#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b DLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLAR1V + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD, */ /* PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA, */ /* R, ISUPPZ, NRMINV, RESID, RQCORR, WORK ) */ /* LOGICAL WANTNC */ /* INTEGER B1, BN, N, NEGCNT, R */ /* DOUBLE PRECISION GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID, */ /* $ RQCORR, ZTZ */ /* INTEGER ISUPPZ( * ) */ /* DOUBLE PRECISION D( * ), L( * ), LD( * ), LLD( * ), */ /* $ WORK( * ) */ /* DOUBLE PRECISION Z( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLAR1V computes the (scaled) r-th column of the inverse of */ /* > the sumbmatrix in rows B1 through BN of the tridiagonal matrix */ /* > L D L**T - sigma I. When sigma is close to an eigenvalue, the */ /* > computed vector is an accurate eigenvector. Usually, r corresponds */ /* > to the index where the eigenvector is largest in magnitude. */ /* > The following steps accomplish this computation : */ /* > (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T, */ /* > (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T, */ /* > (c) Computation of the diagonal elements of the inverse of */ /* > L D L**T - sigma I by combining the above transforms, and choosing */ /* > r as the index where the diagonal of the inverse is (one of the) */ /* > largest in magnitude. */ /* > (d) Computation of the (scaled) r-th column of the inverse using the */ /* > twisted factorization obtained by combining the top part of the */ /* > the stationary and the bottom part of the progressive transform. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix L D L**T. */ /* > \endverbatim */ /* > */ /* > \param[in] B1 */ /* > \verbatim */ /* > B1 is INTEGER */ /* > First index of the submatrix of L D L**T. */ /* > \endverbatim */ /* > */ /* > \param[in] BN */ /* > \verbatim */ /* > BN is INTEGER */ /* > Last index of the submatrix of L D L**T. */ /* > \endverbatim */ /* > */ /* > \param[in] LAMBDA */ /* > \verbatim */ /* > LAMBDA is DOUBLE PRECISION */ /* > The shift. In order to compute an accurate eigenvector, */ /* > LAMBDA should be a good approximation to an eigenvalue */ /* > of L D L**T. */ /* > \endverbatim */ /* > */ /* > \param[in] L */ /* > \verbatim */ /* > L is DOUBLE PRECISION array, dimension (N-1) */ /* > The (n-1) subdiagonal elements of the unit bidiagonal matrix */ /* > L, in elements 1 to N-1. */ /* > \endverbatim */ /* > */ /* > \param[in] D */ /* > \verbatim */ /* > D is DOUBLE PRECISION array, dimension (N) */ /* > The n diagonal elements of the diagonal matrix D. */ /* > \endverbatim */ /* > */ /* > \param[in] LD */ /* > \verbatim */ /* > LD is DOUBLE PRECISION array, dimension (N-1) */ /* > The n-1 elements L(i)*D(i). */ /* > \endverbatim */ /* > */ /* > \param[in] LLD */ /* > \verbatim */ /* > LLD is DOUBLE PRECISION array, dimension (N-1) */ /* > The n-1 elements L(i)*L(i)*D(i). */ /* > \endverbatim */ /* > */ /* > \param[in] PIVMIN */ /* > \verbatim */ /* > PIVMIN is DOUBLE PRECISION */ /* > The minimum pivot in the Sturm sequence. */ /* > \endverbatim */ /* > */ /* > \param[in] GAPTOL */ /* > \verbatim */ /* > GAPTOL is DOUBLE PRECISION */ /* > Tolerance that indicates when eigenvector entries are negligible */ /* > w.r.t. their contribution to the residual. */ /* > \endverbatim */ /* > */ /* > \param[in,out] Z */ /* > \verbatim */ /* > Z is DOUBLE PRECISION array, dimension (N) */ /* > On input, all entries of Z must be set to 0. */ /* > On output, Z contains the (scaled) r-th column of the */ /* > inverse. The scaling is such that Z(R) equals 1. */ /* > \endverbatim */ /* > */ /* > \param[in] WANTNC */ /* > \verbatim */ /* > WANTNC is LOGICAL */ /* > Specifies whether NEGCNT has to be computed. */ /* > \endverbatim */ /* > */ /* > \param[out] NEGCNT */ /* > \verbatim */ /* > NEGCNT is INTEGER */ /* > If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin */ /* > in the matrix factorization L D L**T, and NEGCNT = -1 otherwise. */ /* > \endverbatim */ /* > */ /* > \param[out] ZTZ */ /* > \verbatim */ /* > ZTZ is DOUBLE PRECISION */ /* > The square of the 2-norm of Z. */ /* > \endverbatim */ /* > */ /* > \param[out] MINGMA */ /* > \verbatim */ /* > MINGMA is DOUBLE PRECISION */ /* > The reciprocal of the largest (in magnitude) diagonal */ /* > element of the inverse of L D L**T - sigma I. */ /* > \endverbatim */ /* > */ /* > \param[in,out] R */ /* > \verbatim */ /* > R is INTEGER */ /* > The twist index for the twisted factorization used to */ /* > compute Z. */ /* > On input, 0 <= R <= N. If R is input as 0, R is set to */ /* > the index where (L D L**T - sigma I)^{-1} is largest */ /* > in magnitude. If 1 <= R <= N, R is unchanged. */ /* > On output, R contains the twist index used to compute Z. */ /* > Ideally, R designates the position of the maximum entry in the */ /* > eigenvector. */ /* > \endverbatim */ /* > */ /* > \param[out] ISUPPZ */ /* > \verbatim */ /* > ISUPPZ is INTEGER array, dimension (2) */ /* > The support of the vector in Z, i.e., the vector Z is */ /* > nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ). */ /* > \endverbatim */ /* > */ /* > \param[out] NRMINV */ /* > \verbatim */ /* > NRMINV is DOUBLE PRECISION */ /* > NRMINV = 1/SQRT( ZTZ ) */ /* > \endverbatim */ /* > */ /* > \param[out] RESID */ /* > \verbatim */ /* > RESID is DOUBLE PRECISION */ /* > The residual of the FP vector. */ /* > RESID = ABS( MINGMA )/SQRT( ZTZ ) */ /* > \endverbatim */ /* > */ /* > \param[out] RQCORR */ /* > \verbatim */ /* > RQCORR is DOUBLE PRECISION */ /* > The Rayleigh Quotient correction to LAMBDA. */ /* > RQCORR = MINGMA*TMP */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension (4*N) */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup doubleOTHERauxiliary */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Beresford Parlett, University of California, Berkeley, USA \n */ /* > Jim Demmel, University of California, Berkeley, USA \n */ /* > Inderjit Dhillon, University of Texas, Austin, USA \n */ /* > Osni Marques, LBNL/NERSC, USA \n */ /* > Christof Voemel, University of California, Berkeley, USA */ /* ===================================================================== */ /* Subroutine */ int dlar1v_(integer *n, integer *b1, integer *bn, doublereal *lambda, doublereal *d__, doublereal *l, doublereal *ld, doublereal * lld, doublereal *pivmin, doublereal *gaptol, doublereal *z__, logical *wantnc, integer *negcnt, doublereal *ztz, doublereal *mingma, integer *r__, integer *isuppz, doublereal *nrminv, doublereal *resid, doublereal *rqcorr, doublereal *work) { /* System generated locals */ integer i__1; doublereal d__1, d__2, d__3; /* Local variables */ integer indp, inds, i__; doublereal s, dplus; integer r1, r2; extern doublereal dlamch_(char *); extern logical disnan_(doublereal *); integer indlpl, indumn; doublereal dminus; logical sawnan1, sawnan2; doublereal eps, tmp; integer neg1, neg2; /* -- LAPACK auxiliary routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Parameter adjustments */ --work; --isuppz; --z__; --lld; --ld; --l; --d__; /* Function Body */ eps = dlamch_("Precision"); if (*r__ == 0) { r1 = *b1; r2 = *bn; } else { r1 = *r__; r2 = *r__; } /* Storage for LPLUS */ indlpl = 0; /* Storage for UMINUS */ indumn = *n; inds = (*n << 1) + 1; indp = *n * 3 + 1; if (*b1 == 1) { work[inds] = 0.; } else { work[inds + *b1 - 1] = lld[*b1 - 1]; } /* Compute the stationary transform (using the differential form) */ /* until the index R2. */ sawnan1 = FALSE_; neg1 = 0; s = work[inds + *b1 - 1] - *lambda; i__1 = r1 - 1; for (i__ = *b1; i__ <= i__1; ++i__) { dplus = d__[i__] + s; work[indlpl + i__] = ld[i__] / dplus; if (dplus < 0.) { ++neg1; } work[inds + i__] = s * work[indlpl + i__] * l[i__]; s = work[inds + i__] - *lambda; /* L50: */ } sawnan1 = disnan_(&s); if (sawnan1) { goto L60; } i__1 = r2 - 1; for (i__ = r1; i__ <= i__1; ++i__) { dplus = d__[i__] + s; work[indlpl + i__] = ld[i__] / dplus; work[inds + i__] = s * work[indlpl + i__] * l[i__]; s = work[inds + i__] - *lambda; /* L51: */ } sawnan1 = disnan_(&s); L60: if (sawnan1) { /* Runs a slower version of the above loop if a NaN is detected */ neg1 = 0; s = work[inds + *b1 - 1] - *lambda; i__1 = r1 - 1; for (i__ = *b1; i__ <= i__1; ++i__) { dplus = d__[i__] + s; if (abs(dplus) < *pivmin) { dplus = -(*pivmin); } work[indlpl + i__] = ld[i__] / dplus; if (dplus < 0.) { ++neg1; } work[inds + i__] = s * work[indlpl + i__] * l[i__]; if (work[indlpl + i__] == 0.) { work[inds + i__] = lld[i__]; } s = work[inds + i__] - *lambda; /* L70: */ } i__1 = r2 - 1; for (i__ = r1; i__ <= i__1; ++i__) { dplus = d__[i__] + s; if (abs(dplus) < *pivmin) { dplus = -(*pivmin); } work[indlpl + i__] = ld[i__] / dplus; work[inds + i__] = s * work[indlpl + i__] * l[i__]; if (work[indlpl + i__] == 0.) { work[inds + i__] = lld[i__]; } s = work[inds + i__] - *lambda; /* L71: */ } } /* Compute the progressive transform (using the differential form) */ /* until the index R1 */ sawnan2 = FALSE_; neg2 = 0; work[indp + *bn - 1] = d__[*bn] - *lambda; i__1 = r1; for (i__ = *bn - 1; i__ >= i__1; --i__) { dminus = lld[i__] + work[indp + i__]; tmp = d__[i__] / dminus; if (dminus < 0.) { ++neg2; } work[indumn + i__] = l[i__] * tmp; work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda; /* L80: */ } tmp = work[indp + r1 - 1]; sawnan2 = disnan_(&tmp); if (sawnan2) { /* Runs a slower version of the above loop if a NaN is detected */ neg2 = 0; i__1 = r1; for (i__ = *bn - 1; i__ >= i__1; --i__) { dminus = lld[i__] + work[indp + i__]; if (abs(dminus) < *pivmin) { dminus = -(*pivmin); } tmp = d__[i__] / dminus; if (dminus < 0.) { ++neg2; } work[indumn + i__] = l[i__] * tmp; work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda; if (tmp == 0.) { work[indp + i__ - 1] = d__[i__] - *lambda; } /* L100: */ } } /* Find the index (from R1 to R2) of the largest (in magnitude) */ /* diagonal element of the inverse */ *mingma = work[inds + r1 - 1] + work[indp + r1 - 1]; if (*mingma < 0.) { ++neg1; } if (*wantnc) { *negcnt = neg1 + neg2; } else { *negcnt = -1; } if (abs(*mingma) == 0.) { *mingma = eps * work[inds + r1 - 1]; } *r__ = r1; i__1 = r2 - 1; for (i__ = r1; i__ <= i__1; ++i__) { tmp = work[inds + i__] + work[indp + i__]; if (tmp == 0.) { tmp = eps * work[inds + i__]; } if (abs(tmp) <= abs(*mingma)) { *mingma = tmp; *r__ = i__ + 1; } /* L110: */ } /* Compute the FP vector: solve N^T v = e_r */ isuppz[1] = *b1; isuppz[2] = *bn; z__[*r__] = 1.; *ztz = 1.; /* Compute the FP vector upwards from R */ if (! sawnan1 && ! sawnan2) { i__1 = *b1; for (i__ = *r__ - 1; i__ >= i__1; --i__) { z__[i__] = -(work[indlpl + i__] * z__[i__ + 1]); if (((d__1 = z__[i__], abs(d__1)) + (d__2 = z__[i__ + 1], abs( d__2))) * (d__3 = ld[i__], abs(d__3)) < *gaptol) { z__[i__] = 0.; isuppz[1] = i__ + 1; goto L220; } *ztz += z__[i__] * z__[i__]; /* L210: */ } L220: ; } else { /* Run slower loop if NaN occurred. */ i__1 = *b1; for (i__ = *r__ - 1; i__ >= i__1; --i__) { if (z__[i__ + 1] == 0.) { z__[i__] = -(ld[i__ + 1] / ld[i__]) * z__[i__ + 2]; } else { z__[i__] = -(work[indlpl + i__] * z__[i__ + 1]); } if (((d__1 = z__[i__], abs(d__1)) + (d__2 = z__[i__ + 1], abs( d__2))) * (d__3 = ld[i__], abs(d__3)) < *gaptol) { z__[i__] = 0.; isuppz[1] = i__ + 1; goto L240; } *ztz += z__[i__] * z__[i__]; /* L230: */ } L240: ; } /* Compute the FP vector downwards from R in blocks of size BLKSIZ */ if (! sawnan1 && ! sawnan2) { i__1 = *bn - 1; for (i__ = *r__; i__ <= i__1; ++i__) { z__[i__ + 1] = -(work[indumn + i__] * z__[i__]); if (((d__1 = z__[i__], abs(d__1)) + (d__2 = z__[i__ + 1], abs( d__2))) * (d__3 = ld[i__], abs(d__3)) < *gaptol) { z__[i__ + 1] = 0.; isuppz[2] = i__; goto L260; } *ztz += z__[i__ + 1] * z__[i__ + 1]; /* L250: */ } L260: ; } else { /* Run slower loop if NaN occurred. */ i__1 = *bn - 1; for (i__ = *r__; i__ <= i__1; ++i__) { if (z__[i__] == 0.) { z__[i__ + 1] = -(ld[i__ - 1] / ld[i__]) * z__[i__ - 1]; } else { z__[i__ + 1] = -(work[indumn + i__] * z__[i__]); } if (((d__1 = z__[i__], abs(d__1)) + (d__2 = z__[i__ + 1], abs( d__2))) * (d__3 = ld[i__], abs(d__3)) < *gaptol) { z__[i__ + 1] = 0.; isuppz[2] = i__; goto L280; } *ztz += z__[i__ + 1] * z__[i__ + 1]; /* L270: */ } L280: ; } /* Compute quantities for convergence test */ tmp = 1. / *ztz; *nrminv = sqrt(tmp); *resid = abs(*mingma) * *nrminv; *rqcorr = *mingma * tmp; return 0; /* End of DLAR1V */ } /* dlar1v_ */