /* > \endverbatim */ /* > */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > On entry, UPLO specifies whether the RFP matrix A came from */ /* > an upper or lower triangular matrix as follows: */ /* > = 'U': RFP A came from an upper triangular matrix; */ /* > = 'L': RFP A came from a lower triangular matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. N >= 0. When N = 0, DLANSF is */ /* > set to zero. */ /* > \endverbatim */ /* > */ /* > \param[in] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ); */ /* > On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L') */ /* > part of the symmetric matrix A stored in RFP format. See the */ /* > "Notes" below for more details. */ /* > Unchanged on exit. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */ /* > where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */ /* > WORK is not referenced. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup doubleOTHERcomputational */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > We first consider Rectangular Full Packed (RFP) Format when N is */ /* > even. We give an example where N = 6. */ /* > */ /* > AP is Upper AP is Lower */ /* > */ /* > 00 01 02 03 04 05 00 */ /* > 11 12 13 14 15 10 11 */ /* > 22 23 24 25 20 21 22 */ /* > 33 34 35 30 31 32 33 */ /* > 44 45 40 41 42 43 44 */ /* > 55 50 51 52 53 54 55 */ /* > */ /* > */ /* > Let TRANSR = 'N'. RFP holds AP as follows: */ /* > For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */ /* > three columns of AP upper. The lower triangle A(4:6,0:2) consists of */ /* > the transpose of the first three columns of AP upper. */ /* > For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */ /* > three columns of AP lower. The upper triangle A(0:2,0:2) consists of */ /* > the transpose of the last three columns of AP lower. */ /* > This covers the case N even and TRANSR = 'N'. */ /* > */ /* > RFP A RFP A */ /* > */ /* > 03 04 05 33 43 53 */ /* > 13 14 15 00 44 54 */ /* > 23 24 25 10 11 55 */ /* > 33 34 35 20 21 22 */ /* > 00 44 45 30 31 32 */ /* > 01 11 55 40 41 42 */ /* > 02 12 22 50 51 52 */ /* > */ /* > Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */ /* > transpose of RFP A above. One therefore gets: */ /* > */ /* > */ /* > RFP A RFP A */ /* > */ /* > 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */ /* > 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */ /* > 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */ /* > */ /* > */ /* > We then consider Rectangular Full Packed (RFP) Format when N is */ /* > odd. We give an example where N = 5. */ /* > */ /* > AP is Upper AP is Lower */ /* > */ /* > 00 01 02 03 04 00 */ /* > 11 12 13 14 10 11 */ /* > 22 23 24 20 21 22 */ /* > 33 34 30 31 32 33 */ /* > 44 40 41 42 43 44 */ /* > */ /* > */ /* > Let TRANSR = 'N'. RFP holds AP as follows: */ /* > For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */ /* > three columns of AP upper. The lower triangle A(3:4,0:1) consists of */ /* > the transpose of the first two columns of AP upper. */ /* > For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */ /* > three columns of AP lower. The upper triangle A(0:1,1:2) consists of */ /* > the transpose of the last two columns of AP lower. */ /* > This covers the case N odd and TRANSR = 'N'. */ /* > */ /* > RFP A RFP A */ /* > */ /* > 02 03 04 00 33 43 */ /* > 12 13 14 10 11 44 */ /* > 22 23 24 20 21 22 */ /* > 00 33 