#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b DLASY2 solves the Sylvester matrix equation where the matrices are of order 1 or 2. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLASY2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR, */ /* LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO ) */ /* LOGICAL LTRANL, LTRANR */ /* INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2 */ /* DOUBLE PRECISION SCALE, XNORM */ /* DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ), */ /* $ X( LDX, * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in */ /* > */ /* > op(TL)*X + ISGN*X*op(TR) = SCALE*B, */ /* > */ /* > where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or */ /* > -1. op(T) = T or T**T, where T**T denotes the transpose of T. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] LTRANL */ /* > \verbatim */ /* > LTRANL is LOGICAL */ /* > On entry, LTRANL specifies the op(TL): */ /* > = .FALSE., op(TL) = TL, */ /* > = .TRUE., op(TL) = TL**T. */ /* > \endverbatim */ /* > */ /* > \param[in] LTRANR */ /* > \verbatim */ /* > LTRANR is LOGICAL */ /* > On entry, LTRANR specifies the op(TR): */ /* > = .FALSE., op(TR) = TR, */ /* > = .TRUE., op(TR) = TR**T. */ /* > \endverbatim */ /* > */ /* > \param[in] ISGN */ /* > \verbatim */ /* > ISGN is INTEGER */ /* > On entry, ISGN specifies the sign of the equation */ /* > as described before. ISGN may only be 1 or -1. */ /* > \endverbatim */ /* > */ /* > \param[in] N1 */ /* > \verbatim */ /* > N1 is INTEGER */ /* > On entry, N1 specifies the order of matrix TL. */ /* > N1 may only be 0, 1 or 2. */ /* > \endverbatim */ /* > */ /* > \param[in] N2 */ /* > \verbatim */ /* > N2 is INTEGER */ /* > On entry, N2 specifies the order of matrix TR. */ /* > N2 may only be 0, 1 or 2. */ /* > \endverbatim */ /* > */ /* > \param[in] TL */ /* > \verbatim */ /* > TL is DOUBLE PRECISION array, dimension (LDTL,2) */ /* > On entry, TL contains an N1 by N1 matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] LDTL */ /* > \verbatim */ /* > LDTL is INTEGER */ /* > The leading dimension of the matrix TL. LDTL >= f2cmax(1,N1). */ /* > \endverbatim */ /* > */ /* > \param[in] TR */ /* > \verbatim */ /* > TR is DOUBLE PRECISION array, dimension (LDTR,2) */ /* > On entry, TR contains an N2 by N2 matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] LDTR */ /* > \verbatim */ /* > LDTR is INTEGER */ /* > The leading dimension of the matrix TR. LDTR >= f2cmax(1,N2). */ /* > \endverbatim */ /* > */ /* > \param[in] B */ /* > \verbatim */ /* > B is DOUBLE PRECISION array, dimension (LDB,2) */ /* > On entry, the N1 by N2 matrix B contains the right-hand */ /* > side of the equation. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > The leading dimension of the matrix B. LDB >= f2cmax(1,N1). */ /* > \endverbatim */ /* > */ /* > \param[out] SCALE */ /* > \verbatim */ /* > SCALE is DOUBLE PRECISION */ /* > On exit, SCALE contains the scale factor. SCALE is chosen */ /* > less than or equal to 1 to prevent the solution overflowing. */ /* > \endverbatim */ /* > */ /* > \param[out] X */ /* > \verbatim */ /* > X is DOUBLE PRECISION array, dimension (LDX,2) */ /* > On exit, X contains the N1 by N2 solution. */ /* > \endverbatim */ /* > */ /* > \param[in] LDX */ /* > \verbatim */ /* > LDX is INTEGER */ /* > The leading dimension of the matrix X. LDX >= f2cmax(1,N1). */ /* > \endverbatim */ /* > */ /* > \param[out] XNORM */ /* > \verbatim */ /* > XNORM is DOUBLE PRECISION */ /* > On exit, XNORM is the infinity-norm of the solution. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > On exit, INFO is set to */ /* > 0: successful exit. */ /* > 1: TL and TR have too close eigenvalues, so TL or */ /* > TR is perturbed to get a nonsingular equation. */ /* > NOTE: In the interests of speed, this routine does not */ /* > check the inputs for errors. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date June 2016 */ /* > \ingroup doubleSYauxiliary */ /* ===================================================================== */ /* Subroutine */ int dlasy2_(logical *ltranl, logical *ltranr, integer *isgn, integer *n1, integer *n2, doublereal *tl, integer *ldtl, doublereal * tr, integer *ldtr, doublereal *b, integer *ldb, doublereal *scale, doublereal *x, integer *ldx, doublereal *xnorm, integer *info) { /* Initialized data */ static integer locu12[4] = { 3,4,1,2 }; static integer locl21[4] = { 2,1,4,3 }; static integer locu22[4] = { 4,3,2,1 }; static logical xswpiv[4] = { FALSE_,FALSE_,TRUE_,TRUE_ }; static logical bswpiv[4] = { FALSE_,TRUE_,FALSE_,TRUE_ }; /* System generated locals */ integer b_dim1, b_offset, tl_dim1, tl_offset, tr_dim1, tr_offset, x_dim1, x_offset; doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8; /* Local variables */ doublereal btmp[4], smin; integer ipiv; doublereal temp; integer jpiv[4]; doublereal xmax; integer ipsv, jpsv, i__, j, k; logical bswap; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), dswap_(integer *, doublereal *, integer *, doublereal *, integer *); logical xswap; doublereal x2[2], l21, u11, u12; integer ip, jp; doublereal u22, t16[16] /* was [4][4] */; extern doublereal dlamch_(char *); extern integer idamax_(integer *, doublereal *, integer *); doublereal smlnum, gam, bet, eps, sgn, tmp[4], tau1; /* -- LAPACK auxiliary routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* June 2016 */ /* ===================================================================== */ /* Parameter adjustments */ tl_dim1 = *ldtl; tl_offset = 1 + tl_dim1 * 1; tl -= tl_offset; tr_dim1 = *ldtr; tr_offset = 1 + tr_dim1 * 1; tr -= tr_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; /* Function Body */ /* Do not check the input parameters for errors */ *info = 0; /* Quick return if possible */ if (*n1 == 0 || *n2 == 0) { return 0; } /* Set constants to control overflow */ eps = dlamch_("P"); smlnum = dlamch_("S") / eps; sgn = (doublereal) (*isgn); k = *n1 + *n1 + *n2 - 2; switch (k) { case 1: goto L10; case 2: goto L20; case 3: goto L30; case 4: goto L50; } /* 1 by 1: TL11*X + SGN*X*TR11 = B11 */ L10: tau1 = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1]; bet = abs(tau1); if (bet <= smlnum) { tau1 = smlnum; bet = smlnum; *info = 1; } *scale = 1.; gam = (d__1 = b[b_dim1 + 1], abs(d__1)); if (smlnum * gam > bet) { *scale = 1. / gam; } x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / tau1; *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)); return 0; /* 1 by 2: */ /* TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12] = [B11 B12] */ /* [TR21 TR22] */ L20: /* Computing MAX */ /* Computing MAX */ d__7 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__8 = (d__2 = tr[tr_dim1 + 1] , abs(d__2)), d__7 = f2cmax(d__7,d__8), d__8 = (d__3 = tr[(tr_dim1 << 1) + 