#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b DLARUV returns a vector of n random real numbers from a uniform distribution. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLARUV + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLARUV( ISEED, N, X ) */ /* INTEGER N */ /* INTEGER ISEED( 4 ) */ /* DOUBLE PRECISION X( N ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLARUV returns a vector of n random real numbers from a uniform (0,1) */ /* > distribution (n <= 128). */ /* > */ /* > This is an auxiliary routine called by DLARNV and ZLARNV. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in,out] ISEED */ /* > \verbatim */ /* > ISEED is INTEGER array, dimension (4) */ /* > On entry, the seed of the random number generator; the array */ /* > elements must be between 0 and 4095, and ISEED(4) must be */ /* > odd. */ /* > On exit, the seed is updated. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of random numbers to be generated. N <= 128. */ /* > \endverbatim */ /* > */ /* > \param[out] X */ /* > \verbatim */ /* > X is DOUBLE PRECISION array, dimension (N) */ /* > The generated random numbers. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup OTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > This routine uses a multiplicative congruential method with modulus */ /* > 2**48 and multiplier 33952834046453 (see G.S.Fishman, */ /* > 'Multiplicative congruential random number generators with modulus */ /* > 2**b: an exhaustive analysis for b = 32 and a partial analysis for */ /* > b = 48', Math. Comp. 189, pp 331-344, 1990). */ /* > */ /* > 48-bit integers are stored in 4 integer array elements with 12 bits */ /* > per element. Hence the routine is portable across machines with */ /* > integers of 32 bits or more. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int dlaruv_(integer *iseed, integer *n, doublereal *x) { /* Initialized data */ static integer mm[512] /* was [128][4] */ = { 494,2637,255,2008,1253, 3344,4084,1739,3143,3468,688,1657,1238,3166,1292,3422,1270,2016, 154,2862,697,1706,491,931,1444,444,3577,3944,2184,1661,3482,657, 3023,3618,1267,1828,164,3798,3087,2400,2870,3876,1905,1593,1797, 1234,3460,328,2861,1950,617,2070,3331,769,1558,2412,2800,189,287, 2045,1227,2838,209,2770,3654,3993,192,2253,3491,2889,2857,2094, 1818,688,1407,634,3231,815,3524,1914,516,164,303,2144,3480,119, 3357,837,2826,2332,2089,3780,1700,3712,150,2000,3375,1621,3090, 3765,1149,3146,33,3082,2741,359,3316,1749,185,2784,2202,2199,1364, 1244,2020,3160,2785,2772,1217,1822,1245,2252,3904,2774,997,2573, 1148,545,322,789,1440,752,2859,123,1848,643,2405,2638,2344,46, 3814,913,3649,339,3808,822,2832,3078,3633,2970,637,2249,2081,4019, 1478,242,481,2075,4058,622,3376,812,234,641,4005,1122,3135,2640, 2302,40,1832,2247,2034,2637,1287,1691,496,1597,2394,2584,1843,336, 1472,2407,433,2096,1761,2810,566,442,41,1238,1086,603,840,3168, 1499,1084,3438,2408,1589,2391,288,26,512,1456,171,1677,2657,2270, 2587,2961,1970,1817,676,1410,3723,2803,3185,184,663,499,3784,1631, 1925,3912,1398,1349,1441,2224,2411,1907,3192,2786,382,37,759,2948, 1862,3802,2423,2051,2295,1332,1832,2405,3638,3661,327,3660,716, 1842,3987,1368,1848,2366,2508,3754,1766,3572,2893,307,1297,3966, 758,2598,3406,2922,1038,2934,2091,2451,1580,1958,2055,1507,1078, 3273,17,854,2916,3971,2889,3831,2621,1541,893,736,3992,787,2125, 2364,2460,257,1574,3912,1216,3248,3401,2124,2762,149,2245,166,466, 4018,1399,190,2879,153,2320,18,712,2159,2318,2091,3443,1510,449, 1956,2201,3137,3399,1321,2271,3667,2703,629,2365,2431,1113,3922, 2554,184,2099,3228,4012,1921,3452,3901,572,3309,3171,817,3039, 1696,1256,3715,2077,3019,1497,1101,717,51,981,1978,1813,3881,76, 3846,3694,1682,124,1660,3997,479,1141,886,3514,1301,3604,1888, 1836,1990,2058,692,1194,20,3285,2046,2107,3508,3525,3801,2549, 1145,2253,305,3301,1065,3133,2913,3285,1241,1197,3729,2501,1673, 541,2753,949,2361,1165,4081,2725,3305,3069,3617,3733,409,2157, 1361,3973,1865,2525,1409,3445,3577,77,3761,2149,1449,3005,225,85, 3673,3117,3089,1349,2057,413,65,1845,697,3085,3441,1573,3689,2941, 929,533,2841,4077,721,2821,2249,2397,2817,245,1913,1997,3121,997, 1833,2877,1633,981,2009,941,2449,197,2441,285,1473,2741,3129,909, 2801,421,4073,2813,2337,1429,1177,1901,81,1669,2633,2269,129,1141, 249,3917,2481,3941,2217,2749,3041,1877,345,2861,1809,3141,2825, 157,2881,3637,1465,2829,2161,3365,361,2685,3745,2325,3609,3821, 3537,517,3017,2141,1537 }; /* System generated locals */ integer i__1; /* Local variables */ integer i__, i1, i2, i3, i4, it1, it2, it3, it4; /* -- LAPACK auxiliary routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Parameter adjustments */ --iseed; --x; /* Function Body */ i1 = iseed[1]; i2 = iseed[2]; i3 = iseed[3]; i4 = iseed[4]; i__1 = f2cmin(*n,128); for (i__ = 1; i__ <= i__1; ++i__) { L20: /* Multiply the seed by i-th power of the multiplier modulo 2**48 */ it4 = i4 * mm[i__ + 383]; it3 = it4 / 4096; it4 -= it3 << 12; it3 = it3 + i3 * mm[i__ + 383] + i4 * mm[i__ + 255]; it2 = it3 / 4096; it3 -= it2 << 12; it2 = it2 + i2 * mm[i__ + 383] + i3 * mm[i__ + 255] + i4 * mm[i__ + 127]; it1 = it2 / 4096; it2 -= it1 << 12; it1 = it1 + i1 * mm[i__ + 383] + i2 * mm[i__ + 255] + i3 * mm[i__ + 127] + i4 * mm[i__ - 1]; it1 %= 4096; /* Convert 48-bit integer to a real number in the interval (0,1) */ x[i__] = ((doublereal) it1 + ((doublereal) it2 + ((doublereal) it3 + ( doublereal) it4 * 2.44140625e-4) * 2.44140625e-4) * 2.44140625e-4) * 2.44140625e-4; if (x[i__] == 1.) { /* If a real number has n bits of precision, and the first */ /* n bits of the 48-bit integer above happen to be all 1 (which */ /* will occur about once every 2**n calls), then X( I ) will */ /* be rounded to exactly 1.0. */ /* Since X( I ) is not supposed to return exactly 0.0 or 1.0, */ /* the statistically correct thing to do in this situation is */ /* simply to iterate again. */ /* N.B. the case X( I ) = 0.0 should not be possible. */ i1 += 2; i2 += 2; i3 += 2; i4 += 2; goto L20; } /* L10: */ } /* Return final value of seed */ iseed[1] = it1; iseed[2] = it2; iseed[3] = it3; iseed[4] = it4; return 0; /* End of DLARUV */ } /* dlaruv_ */