34 30 31 32 */ /* > 01 11 44 40 41 42 */ /* > */ /* > Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */ /* > transpose of RFP A above. One therefore gets: */ /* > */ /* > RFP A RFP A */ /* > */ /* > 02 12 22 00 01 00 10 20 30 40 50 */ /* > 03 13 23 33 11 33 11 21 31 41 51 */ /* > 04 14 24 34 44 43 44 22 32 42 52 */ /* > \endverbatim */ /* ===================================================================== */ doublereal dlansf_(char *norm, char *transr, char *uplo, integer *n, doublereal *a, doublereal *work) { /* System generated locals */ integer i__1, i__2; doublereal ret_val, d__1; /* Local variables */ doublereal temp; integer i__, j, k, l; doublereal s, scale; extern logical lsame_(char *, char *); doublereal value; integer n1; doublereal aa; extern logical disnan_(doublereal *); extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *, doublereal *, doublereal *); integer lda, ifm, noe, ilu; /* -- LAPACK computational routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ if (*n == 0) { ret_val = 0.; return ret_val; } else if (*n == 1) { ret_val = abs(a[0]); return ret_val; } /* set noe = 1 if n is odd. if n is even set noe=0 */ noe = 1; if (*n % 2 == 0) { noe = 0; } /* set ifm = 0 when form='T or 't' and 1 otherwise */ ifm = 1; if (lsame_(transr, "T")) { ifm = 0; } /* set ilu = 0 when uplo='U or 'u' and 1 otherwise */ ilu = 1; if (lsame_(uplo, "U")) { ilu = 0; } /* set lda = (n+1)/2 when ifm = 0 */ /* set lda = n when ifm = 1 and noe = 1 */ /* set lda = n+1 when ifm = 1 and noe = 0 */ if (ifm == 1) { if (noe == 1) { lda = *n; } else { /* noe=0 */ lda = *n + 1; } } else { /* ifm=0 */ lda = (*n + 1) / 2; } if (lsame_(norm, "M")) { /* Find f2cmax(abs(A(i,j))). */ k = (*n + 1) / 2; value = 0.; if (noe == 1) { /* n is odd */ if (ifm == 1) { /* A is n by k */ i__1 = k - 1; for (j = 0; j <= i__1; ++j) { i__2 = *n - 1; for (i__ = 0; i__ <= i__2; ++i__) { temp = (d__1 = a[i__ + j * lda], abs(d__1)); if (value < temp || disnan_(&temp)) { value = temp; } } } } else { /* xpose case; A is k by n */ i__1 = *n - 1; for (j = 0; j <= i__1; ++j) { i__2 = k - 1; for (i__ = 0; i__ <= i__2; ++i__) { temp = (d__1 = a[i__ + j * lda], abs(d__1)); if (value < temp || disnan_(&temp)) { value = temp; } } } } } else { /* n is even */ if (ifm == 1) { /* A is n+1 by k */ i__1 = k - 1; for (j = 0; j <= i__1; ++j) { i__2 = *n; for (i__ = 0; i__ <= i__2; ++i__) { temp = (d__1 = a[i__ + j * lda], abs(d__1)); if (value < temp || disnan_(&temp)) { value = temp; } } } } else { /* xpose case; A is k by n+1 */ i__1 = *n; for (j = 0; j <= i__1; ++j) { i__2 = k - 1; for (i__ = 0; i__ <= i__2; ++i__) { temp = (d__1 = a[i__ + j * lda], abs(d__1)); if (value < temp || disnan_(&temp)) { value = temp; } } } } } } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') { /* Find normI(A) ( = norm1(A), since A is symmetric). */ if (ifm == 1) { k = *n / 2; if (noe == 1) { /* n is odd */ if (ilu == 0) { i__1 = k - 1; for (i__ = 0; i__ <= i__1; ++i__) { work[i__] = 0.; } i__1 = k; for (j = 0; j <= i__1; ++j) { s = 0.; i__2 = k + j - 1; for (i__ = 0; i__ <= i__2; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(i,j+k) */ s += aa; work[i__] += aa; } aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(j+k,j+k) */ work[j + k] = s + aa; if (i__ == k + k) { goto L10; } ++i__; aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(j,j) */ work[j] += aa; s = 0.; i__2 = k - 1; for (l = j + 1; l <= i__2; ++l) { ++i__; aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(l,j) */ s += aa; work[l] += aa; } work[j] += s; } L10: value = work[0]; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { temp = work[i__]; if (value < temp || disnan_(&temp)) { value = temp; } } } else { /* ilu = 1 */ ++k; /* k=(n+1)/2 for n odd and ilu=1 */ i__1 = *n - 1; for (i__ = k; i__ <= i__1; ++i__) { work[i__] = 0.; } for (j = k - 1; j >= 0; --j) { s = 0.; i__1 = j - 2; for (i__ = 0; i__ <= i__1; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(j+k,i+k) */ s += aa; work[i__ + k] += aa; } if (j > 0) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(j+k,j+k) */ s += aa; work[i__ + k] += s; /* i=j */ ++i__; } aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(j,j) */ work[j] = aa; s = 0.; i__1 = *n - 1; for (l = j + 1; l <= i__1; ++l) { ++i__; aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(l,j) */ s += aa; work[l] += aa; } work[j] += s; } value = work[0]; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { temp = work[i__]; if (value < temp || disnan_(&temp)) { value = temp; } } } } else { /* n is even */ if (ilu == 0) { i__1 = k - 1; for (i__ = 0; i__ <= i__1; ++i__) { work[i__] = 0.; } i__1 = k - 1; for (j = 0; j <= i__1; ++j) { s = 0.; i__2 = k + j - 1; for (i__ = 0; i__ <= i__2; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(i,j+k) */ s += aa; work[i__] += aa; } aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(j+k,j+k) */ work[j + k] = s + aa; ++i__; aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(j,j) */ work[j] += aa; s = 0.; i__2 = k - 1; for (l = j + 1; l <= i__2; ++l) { ++i__; aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(l,j) */ s += aa; work[l] += aa; } work[j] += s; } value = work[0]; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { temp = work[i__]; if (value < temp || disnan_(&temp)) { value = temp; } } } else { /* ilu = 1 */ i__1 = *n - 1; for (i__ = k; i__ <= i__1; ++i__) { work[i__] = 0.; } for (j = k - 1; j >= 0; --j) { s = 0.; i__1 = j - 1; for (i__ = 0; i__ <= i__1; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(j+k,i+k) */ s += aa; work[i__ + k] += aa; } aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(j+k,j+k) */ s += aa; work[i__ + k] += s; /* i=j */ ++i__; aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(j,j) */ work[j] = aa; s = 0.; i__1 = *n - 1; for (l = j + 1; l <= i__1; ++l) { ++i__; aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* -> A(l,j) */ s += aa; work[l] += aa; } work[j] += s; } value = work[0]; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { temp = work[i__]; if (value < temp || disnan_(&temp)) { value = temp; } } } } } else { /* ifm=0 */ k = *n / 2; if (noe == 1) { /* n is odd */ if (ilu == 0) { n1 = k; /* n/2 */ ++k; /* k is the row size and lda */ i__1 = *n - 1; for (i__ = n1; i__ <= i__1; ++i__) { work[i__] = 0.; } i__1 = n1 - 1; for (j = 0; j <= i__1; ++j) { s = 0.; i__2 = k - 1; for (i__ = 0; i__ <= i__2; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(j,n1+i) */ work[i__ + n1] += aa; s += aa; } work[j] = s; } /* j=n1=k-1 is special */ s = (d__1 = a[j * lda], abs(d__1)); /* A(k-1,k-1) */ i__1 = k - 1; for (i__ = 1; i__ <= i__1; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(k-1,i+n1) */ work[i__ + n1] += aa; s += aa; } work[j] += s; i__1 = *n - 1; for (j = k; j <= i__1; ++j) { s = 0.; i__2 = j - k - 1; for (i__ = 0; i__ <= i__2; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(i,j-k) */ work[i__] += aa; s += aa; } /* i=j-k */ aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(j-k,j-k) */ s += aa; work[j - k] += s; ++i__; s = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(j,j) */ i__2 = *n - 1; for (l = j + 1; l <= i__2; ++l) { ++i__; aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(j,l) */ work[l] += aa; s += aa; } work[j] += s; } value = work[0]; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { temp = work[i__]; if (value < temp || disnan_(&temp)) { value = temp; } } } else { /* ilu=1 */ ++k; /* k=(n+1)/2 for n odd and ilu=1 */ i__1 = *n - 1; for (i__ = k; i__ <= i__1; ++i__) { work[i__] = 0.; } i__1 = k - 2; for (j = 0; j <= i__1; ++j) { /* process */ s = 0.; i__2 = j - 1; for (i__ = 0; i__ <= i__2; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(j,i) */ work[i__] += aa; s += aa; } aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* i=j so process of A(j,j) */ s += aa; work[j] = s; /* is initialised here */ ++i__; /* i=j process A(j+k,j+k) */ aa = (d__1 = a[i__ + j * lda], abs(d__1)); s = aa; i__2 = *n - 1; for (l = k + j + 1; l <= i__2; ++l) { ++i__; aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(l,k+j) */ s += aa; work[l] += aa; } work[k + j] += s; } /* j=k-1 is special :process col A(k-1,0:k-1) */ s = 0.; i__1 = k - 2; for (i__ = 0; i__ <= i__1; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(k,i) */ work[i__] += aa; s += aa; } /* i=k-1 */ aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(k-1,k-1) */ s += aa; work[i__] = s; /* done with col j=k+1 */ i__1 = *n - 1; for (j = k; j <= i__1; ++j) { /* process col j of A = A(j,0:k-1) */ s = 0.; i__2 = k - 1; for (i__ = 0; i__ <= i__2; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(j,i) */ work[i__] += aa; s += aa; } work[j] += s; } value = work[0]; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { temp = work[i__]; if (value < temp || disnan_(&temp)) { value = temp; } } } } else { /* n is even */ if (ilu == 0) { i__1 = *n - 1; for (i__ = k; i__ <= i__1; ++i__) { work[i__] = 0.; } i__1 = k - 1; for (j = 0; j <= i__1; ++j) { s = 0.; i__2 = k - 1; for (i__ = 0; i__ <= i__2; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(j,i+k) */ work[i__ + k] += aa; s += aa; } work[j] = s; } /* j=k */ aa = (d__1 = a[j * lda], abs(d__1)); /* A(k,k) */ s = aa; i__1 = k - 1; for (i__ = 1; i__ <= i__1; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(k,k+i) */ work[i__ + k] += aa; s += aa; } work[j] += s; i__1 = *n - 1; for (j = k + 1; j <= i__1; ++j) { s = 0.; i__2 = j - 2 - k; for (i__ = 0; i__ <= i__2; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(i,j-k-1) */ work[i__] += aa; s += aa; } /* i=j-1-k */ aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(j-k-1,j-k-1) */ s += aa; work[j - k - 1] += s; ++i__; aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(j,j) */ s = aa; i__2 = *n - 1; for (l = j + 1; l <= i__2; ++l) { ++i__; aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(j,l) */ work[l] += aa; s += aa; } work[j] += s; } /* j=n */ s = 0.; i__1 = k - 2; for (i__ = 0; i__ <= i__1; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(i,k-1) */ work[i__] += aa; s += aa; } /* i=k-1 */ aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(k-1,k-1) */ s += aa; work[i__] += s; value = work[0]; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { temp = work[i__]; if (value < temp || disnan_(&temp)) { value = temp; } } } else { /* ilu=1 */ i__1 = *n - 1; for (i__ = k; i__ <= i__1; ++i__) { work[i__] = 0.; } /* j=0 is special :process col A(k:n-1,k) */ s = abs(a[0]); /* A(k,k) */ i__1 = k - 1; for (i__ = 1; i__ <= i__1; ++i__) { aa = (d__1 = a[i__], abs(d__1)); /* A(k+i,k) */ work[i__ + k] += aa; s += aa; } work[k] += s; i__1 = k - 1; for (j = 1; j <= i__1; ++j) { /* process */ s = 0.; i__2 = j - 2; for (i__ = 0; i__ <= i__2; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(j-1,i) */ work[i__] += aa; s += aa; } aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* i=j-1 so process of A(j-1,j-1) */ s += aa; work[j - 1] = s; /* is initialised here */ ++i__; /* i=j process A(j+k,j+k) */ aa = (d__1 = a[i__ + j * lda], abs(d__1)); s = aa; i__2 = *n - 1; for (l = k + j + 1; l <= i__2; ++l) { ++i__; aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(l,k+j) */ s += aa; work[l] += aa; } work[k + j] += s; } /* j=k is special :process col A(k,0:k-1) */ s = 0.; i__1 = k - 2; for (i__ = 0; i__ <= i__1; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(k,i) */ work[i__] += aa; s += aa; } /* i=k-1 */ aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(k-1,k-1) */ s += aa; work[i__] = s; /* done with col j=k+1 */ i__1 = *n; for (j = k + 1; j <= i__1; ++j) { /* process col j-1 of A = A(j-1,0:k-1) */ s = 0.; i__2 = k - 1; for (i__ = 0; i__ <= i__2; ++i__) { aa = (d__1 = a[i__ + j * lda], abs(d__1)); /* A(j-1,i) */ work[i__] += aa; s += aa; } work[j - 1] += s; } value = work[0]; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { temp = work[i__]; if (value < temp || disnan_(&temp)) { value = temp; } } } } } } else if (lsame_(norm, "F") || lsame_(norm, "E")) { /* Find normF(A). */ k = (*n + 1) / 2; scale = 0.; s = 1.; if (noe == 1) { /* n is odd */ if (ifm == 1) { /* A is normal */ if (ilu == 0) { /* A is upper */ i__1 = k - 3; for (j = 0; j <= i__1; ++j) { i__2 = k - j - 2; dlassq_(&i__2, &a[k + j + 1 + j * lda], &c__1, &scale, &s); /* L at A(k,0) */ } i__1 = k - 1; for (j = 0; j <= i__1; ++j) { i__2 = k + j - 1; dlassq_(&i__2, &a[j * lda], &c__1, &scale, &s); /* trap U at A(0,0) */ } s += s; /* double s for the off diagonal elements */ i__1 = k - 1; i__2 = lda + 1; dlassq_(&i__1, &a[k], &i__2, &scale, &s); /* tri L at A(k,0) */ i__1 = lda + 1; dlassq_(&k, &a[k - 1], &i__1, &scale, &s); /* tri U at A(k-1,0) */ } else { /* ilu=1 & A is lower */ i__1 = k - 1; for (j = 0; j <= i__1; ++j) { i__2 = *n - j - 1; dlassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s) ; /* trap L at A(0,0) */ } i__1 = k - 2; for (j = 0; j <= i__1; ++j) { dlassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s); /* U at A(0,1) */ } s += s; /* double s for the off diagonal elements */ i__1 = lda + 1; dlassq_(&k, a, &i__1, &scale, &s); /* tri L at A(0,0) */ i__1 = k - 1; i__2 = lda + 1; dlassq_(&i__1, &a[lda], &i__2, &scale, &s); /* tri U at A(0,1) */ } } else { /* A is xpose */ if (ilu == 0) { /* A**T is upper */ i__1 = k - 2; for (j = 1; j <= i__1; ++j) { dlassq_(&j, &a[(k + j) * lda], &c__1, &scale, &s); /* U at A(0,k) */ } i__1 = k - 2; for (j = 0; j <= i__1; ++j) { dlassq_(&k, &a[j * lda], &c__1, &scale, &s); /* k by k-1 rect. at A(0,0) */ } i__1 = k - 2; for (j = 0; j <= i__1; ++j) { i__2 = k - j - 1; dlassq_(&i__2, &a[j + 1 + (j + k - 