#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b DLASD8 finds the square roots of the roots of the secular equation, and stores, for each elemen t in D, the distance to its two nearest poles. Used by sbdsdc. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLASD8 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR, */ /* DSIGMA, WORK, INFO ) */ /* INTEGER ICOMPQ, INFO, K, LDDIFR */ /* DOUBLE PRECISION D( * ), DIFL( * ), DIFR( LDDIFR, * ), */ /* $ DSIGMA( * ), VF( * ), VL( * ), WORK( * ), */ /* $ Z( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLASD8 finds the square roots of the roots of the secular equation, */ /* > as defined by the values in DSIGMA and Z. It makes the appropriate */ /* > calls to DLASD4, and stores, for each element in D, the distance */ /* > to its two nearest poles (elements in DSIGMA). It also updates */ /* > the arrays VF and VL, the first and last components of all the */ /* > right singular vectors of the original bidiagonal matrix. */ /* > */ /* > DLASD8 is called from DLASD6. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] ICOMPQ */ /* > \verbatim */ /* > ICOMPQ is INTEGER */ /* > Specifies whether singular vectors are to be computed in */ /* > factored form in the calling routine: */ /* > = 0: Compute singular values only. */ /* > = 1: Compute singular vectors in factored form as well. */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > The number of terms in the rational function to be solved */ /* > by DLASD4. K >= 1. */ /* > \endverbatim */ /* > */ /* > \param[out] D */ /* > \verbatim */ /* > D is DOUBLE PRECISION array, dimension ( K ) */ /* > On output, D contains the updated singular values. */ /* > \endverbatim */ /* > */ /* > \param[in,out] Z */ /* > \verbatim */ /* > Z is DOUBLE PRECISION array, dimension ( K ) */ /* > On entry, the first K elements of this array contain the */ /* > components of the deflation-adjusted updating row vector. */ /* > On exit, Z is updated. */ /* > \endverbatim */ /* > */ /* > \param[in,out] VF */ /* > \verbatim */ /* > VF is DOUBLE PRECISION array, dimension ( K ) */ /* > On entry, VF contains information passed through DBEDE8. */ /* > On exit, VF contains the first K components of the first */ /* > components of all right singular vectors of the bidiagonal */ /* > matrix. */ /* > \endverbatim */ /* > */ /* > \param[in,out] VL */ /* > \verbatim */ /* > VL is DOUBLE PRECISION array, dimension ( K ) */ /* > On entry, VL contains information passed through DBEDE8. */ /* > On exit, VL contains the first K components of the last */ /* > components of all right singular vectors of the bidiagonal */ /* > matrix. */ /* > \endverbatim */ /* > */ /* > \param[out] DIFL */ /* > \verbatim */ /* > DIFL is DOUBLE PRECISION array, dimension ( K ) */ /* > On exit, DIFL(I) = D(I) - DSIGMA(I). */ /* > \endverbatim */ /* > */ /* > \param[out] DIFR */ /* > \verbatim */ /* > DIFR is DOUBLE PRECISION array, */ /* > dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and */ /* > dimension ( K ) if ICOMPQ = 0. */ /* > On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not */ /* > defined and will not be referenced. */ /* > */ /* > If ICOMPQ = 1, DIFR(1:K,2) is an array containing the */ /* > normalizing factors for the right singular vector matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] LDDIFR */ /* > \verbatim */ /* > LDDIFR is INTEGER */ /* > The leading dimension of DIFR, must be at least K. */ /* > \endverbatim */ /* > */ /* > \param[in,out] DSIGMA */ /* > \verbatim */ /* > DSIGMA is DOUBLE PRECISION array, dimension ( K ) */ /* > On entry, the first K elements of this array contain the old */ /* > roots of the deflated updating problem. These are the poles */ /* > of the secular equation. */ /* > On exit, the elements of DSIGMA may be very slightly altered */ /* > in value. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension (3*K) */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit. */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > > 0: if INFO = 1, a singular value did not converge */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date June 2017 */ /* > \ingroup OTHERauxiliary */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Ming Gu and Huan Ren, Computer Science Division, University of */ /* > California at Berkeley, USA */ /* > */ /* ===================================================================== */ /* Subroutine */ int dlasd8_(integer *icompq, integer *k, doublereal *d__, doublereal *z__, doublereal *vf, doublereal *vl, doublereal *difl, doublereal *difr, integer *lddifr, doublereal *dsigma, doublereal * work, integer *info) { /* System generated locals */ integer difr_dim1, difr_offset, i__1, i__2; doublereal d__1, d__2; /* Local variables */ extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); doublereal temp; extern doublereal dnrm2_(integer *, doublereal *, integer *); integer iwk2i, iwk3i, i__, j; doublereal diflj, difrj, dsigj; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); extern doublereal dlamc3_(doublereal *, doublereal *); extern /* Subroutine */ int dlasd4_(integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *); doublereal dj; extern /* Subroutine */ int dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *, ftnlen); doublereal dsigjp, rho; integer iwk1, iwk2, iwk3; /* -- LAPACK auxiliary routine (version 3.7.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* June 2017 */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; --z__; --vf; --vl; --difl; difr_dim1 = *lddifr; difr_offset = 1 + difr_dim1 * 1; difr -= difr_offset; --dsigma; --work; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*k < 1) { *info = -2; } else if (*lddifr < *k) { *info = -9; } if (*info != 0) { i__1 = -(*info); xerbla_("DLASD8", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*k == 1) { d__[1] = abs(z__[1]); difl[1] = d__[1]; if (*icompq == 1) { difl[2] = 1.; difr[(difr_dim1 << 1) + 1] = 1.; } return 0; } /* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */ /* be computed with high relative accuracy (barring over/underflow). */ /* This is a problem on machines without a guard digit in */ /* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */ /* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */ /* which on any of these machines zeros out the bottommost */ /* bit of DSIGMA(I) if it is 1; this makes the subsequent */ /* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */ /* occurs. On binary machines with a guard digit (almost all */ /* machines) it does not change DSIGMA(I) at all. On hexadecimal */ /* and decimal machines with a guard digit, it slightly */ /* changes the bottommost bits of DSIGMA(I). It does not account */ /* for hexadecimal or decimal machines without guard digits */ /* (we know of none). We use a subroutine call to compute */ /* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating */ /* this code. */ i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { dsigma[i__] = dlamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__]; /* L10: */ } /* Book keeping. */ iwk1 = 1; iwk2 = iwk1 + *k; iwk3 = iwk2 + *k; iwk2i = iwk2 - 1; iwk3i = iwk3 - 1; /* Normalize Z. */ rho = dnrm2_(k, &z__[1], &c__1); dlascl_("G", &c__0, &c__0, &rho, &c_b8, k, &c__1, &z__[1], k, info); rho *= rho; /* Initialize WORK(IWK3). */ dlaset_("A", k, &c__1, &c_b8, &c_b8, &work[iwk3], k); /* Compute the updated singular values, the arrays DIFL, DIFR, */ /* and the updated Z. */ i__1 = *k; for (j = 1; j <= i__1; ++j) { dlasd4_(k, &j, &dsigma[1], &z__[1], &work[iwk1], &rho, &d__[j], &work[ iwk2], info); /* If the root finder fails, report the convergence failure. */ if (*info != 0) { return 0; } work[iwk3i + j] = work[iwk3i + j] * work[j] * work[iwk2i + j]; difl[j] = -work[j]; difr[j + difr_dim1] = -work[j + 1]; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i + i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[ j]); /* L20: */ } i__2 = *k; for (i__ = j + 1; i__ <= i__2; ++i__) { work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i + i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[ j]); /* L30: */ } /* L40: */ } /* Compute updated Z. */ i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { d__2 = sqrt((d__1 = work[iwk3i + i__], abs(d__1))); z__[i__] = d_sign(&d__2, &z__[i__]); /* L50: */ } /* Update VF and VL. */ i__1 = *k; for (j = 1; j <= i__1; ++j) { diflj = difl[j]; dj = d__[j]; dsigj = -dsigma[j]; if (j < *k) { difrj = -difr[j + difr_dim1]; dsigjp = -dsigma[j + 1]; } work[j] = -z__[j] / diflj / (dsigma[j] + dj); i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { work[i__] = z__[i__] / (dlamc3_(&dsigma[i__], &dsigj) - diflj) / ( dsigma[i__] + dj); /* L60: */ } i__2 = *k; for (i__ = j + 1; i__ <= i__2; ++i__) { work[i__] = z__[i__] / (dlamc3_(&dsigma[i__], &dsigjp) + difrj) / (dsigma[i__] + dj); /* L70: */ } temp = dnrm2_(k, &work[1], &c__1); work[iwk2i + j] = ddot_(k, &work[1], &c__1, &vf[1], &c__1) / temp; work[iwk3i + j] = ddot_(k, &work[1], &c__1, &vl[1], &c__1) / temp; if (*icompq == 1) { difr[j + (difr_dim1 << 1)] = temp; } /* L80: */ } dcopy_(k, &work[iwk2], &c__1, &vf[1], &c__1); dcopy_(k, &work[iwk3], &c__1, &vl[1], &c__1); return 0; /* End of DLASD8 */ } /* dlasd8_ */