#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b DLASD7 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. Used by sbdsdc. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLASD7 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL, */ /* VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ, */ /* PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, */ /* C, S, INFO ) */ /* INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL, */ /* $ NR, SQRE */ /* DOUBLE PRECISION ALPHA, BETA, C, S */ /* INTEGER GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ), */ /* $ IDXQ( * ), PERM( * ) */ /* DOUBLE PRECISION D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ), */ /* $ VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ), */ /* $ ZW( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLASD7 merges the two sets of singular values together into a single */ /* > sorted set. Then it tries to deflate the size of the problem. There */ /* > are two ways in which deflation can occur: when two or more singular */ /* > values are close together or if there is a tiny entry in the Z */ /* > vector. For each such occurrence the order of the related */ /* > secular equation problem is reduced by one. */ /* > */ /* > DLASD7 is called from DLASD6. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] ICOMPQ */ /* > \verbatim */ /* > ICOMPQ is INTEGER */ /* > Specifies whether singular vectors are to be computed */ /* > in compact form, as follows: */ /* > = 0: Compute singular values only. */ /* > = 1: Compute singular vectors of upper */ /* > bidiagonal matrix in compact form. */ /* > \endverbatim */ /* > */ /* > \param[in] NL */ /* > \verbatim */ /* > NL is INTEGER */ /* > The row dimension of the upper block. NL >= 1. */ /* > \endverbatim */ /* > */ /* > \param[in] NR */ /* > \verbatim */ /* > NR is INTEGER */ /* > The row dimension of the lower block. NR >= 1. */ /* > \endverbatim */ /* > */ /* > \param[in] SQRE */ /* > \verbatim */ /* > SQRE is INTEGER */ /* > = 0: the lower block is an NR-by-NR square matrix. */ /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */ /* > */ /* > The bidiagonal matrix has */ /* > N = NL + NR + 1 rows and */ /* > M = N + SQRE >= N columns. */ /* > \endverbatim */ /* > */ /* > \param[out] K */ /* > \verbatim */ /* > K is INTEGER */ /* > Contains the dimension of the non-deflated matrix, this is */ /* > the order of the related secular equation. 1 <= K <=N. */ /* > \endverbatim */ /* > */ /* > \param[in,out] D */ /* > \verbatim */ /* > D is DOUBLE PRECISION array, dimension ( N ) */ /* > On entry D contains the singular values of the two submatrices */ /* > to be combined. On exit D contains the trailing (N-K) updated */ /* > singular values (those which were deflated) sorted into */ /* > increasing order. */ /* > \endverbatim */ /* > */ /* > \param[out] Z */ /* > \verbatim */ /* > Z is DOUBLE PRECISION array, dimension ( M ) */ /* > On exit Z contains the updating row vector in the secular */ /* > equation. */ /* > \endverbatim */ /* > */ /* > \param[out] ZW */ /* > \verbatim */ /* > ZW is DOUBLE PRECISION array, dimension ( M ) */ /* > Workspace for Z. */ /* > \endverbatim */ /* > */ /* > \param[in,out] VF */ /* > \verbatim */ /* > VF is DOUBLE PRECISION array, dimension ( M ) */ /* > On entry, VF(1:NL+1) contains the first components of all */ /* > right singular vectors of the upper block; and VF(NL+2:M) */ /* > contains the first components of all right singular vectors */ /* > of the lower block. On exit, VF contains the first components */ /* > of all right singular vectors of the bidiagonal matrix. */ /* > \endverbatim */ /* > */ /* > \param[out] VFW */ /* > \verbatim */ /* > VFW is DOUBLE PRECISION array, dimension ( M ) */ /* > Workspace for VF. */ /* > \endverbatim */ /* > */ /* > \param[in,out] VL */ /* > \verbatim */ /* > VL is DOUBLE PRECISION array, dimension ( M ) */ /* > On entry, VL(1:NL+1) contains the last components of all */ /* > right singular vectors of the upper block; and VL(NL+2:M) */ /* > contains the last components of all right singular vectors */ /* > of the lower block. On exit, VL contains the last components */ /* > of all right singular vectors of the bidiagonal matrix. */ /* > \endverbatim */ /* > */ /* > \param[out] VLW */ /* > \verbatim */ /* > VLW is DOUBLE PRECISION array, dimension ( M ) */ /* > Workspace for VL. */ /* > \endverbatim */ /* > */ /* > \param[in] ALPHA */ /* > \verbatim */ /* > ALPHA is DOUBLE PRECISION */ /* > Contains the diagonal element associated with the added row. */ /* > \endverbatim */ /* > */ /* > \param[in] BETA */ /* > \verbatim */ /* > BETA is DOUBLE PRECISION */ /* > Contains the off-diagonal element associated with the added */ /* > row. */ /* > \endverbatim */ /* > */ /* > \param[out] DSIGMA */ /* > \verbatim */ /* > DSIGMA is DOUBLE PRECISION array, dimension ( N ) */ /* > Contains a copy of the diagonal elements (K-1 singular values */ /* > and one zero) in the secular equation. */ /* > \endverbatim */ /* > */ /* > \param[out] IDX */ /* > \verbatim */ /* > IDX is INTEGER array, dimension ( N ) */ /* > This will contain the permutation used to sort the contents of */ /* > D into ascending order. */ /* > \endverbatim */ /* > */ /* > \param[out] IDXP */ /* > \verbatim */ /* > IDXP is INTEGER array, dimension ( N ) */ /* > This will contain the permutation used to place deflated */ /* > values of D at the end of the array. On output IDXP(2:K) */ /* > points to the nondeflated D-values and IDXP(K+1:N) */ /* > points to the deflated singular values. */ /* > \endverbatim */ /* > */ /* > \param[in] IDXQ */ /* > \verbatim */ /* > IDXQ is INTEGER array, dimension ( N ) */ /* > This contains the permutation which separately sorts the two */ /* > sub-problems in D into ascending order. Note that entries in */ /* > the first half of this permutation must first be moved one */ /* > position backward; and entries in the second half */ /* > must first have NL+1 added to their values. */ /* > \endverbatim */ /* > */ /* > \param[out] PERM */ /* > \verbatim */ /* > PERM is INTEGER array, dimension ( N ) */ /* > The permutations (from deflation and sorting) to be applied */ /* > to each singular block. Not referenced if ICOMPQ = 0. */ /* > \endverbatim */ /* > */ /* > \param[out] GIVPTR */ /* > \verbatim */ /* > GIVPTR is INTEGER */ /* > The number of Givens rotations which took place in this */ /* > subproblem. Not referenced if ICOMPQ = 0. */ /* > \endverbatim */ /* > */ /* > \param[out] GIVCOL */ /* > \verbatim */ /* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */ /* > Each pair of numbers indicates a pair of columns to take place */ /* > in a Givens rotation. Not referenced if ICOMPQ = 0. */ /* > \endverbatim */ /* > */ /* > \param[in] LDGCOL */ /* > \verbatim */ /* > LDGCOL is INTEGER */ /* > The leading dimension of GIVCOL, must be at least N. */ /* > \endverbatim */ /* > */ /* > \param[out] GIVNUM */ /* > \verbatim */ /* > GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */ /* > Each number indicates the C or S value to be used in the */ /* > corresponding Givens rotation. Not referenced if ICOMPQ = 0. */ /* > \endverbatim */ /* > */ /* > \param[in] LDGNUM */ /* > \verbatim */ /* > LDGNUM is INTEGER */ /* > The leading dimension of GIVNUM, must be at least N. */ /* > \endverbatim */ /* > */ /* > \param[out] C */ /* > \verbatim */ /* > C is DOUBLE PRECISION */ /* > C contains garbage if SQRE =0 and the C-value of a Givens */ /* > rotation related to the right null space if SQRE = 1. */ /* > \endverbatim */ /* > */ /* > \param[out] S */ /* > \verbatim */ /* > S is DOUBLE PRECISION */ /* > S contains garbage if SQRE =0 and the S-value of a Givens */ /* > rotation related to the right null space if SQRE = 1. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit. */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup OTHERauxiliary */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Ming Gu and Huan Ren, Computer Science Division, University of */ /* > California at Berkeley, USA */ /* > */ /* ===================================================================== */ /* Subroutine */ int dlasd7_(integer *icompq, integer *nl, integer *nr, integer *sqre, integer *k, doublereal *d__, doublereal *z__, doublereal *zw, doublereal *vf, doublereal *vfw, doublereal *vl, doublereal *vlw, doublereal *alpha, doublereal *beta, doublereal * dsigma, integer *idx, integer *idxp, integer *idxq, integer *perm, integer *givptr, integer *givcol, integer *ldgcol, doublereal *givnum, integer *ldgnum, doublereal *c__, doublereal *s, integer *info) { /* System generated locals */ integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1; doublereal d__1, d__2; /* Local variables */ integer idxi, idxj; extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); integer i__, j, m, n, idxjp; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); integer jprev, k2; doublereal z1; extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *); integer jp; extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, integer *, integer *, integer *), xerbla_(char *, integer *, ftnlen); doublereal hlftol, eps, tau, tol; integer nlp1, nlp2; /* -- LAPACK auxiliary routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; --z__; --zw; --vf; --vfw; --vl; --vlw; --dsigma; --idx; --idxp; --idxq; --perm; givcol_dim1 = *ldgcol; givcol_offset = 1 + givcol_dim1 * 1; givcol -= givcol_offset; givnum_dim1 = *ldgnum; givnum_offset = 1 + givnum_dim1 * 1; givnum -= givnum_offset; /* Function Body */ *info = 0; n = *nl + *nr + 1; m = n + *sqre; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*nl < 1) { *info = -2; } else if (*nr < 1) { *info = -3; } else if (*sqre < 0 || *sqre > 1) { *info = -4; } else if (*ldgcol < n) { *info = -22; } else if (*ldgnum < n) { *info = -24; } if (*info != 0) { i__1 = -(*info); xerbla_("DLASD7", &i__1, (ftnlen)6); return 0; } nlp1 = *nl + 1; nlp2 = *nl + 2; if (*icompq == 1) { *givptr = 0; } /* Generate the first part of the vector Z and move the singular */ /* values in the first part of D one position backward. */ z1 = *alpha * vl[nlp1]; vl[nlp1] = 0.; tau = vf[nlp1]; for (i__ = *nl; i__ >= 1; --i__) { z__[i__ + 1] = *alpha * vl[i__]; vl[i__] = 0.; vf[i__ + 1] = vf[i__]; d__[i__ + 1] = d__[i__]; idxq[i__ + 1] = idxq[i__] + 1; /* L10: */ } vf[1] = tau; /* Generate the second part of the vector Z. */ i__1 = m; for (i__ = nlp2; i__ <= i__1; ++i__) { z__[i__] = *beta * vf[i__]; vf[i__] = 0.; /* L20: */ } /* Sort the singular values into increasing order */ i__1 = n; for (i__ = nlp2; i__ <= i__1; ++i__) { idxq[i__] += nlp1; /* L30: */ } /* DSIGMA, IDXC, IDXC, and ZW are used as storage space. */ i__1 = n; for (i__ = 2; i__ <= i__1; ++i__) { dsigma[i__] = d__[idxq[i__]]; zw[i__] = z__[idxq[i__]]; vfw[i__] = vf[idxq[i__]]; vlw[i__] = vl[idxq[i__]]; /* L40: */ } dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]); i__1 = n; for (i__ = 2; i__ <= i__1; ++i__) { idxi = idx[i__] + 1; d__[i__] = dsigma[idxi]; z__[i__] = zw[idxi]; vf[i__] = vfw[idxi]; vl[i__] = vlw[idxi]; /* L50: */ } /* Calculate the allowable deflation tolerance */ eps = dlamch_("Epsilon"); /* Computing MAX */ d__1 = abs(*alpha), d__2 = abs(*beta); tol = f2cmax(d__1,d__2); /* Computing MAX */ d__2 = (d__1 = d__[n], abs(d__1)); tol = eps * 64. * f2cmax(d__2,tol); /* There are 2 kinds of deflation -- first a value in the z-vector */ /* is small, second two (or more) singular values are very close */ /* together (their difference is small). */ /* If the value in the z-vector is small, we simply permute the */ /* array so that the corresponding singular value is moved to the */ /* end. */ /* If two values in the D-vector are close, we perform a two-sided */ /* rotation designed to make one of the corresponding z-vector */ /* entries zero, and then permute the array so that the deflated */ /* singular value is moved to the end. */ /* If there are multiple singular values then the problem deflates. */ /* Here the number of equal singular values are found. As each equal */ /* singular value is found, an elementary reflector is computed to */ /* rotate the corresponding singular subspace so that the */ /* corresponding components of Z are zero in this new basis. */ *k = 1; k2 = n + 1; i__1 = n; for (j = 2; j <= i__1; ++j) { if ((d__1 = z__[j], abs(d__1)) <= tol) { /* Deflate due to small z component. */ --k2; idxp[k2] = j; if (j == n) { goto L100; } } else { jprev = j; goto L70; } /* L60: */ } L70: j = jprev; L80: ++j; if (j > n) { goto L90; } if ((d__1 = z__[j], abs(d__1)) <= tol) { /* Deflate due to small z component. */ --k2; idxp[k2] = j; } else { /* Check if singular values are close enough to allow deflation. */ if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) { /* Deflation is possible. */ *s = z__[jprev]; *c__ = z__[j]; /* Find sqrt(a**2+b**2) without overflow or */ /* destructive underflow. */ tau = dlapy2_(c__, s); z__[j] = tau; z__[jprev] = 0.; *c__ /= tau; *s = -(*s) / tau; /* Record the appropriate Givens rotation */ if (*icompq == 1) { ++(*givptr); idxjp = idxq[idx[jprev] + 1]; idxj = idxq[idx[j] + 1]; if (idxjp <= nlp1) { --idxjp; } if (idxj <= nlp1) { --idxj; } givcol[*givptr + (givcol_dim1 << 1)] = idxjp; givcol[*givptr + givcol_dim1] = idxj; givnum[*givptr + (givnum_dim1 << 1)] = *c__; givnum[*givptr + givnum_dim1] = *s; } drot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s); drot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s); --k2; idxp[k2] = jprev; jprev = j; } else { ++(*k); zw[*k] = z__[jprev]; dsigma[*k] = d__[jprev]; idxp[*k] = jprev; jprev = j; } } goto L80; L90: /* Record the last singular value. */ ++(*k); zw[*k] = z__[jprev]; dsigma[*k] = d__[jprev]; idxp[*k] = jprev; L100: /* Sort the singular values into DSIGMA. The singular values which */ /* were not deflated go into the first K slots of DSIGMA, except */ /* that DSIGMA(1) is treated separately. */ i__1 = n; for (j = 2; j <= i__1; ++j) { jp = idxp[j]; dsigma[j] = d__[jp]; vfw[j] = vf[jp]; vlw[j] = vl[jp]; /* L110: */ } if (*icompq == 1) { i__1 = n; for (j = 2; j <= i__1; ++j) { jp = idxp[j]; perm[j] = idxq[idx[jp] + 1]; if (perm[j] <= nlp1) { --perm[j]; } /* L120: */ } } /* The deflated singular values go back into the last N - K slots of */ /* D. */ i__1 = n - *k; dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1); /* Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and */ /* VL(M). */ dsigma[1] = 0.; hlftol = tol / 2.; if (abs(dsigma[2]) <= hlftol) { dsigma[2] = hlftol; } if (m > n) { z__[1] = dlapy2_(&z1, &z__[m]); if (z__[1] <= tol) { *c__ = 1.; *s = 0.; z__[1] = tol; } else { *c__ = z1 / z__[1]; *s = -z__[m] / z__[1]; } drot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s); drot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s); } else { if (abs(z1) <= tol) { z__[1] = tol; } else { z__[1] = z1; } } /* Restore Z, VF, and VL. */ i__1 = *k - 1; dcopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1); i__1 = n - 1; dcopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1); i__1 = n - 1; dcopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1); return 0; /* End of DLASD7 */ } /* dlasd7_ */