1) * lda], &c__1, & scale, &s); /* L at A(0,k-1) */ } s += s; /* double s for the off diagonal elements */ i__1 = k - 1; i__2 = lda + 1; dlassq_(&i__1, &a[k * lda], &i__2, &scale, &s); /* tri U at A(0,k) */ i__1 = lda + 1; dlassq_(&k, &a[(k - 1) * lda], &i__1, &scale, &s); /* tri L at A(0,k-1) */ } else { /* A**T is lower */ i__1 = k - 1; for (j = 1; j <= i__1; ++j) { dlassq_(&j, &a[j * lda], &c__1, &scale, &s); /* U at A(0,0) */ } i__1 = *n - 1; for (j = k; j <= i__1; ++j) { dlassq_(&k, &a[j * lda], &c__1, &scale, &s); /* k by k-1 rect. at A(0,k) */ } i__1 = k - 3; for (j = 0; j <= i__1; ++j) { i__2 = k - j - 2; dlassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s) ; /* L at A(1,0) */ } s += s; /* double s for the off diagonal elements */ i__1 = lda + 1; dlassq_(&k, a, &i__1, &scale, &s); /* tri U at A(0,0) */ i__1 = k - 1; i__2 = lda + 1; dlassq_(&i__1, &a[1], &i__2, &scale, &s); /* tri L at A(1,0) */ } } } else { /* n is even */ if (ifm == 1) { /* A is normal */ if (ilu == 0) { /* A is upper */ i__1 = k - 2; for (j = 0; j <= i__1; ++j) { i__2 = k - j - 1; dlassq_(&i__2, &a[k + j + 2 + j * lda], &c__1, &scale, &s); /* L at A(k+1,0) */ } i__1 = k - 1; for (j = 0; j <= i__1; ++j) { i__2 = k + j; dlassq_(&i__2, &a[j * lda], &c__1, &scale, &s); /* trap U at A(0,0) */ } s += s; /* double s for the off diagonal elements */ i__1 = lda + 1; dlassq_(&k, &a[k + 1], &i__1, &scale, &s); /* tri L at A(k+1,0) */ i__1 = lda + 1; dlassq_(&k, &a[k], &i__1, &scale, &s); /* tri U at A(k,0) */ } else { /* ilu=1 & A is lower */ i__1 = k - 1; for (j = 0; j <= i__1; ++j) { i__2 = *n - j - 1; dlassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s) ; /* trap L at A(1,0) */ } i__1 = k - 1; for (j = 1; j <= i__1; ++j) { dlassq_(&j, &a[j * lda], &c__1, &scale, &s); /* U at A(0,0) */ } s += s; /* double s for the off diagonal elements */ i__1 = lda + 1; dlassq_(&k, &a[1], &i__1, &scale, &s); /* tri L at A(1,0) */ i__1 = lda + 1; dlassq_(&k, a, &i__1, &scale, &s); /* tri U at A(0,0) */ } } else { /* A is xpose */ if (ilu == 0) { /* A**T is upper */ i__1 = k - 1; for (j = 1; j <= i__1; ++j) { dlassq_(&j, &a[(k + 1 + j) * lda], &c__1, &scale, &s); /* U at A(0,k+1) */ } i__1 = k - 1; for (j = 0; j <= i__1; ++j) { dlassq_(&k, &a[j * lda], &c__1, &scale, &s); /* k by k rect. at A(0,0) */ } i__1 = k - 2; for (j = 0; j <= i__1; ++j) { i__2 = k - j - 1; dlassq_(&i__2, &a[j + 1 + (j + k) * lda], &c__1, & scale, &s); /* L at A(0,k) */ } s += s; /* double s for the off diagonal elements */ i__1 = lda + 1; dlassq_(&k, &a[(k + 1) * lda], &i__1, &scale, &s); /* tri U at A(0,k+1) */ i__1 = lda + 1; dlassq_(&k, &a[k * lda], &i__1, &scale, &s); /* tri L at A(0,k) */ } else { /* A**T is lower */ i__1 = k - 1; for (j = 1; j <= i__1; ++j) { dlassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s); /* U at A(0,1) */ } i__1 = *n; for (j = k + 1; j <= i__1; ++j) { dlassq_(&k, &a[j * lda], &c__1, &scale, &s); /* k by k rect. at A(0,k+1) */ } i__1 = k - 2; for (j = 0; j <= i__1; ++j) { i__2 = k - j - 1; dlassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s) ; /* L at A(0,0) */ } s += s; /* double s for the off diagonal elements */ i__1 = lda + 1; dlassq_(&k, &a[lda], &i__1, &scale, &s); /* tri L at A(0,1) */ i__1 = lda + 1; dlassq_(&k, a, &i__1, &scale, &s); /* tri U at A(0,0) */ } } } value = scale * sqrt(s); } ret_val = value; return ret_val; /* End of DLANSF */ } /* dlansf_ */