1], abs(d__3)), d__7 = f2cmax(d__7,d__8), d__8 = (d__4 = tr[ tr_dim1 + 2], abs(d__4)), d__7 = f2cmax(d__7,d__8), d__8 = (d__5 = tr[(tr_dim1 << 1) + 2], abs(d__5)); d__6 = eps * f2cmax(d__7,d__8); smin = f2cmax(d__6,smlnum); tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1]; tmp[3] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2]; if (*ltranr) { tmp[1] = sgn * tr[tr_dim1 + 2]; tmp[2] = sgn * tr[(tr_dim1 << 1) + 1]; } else { tmp[1] = sgn * tr[(tr_dim1 << 1) + 1]; tmp[2] = sgn * tr[tr_dim1 + 2]; } btmp[0] = b[b_dim1 + 1]; btmp[1] = b[(b_dim1 << 1) + 1]; goto L40; /* 2 by 1: */ /* op[TL11 TL12]*[X11] + ISGN* [X11]*TR11 = [B11] */ /* [TL21 TL22] [X21] [X21] [B21] */ L30: /* Computing MAX */ /* Computing MAX */ d__7 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__8 = (d__2 = tl[tl_dim1 + 1] , abs(d__2)), d__7 = f2cmax(d__7,d__8), d__8 = (d__3 = tl[(tl_dim1 << 1) + 1], abs(d__3)), d__7 = f2cmax(d__7,d__8), d__8 = (d__4 = tl[ tl_dim1 + 2], abs(d__4)), d__7 = f2cmax(d__7,d__8), d__8 = (d__5 = tl[(tl_dim1 << 1) + 2], abs(d__5)); d__6 = eps * f2cmax(d__7,d__8); smin = f2cmax(d__6,smlnum); tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1]; tmp[3] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1]; if (*ltranl) { tmp[1] = tl[(tl_dim1 << 1) + 1]; tmp[2] = tl[tl_dim1 + 2]; } else { tmp[1] = tl[tl_dim1 + 2]; tmp[2] = tl[(tl_dim1 << 1) + 1]; } btmp[0] = b[b_dim1 + 1]; btmp[1] = b[b_dim1 + 2]; L40: /* Solve 2 by 2 system using complete pivoting. */ /* Set pivots less than SMIN to SMIN. */ ipiv = idamax_(&c__4, tmp, &c__1); u11 = tmp[ipiv - 1]; if (abs(u11) <= smin) { *info = 1; u11 = smin; } u12 = tmp[locu12[ipiv - 1] - 1]; l21 = tmp[locl21[ipiv - 1] - 1] / u11; u22 = tmp[locu22[ipiv - 1] - 1] - u12 * l21; xswap = xswpiv[ipiv - 1]; bswap = bswpiv[ipiv - 1]; if (abs(u22) <= smin) { *info = 1; u22 = smin; } if (bswap) { temp = btmp[1]; btmp[1] = btmp[0] - l21 * temp; btmp[0] = temp; } else { btmp[1] -= l21 * btmp[0]; } *scale = 1.; if (smlnum * 2. * abs(btmp[1]) > abs(u22) || smlnum * 2. * abs(btmp[0]) > abs(u11)) { /* Computing MAX */ d__1 = abs(btmp[0]), d__2 = abs(btmp[1]); *scale = .5 / f2cmax(d__1,d__2); btmp[0] *= *scale; btmp[1] *= *scale; } x2[1] = btmp[1] / u22; x2[0] = btmp[0] / u11 - u12 / u11 * x2[1]; if (xswap) { temp = x2[1]; x2[1] = x2[0]; x2[0] = temp; } x[x_dim1 + 1] = x2[0]; if (*n1 == 1) { x[(x_dim1 << 1) + 1] = x2[1]; *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 << 1) + 1], abs(d__2)); } else { x[x_dim1 + 2] = x2[1]; /* Computing MAX */ d__3 = (d__1 = x[x_dim1 + 1], abs(d__1)), d__4 = (d__2 = x[x_dim1 + 2] , abs(d__2)); *xnorm = f2cmax(d__3,d__4); } return 0; /* 2 by 2: */ /* op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12] */ /* [TL21 TL22] [X21 X22] [X21 X22] [TR21 TR22] [B21 B22] */ /* Solve equivalent 4 by 4 system using complete pivoting. */ /* Set pivots less than SMIN to SMIN. */ L50: /* Computing MAX */ d__5 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__6 = (d__2 = tr[(tr_dim1 << 1) + 1], abs(d__2)), d__5 = f2cmax(d__5,d__6), d__6 = (d__3 = tr[ tr_dim1 + 2], abs(d__3)), d__5 = f2cmax(d__5,d__6), d__6 = (d__4 = tr[(tr_dim1 << 1) + 2], abs(d__4)); smin = f2cmax(d__5,d__6); /* Computing MAX */ d__5 = smin, d__6 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__5 = f2cmax(d__5, d__6), d__6 = (d__2 = tl[(tl_dim1 << 1) + 1], abs(d__2)), d__5 = f2cmax(d__5,d__6), d__6 = (d__3 = tl[tl_dim1 + 2], abs(d__3)), d__5 = f2cmax(d__5,d__6), d__6 = (d__4 = tl[(tl_dim1 << 1) + 2], abs(d__4)) ; smin = f2cmax(d__5,d__6); /* Computing MAX */ d__1 = eps * smin; smin = f2cmax(d__1,smlnum); btmp[0] = 0.; dcopy_(&c__16, btmp, &c__0, t16, &c__1); t16[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1]; t16[5] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1]; t16[10] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2]; t16[15] = tl[(tl_dim1 << 1) + 2] + sgn * tr[(tr_dim1 << 1) + 2]; if (*ltranl) { t16[4] = tl[tl_dim1 + 2]; t16[1] = tl[(tl_dim1 << 1) + 1]; t16[14] = tl[tl_dim1 + 2]; t16[11] = tl[(tl_dim1 << 1) + 1]; } else { t16[4] = tl[(tl_dim1 << 1) + 1]; t16[1] = tl[tl_dim1 + 2]; t16[14] = tl[(tl_dim1 << 1) + 1]; t16[11] = tl[tl_dim1 + 2]; } if (*ltranr) { t16[8] = sgn * tr[(tr_dim1 << 1) + 1]; t16[13] = sgn * tr[(tr_dim1 << 1) + 1]; t16[2] = sgn * tr[tr_dim1 + 2]; t16[7] = sgn * tr[tr_dim1 + 2]; } else { t16[8] = sgn * tr[tr_dim1 + 2]; t16[13] = sgn * tr[tr_dim1 + 2]; t16[2] = sgn * tr[(tr_dim1 << 1) + 1]; t16[7] = sgn * tr[(tr_dim1 << 1) + 1]; } btmp[0] = b[b_dim1 + 1]; btmp[1] = b[b_dim1 + 2]; btmp[2] = b[(b_dim1 << 1) + 1]; btmp[3] = b[(b_dim1 << 1) + 2]; /* Perform elimination */ for (i__ = 1; i__ <= 3; ++i__) { xmax = 0.; for (ip = i__; ip <= 4; ++ip) { for (jp = i__; jp <= 4; ++jp) { if ((d__1 = t16[ip + (jp << 2) - 5], abs(d__1)) >= xmax) { xmax = (d__1 = t16[ip + (jp << 2) - 5], abs(d__1)); ipsv = ip; jpsv = jp; } /* L60: */ } /* L70: */ } if (ipsv != i__) { dswap_(&c__4, &t16[ipsv - 1], &c__4, &t16[i__ - 1], &c__4); temp = btmp[i__ - 1]; btmp[i__ - 1] = btmp[ipsv - 1]; btmp[ipsv - 1] = temp; } if (jpsv != i__) { dswap_(&c__4, &t16[(jpsv << 2) - 4], &c__1, &t16[(i__ << 2) - 4], &c__1); } jpiv[i__ - 1] = jpsv; if ((d__1 = t16[i__ + (i__ << 2) - 5], abs(d__1)) < smin) { *info = 1; t16[i__ + (i__ << 2) - 5] = smin; } for (j = i__ + 1; j <= 4; ++j) { t16[j + (i__ << 2) - 5] /= t16[i__ + (i__ << 2) - 5]; btmp[j - 1] -= t16[j + (i__ << 2) - 5] * btmp[i__ - 1]; for (k = i__ + 1; k <= 4; ++k) { t16[j + (k << 2) - 5] -= t16[j + (i__ << 2) - 5] * t16[i__ + ( k << 2) - 5]; /* L80: */ } /* L90: */ } /* L100: */ } if (abs(t16[15]) < smin) { *info = 1; t16[15] = smin; } *scale = 1.; if (smlnum * 8. * abs(btmp[0]) > abs(t16[0]) || smlnum * 8. * abs(btmp[1]) > abs(t16[5]) || smlnum * 8. * abs(btmp[2]) > abs(t16[10]) || smlnum * 8. * abs(btmp[3]) > abs(t16[15])) { /* Computing MAX */ d__1 = abs(btmp[0]), d__2 = abs(btmp[1]), d__1 = f2cmax(d__1,d__2), d__2 = abs(btmp[2]), d__1 = f2cmax(d__1,d__2), d__2 = abs(btmp[3]); *scale = .125 / f2cmax(d__1,d__2); btmp[0] *= *scale; btmp[1] *= *scale; btmp[2] *= *scale; btmp[3] *= *scale; } for (i__ = 1; i__ <= 4; ++i__) { k = 5 - i__; temp = 1. / t16[k + (k << 2) - 5]; tmp[k - 1] = btmp[k - 1] * temp; for (j = k + 1; j <= 4; ++j) { tmp[k - 1] -= temp * t16[k + (j << 2) - 5] * tmp[j - 1]; /* L110: */ } /* L120: */ } for (i__ = 1; i__ <= 3; ++i__) { if (jpiv[4 - i__ - 1] != 4 - i__) { temp = tmp[4 - i__ - 1]; tmp[4 - i__ - 1] = tmp[jpiv[4 - i__ - 1] - 1]; tmp[jpiv[4 - i__ - 1] - 1] = temp; } /* L130: */ } x[x_dim1 + 1] = tmp[0]; x[x_dim1 + 2] = tmp[1]; x[(x_dim1 << 1) + 1] = tmp[2]; x[(x_dim1 << 1) + 2] = tmp[3]; /* Computing MAX */ d__1 = abs(tmp[0]) + abs(tmp[2]), d__2 = abs(tmp[1]) + abs(tmp[3]); *xnorm = f2cmax(d__1,d__2); return 0; /* End of DLASY2 */ } /* dlasy2_ */