#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b DLASYF_RK computes a partial factorization of a real symmetric indefinite matrix using bounded Bunch-Kaufman (rook) diagonal pivoting method. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DLASYF_RK + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW, */ /* INFO ) */ /* CHARACTER UPLO */ /* INTEGER INFO, KB, LDA, LDW, N, NB */ /* INTEGER IPIV( * ) */ /* DOUBLE PRECISION A( LDA, * ), E( * ), W( LDW, * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > DLASYF_RK computes a partial factorization of a real symmetric */ /* > matrix A using the bounded Bunch-Kaufman (rook) diagonal */ /* > pivoting method. The partial factorization has the form: */ /* > */ /* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */ /* > ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) */ /* > */ /* > A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L', */ /* > ( L21 I ) ( 0 A22 ) ( 0 I ) */ /* > */ /* > where the order of D is at most NB. The actual order is returned in */ /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */ /* > */ /* > DLASYF_RK is an auxiliary routine called by DSYTRF_RK. It uses */ /* > blocked code (calling Level 3 BLAS) to update the submatrix */ /* > A11 (if UPLO = 'U') or A22 (if UPLO = 'L'). */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > Specifies whether the upper or lower triangular part of the */ /* > symmetric matrix A is stored: */ /* > = 'U': Upper triangular */ /* > = 'L': Lower triangular */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] NB */ /* > \verbatim */ /* > NB is INTEGER */ /* > The maximum number of columns of the matrix A that should be */ /* > factored. NB should be at least 2 to allow for 2-by-2 pivot */ /* > blocks. */ /* > \endverbatim */ /* > */ /* > \param[out] KB */ /* > \verbatim */ /* > KB is INTEGER */ /* > The number of columns of A that were actually factored. */ /* > KB is either NB-1 or NB, or N if N <= NB. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > On entry, the symmetric matrix A. */ /* > If UPLO = 'U': the leading N-by-N upper triangular part */ /* > of A contains the upper triangular part of the matrix A, */ /* > and the strictly lower triangular part of A is not */ /* > referenced. */ /* > */ /* > If UPLO = 'L': the leading N-by-N lower triangular part */ /* > of A contains the lower triangular part of the matrix A, */ /* > and the strictly upper triangular part of A is not */ /* > referenced. */ /* > */ /* > On exit, contains: */ /* > a) ONLY diagonal elements of the symmetric block diagonal */ /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */ /* > (superdiagonal (or subdiagonal) elements of D */ /* > are stored on exit in array E), and */ /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */ /* > If UPLO = 'L': factor L in the subdiagonal part of A. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] E */ /* > \verbatim */ /* > E is DOUBLE PRECISION array, dimension (N) */ /* > On exit, contains the superdiagonal (or subdiagonal) */ /* > elements of the symmetric block diagonal matrix D */ /* > with 1-by-1 or 2-by-2 diagonal blocks, where */ /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */ /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */ /* > */ /* > NOTE: For 1-by-1 diagonal block D(k), where */ /* > 1 <= k <= N, the element E(k) is set to 0 in both */ /* > UPLO = 'U' or UPLO = 'L' cases. */ /* > \endverbatim */ /* > */ /* > \param[out] IPIV */ /* > \verbatim */ /* > IPIV is INTEGER array, dimension (N) */ /* > IPIV describes the permutation matrix P in the factorization */ /* > of matrix A as follows. The absolute value of IPIV(k) */ /* > represents the index of row and column that were */ /* > interchanged with the k-th row and column. The value of UPLO */ /* > describes the order in which the interchanges were applied. */ /* > Also, the sign of IPIV represents the block structure of */ /* > the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 */ /* > diagonal blocks which correspond to 1 or 2 interchanges */ /* > at each factorization step. */ /* > */ /* > If UPLO = 'U', */ /* > ( in factorization order, k decreases from N to 1 ): */ /* > a) A single positive entry IPIV(k) > 0 means: */ /* > D(k,k) is a 1-by-1 diagonal block. */ /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */ /* > interchanged in the submatrix A(1:N,N-KB+1:N); */ /* > If IPIV(k) = k, no interchange occurred. */ /* > */ /* > */ /* > b) A pair of consecutive negative entries */ /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */ /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */ /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */ /* > 1) If -IPIV(k) != k, rows and columns */ /* > k and -IPIV(k) were interchanged */ /* > in the matrix A(1:N,N-KB+1:N). */ /* > If -IPIV(k) = k, no interchange occurred. */ /* > 2) If -IPIV(k-1) != k-1, rows and columns */ /* > k-1 and -IPIV(k-1) were interchanged */ /* > in the submatrix A(1:N,N-KB+1:N). */ /* > If -IPIV(k-1) = k-1, no interchange occurred. */ /* > */ /* > c) In both cases a) and b) is always ABS( IPIV(k) ) <= k. */ /* > */ /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */ /* > */ /* > If UPLO = 'L', */ /* > ( in factorization order, k increases from 1 to N ): */ /* > a) A single positive entry IPIV(k) > 0 means: */ /* > D(k,k) is a 1-by-1 diagonal block. */ /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */ /* > interchanged in the submatrix A(1:N,1:KB). */ /* > If IPIV(k) = k, no interchange occurred. */ /* > */ /* > b) A pair of consecutive negative entries */ /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */ /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */ /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */ /* > 1) If -IPIV(k) != k, rows and columns */ /* > k and -IPIV(k) were interchanged */ /* > in the submatrix A(1:N,1:KB). */ /* > If -IPIV(k) = k, no interchange occurred. */ /* > 2) If -IPIV(k+1) != k+1, rows and columns */ /* > k-1 and -IPIV(k-1) were interchanged */ /* > in the submatrix A(1:N,1:KB). */ /* > If -IPIV(k+1) = k+1, no interchange occurred. */ /* > */ /* > c) In both cases a) and b) is always ABS( IPIV(k) ) >= k. */ /* > */ /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */ /* > \endverbatim */ /* > */ /* > \param[out] W */ /* > \verbatim */ /* > W is DOUBLE PRECISION array, dimension (LDW,NB) */ /* > \endverbatim */ /* > */ /* > \param[in] LDW */ /* > \verbatim */ /* > LDW is INTEGER */ /* > The leading dimension of the array W. LDW >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > */ /* > < 0: If INFO = -k, the k-th argument had an illegal value */ /* > */ /* > > 0: If INFO = k, the matrix A is singular, because: */ /* > If UPLO = 'U': column k in the upper */ /* > triangular part of A contains all zeros. */ /* > If UPLO = 'L': column k in the lower */ /* > triangular part of A contains all zeros. */ /* > */ /* > Therefore D(k,k) is exactly zero, and superdiagonal */ /* > elements of column k of U (or subdiagonal elements of */ /* > column k of L ) are all zeros. The factorization has */ /* > been completed, but the block diagonal matrix D is */ /* > exactly singular, and division by zero will occur if */ /* > it is used to solve a system of equations. */ /* > */ /* > NOTE: INFO only stores the first occurrence of */ /* > a singularity, any subsequent occurrence of singularity */ /* > is not stored in INFO even though the factorization */ /* > always completes. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup doubleSYcomputational */ /* > \par Contributors: */ /* ================== */ /* > */ /* > \verbatim */ /* > */ /* > December 2016, Igor Kozachenko, */ /* > Computer Science Division, */ /* > University of California, Berkeley */ /* > */ /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */ /* > School of Mathematics, */ /* > University of Manchester */ /* > */ /* > \endverbatim */ /* ===================================================================== */ /* Subroutine */ int dlasyf_rk_(char *uplo, integer *n, integer *nb, integer *kb, doublereal *a, integer *lda, doublereal *e, integer *ipiv, doublereal *w, integer *ldw, integer *info) { /* System generated locals */ integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5; doublereal d__1; /* Local variables */ logical done; integer imax, jmax, j, k, p; doublereal t, alpha; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *), dgemm_(char *, char *, integer *, integer *, integer * , doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int dgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); doublereal dtemp, sfmin; integer itemp; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), dswap_(integer *, doublereal *, integer *, doublereal *, integer *); integer kstep; doublereal r1, d11, d12, d21, d22; integer jb, ii, jj, kk; extern doublereal dlamch_(char *); integer kp; doublereal absakk; integer kw; extern integer idamax_(integer *, doublereal *, integer *); doublereal colmax, rowmax; integer kkw; /* -- LAPACK computational routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --e; --ipiv; w_dim1 = *ldw; w_offset = 1 + w_dim1 * 1; w -= w_offset; /* Function Body */ *info = 0; /* Initialize ALPHA for use in choosing pivot block size. */ alpha = (sqrt(17.) + 1.) / 8.; /* Compute machine safe minimum */ sfmin = dlamch_("S"); if (lsame_(uplo, "U")) { /* Factorize the trailing columns of A using the upper triangle */ /* of A and working backwards, and compute the matrix W = U12*D */ /* for use in updating A11 */ /* Initialize the first entry of array E, where superdiagonal */ /* elements of D are stored */ e[1] = 0.; /* K is the main loop index, decreasing from N in steps of 1 or 2 */ k = *n; L10: /* KW is the column of W which corresponds to column K of A */ kw = *nb + k - *n; /* Exit from loop */ if (k <= *n - *nb + 1 && *nb < *n || k < 1) { goto L30; } kstep = 1; p = k; /* Copy column K of A to column KW of W and update it */ dcopy_(&k, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1); if (k < *n) { i__1 = *n - k; dgemv_("No transpose", &k, &i__1, &c_b9, &a[(k + 1) * a_dim1 + 1], lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b10, &w[kw * w_dim1 + 1], &c__1); } /* Determine rows and columns to be interchanged and whether */ /* a 1-by-1 or 2-by-2 pivot block will be used */ absakk = (d__1 = w[k + kw * w_dim1], abs(d__1)); /* IMAX is the row-index of the largest off-diagonal element in */ /* column K, and COLMAX is its absolute value. */ /* Determine both COLMAX and IMAX. */ if (k > 1) { i__1 = k - 1; imax = idamax_(&i__1, &w[kw * w_dim1 + 1], &c__1); colmax = (d__1 = w[imax + kw * w_dim1], abs(d__1)); } else { colmax = 0.; } if (f2cmax(absakk,colmax) == 0.) { /* Column K is zero or underflow: set INFO and continue */ if (*info == 0) { *info = k; } kp = k; dcopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1); /* Set E( K ) to zero */ if (k > 1) { e[k] = 0.; } } else { /* ============================================================ */ /* Test for interchange */ /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */ /* (used to handle NaN and Inf) */ if (! (absakk < alpha * colmax)) { /* no interchange, use 1-by-1 pivot block */ kp = k; } else { done = FALSE_; /* Loop until pivot found */ L12: /* Begin pivot search loop body */ /* Copy column IMAX to column KW-1 of W and update it */ dcopy_(&imax, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) * w_dim1 + 1], &c__1); i__1 = k - imax; dcopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax + 1 + (kw - 1) * w_dim1], &c__1); if (k < *n) { i__1 = *n - k; dgemv_("No transpose", &k, &i__1, &c_b9, &a[(k + 1) * a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1], ldw, &c_b10, &w[(kw - 1) * w_dim1 + 1], &c__1); } /* JMAX is the column-index of the largest off-diagonal */ /* element in row IMAX, and ROWMAX is its absolute value. */ /* Determine both ROWMAX and JMAX. */ if (imax != k) { i__1 = k - imax; jmax = imax + idamax_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1], &c__1); rowmax = (d__1 = w[jmax + (kw - 1) * w_dim1], abs(d__1)); } else { rowmax = 0.; } if (imax > 1) { i__1 = imax - 1; itemp = idamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1); dtemp = (d__1 = w[itemp + (kw - 1) * w_dim1], abs(d__1)); if (dtemp > rowmax) { rowmax = dtemp; jmax = itemp; } } /* Equivalent to testing for */ /* ABS( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX */ /* (used to handle NaN and Inf) */ if (! ((d__1 = w[imax + (kw - 1) * w_dim1], abs(d__1)) < alpha * rowmax)) { /* interchange rows and columns K and IMAX, */ /* use 1-by-1 pivot block */ kp = imax; /* copy column KW-1 of W to column KW of W */ dcopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1); done = TRUE_; /* Equivalent to testing for ROWMAX.EQ.COLMAX, */ /* (used to handle NaN and Inf) */ } else if (p == jmax || rowmax <= colmax) { /* interchange rows and columns K-1 and IMAX, */ /* use 2-by-2 pivot block */ kp = imax; kstep = 2; done = TRUE_; } else { /* Pivot not found: set params and repeat */ p = imax; colmax = rowmax; imax = jmax; /* Copy updated JMAXth (next IMAXth) column to Kth of W */ dcopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1); } /* End pivot search loop body */ if (! done) { goto L12; } } /* ============================================================ */ kk = k - kstep + 1; /* KKW is the column of W which corresponds to column KK of A */ kkw = *nb + kk - *n; if (kstep == 2 && p != k) { /* Copy non-updated column K to column P */ i__1 = k - p; dcopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p + 1) * a_dim1], lda); dcopy_(&p, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 + 1], & c__1); /* Interchange rows K and P in last N-K+1 columns of A */ /* and last N-K+2 columns of W */ i__1 = *n - k + 1; dswap_(&i__1, &a[k + k * a_dim1], lda, &a[p + k * a_dim1], lda); i__1 = *n - kk + 1; dswap_(&i__1, &w[k + kkw * w_dim1], ldw, &w[p + kkw * w_dim1], ldw); } /* Updated column KP is already stored in column KKW of W */ if (kp != kk) { /* Copy non-updated column KK to column KP */ a[kp + k * a_dim1] = a[kk + k * a_dim1]; i__1 = k - 1 - kp; dcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp + 1) * a_dim1], lda); dcopy_(&kp, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], & c__1); /* Interchange rows KK and KP in last N-KK+1 columns */ /* of A and W */ i__1 = *n - kk + 1; dswap_(&i__1, &a[kk + kk * a_dim1], lda, &a[kp + kk * a_dim1], lda); i__1 = *n - kk + 1; dswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw * w_dim1], ldw); } if (kstep == 1) { /* 1-by-1 pivot block D(k): column KW of W now holds */ /* W(k) = U(k)*D(k) */ /* where U(k) is the k-th column of U */ /* Store U(k) in column k of A */ dcopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], & c__1); if (k > 1) { if ((d__1 = a[k + k * a_dim1], abs(d__1)) >= sfmin) { r1 = 1. / a[k + k * a_dim1]; i__1 = k - 1; dscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1); } else if (a[k + k * a_dim1] != 0.) { i__1 = k - 1; for (ii = 1; ii <= i__1; ++ii) { a[ii + k * a_dim1] /= a[k + k * a_dim1]; /* L14: */ } } /* Store the superdiagonal element of D in array E */ e[k] = 0.; } } else { /* 2-by-2 pivot block D(k): columns KW and KW-1 of W now */ /* hold */ /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */ /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */ /* of U */ if (k > 2) { /* Store U(k) and U(k-1) in columns k and k-1 of A */ d12 = w[k - 1 + kw * w_dim1]; d11 = w[k + kw * w_dim1] / d12; d22 = w[k - 1 + (kw - 1) * w_dim1] / d12; t = 1. / (d11 * d22 - 1.); i__1 = k - 2; for (j = 1; j <= i__1; ++j) { a[j + (k - 1) * a_dim1] = t * ((d11 * w[j + (kw - 1) * w_dim1] - w[j + kw * w_dim1]) / d12); a[j + k * a_dim1] = t * ((d22 * w[j + kw * w_dim1] - w[j + (kw - 1) * w_dim1]) / d12); /* L20: */ } } /* Copy diagonal elements of D(K) to A, */ /* copy superdiagonal element of D(K) to E(K) and */ /* ZERO out superdiagonal entry of A */ a[k - 1 + (k - 1) * a_dim1] = w[k - 1 + (kw - 1) * w_dim1]; a[k - 1 + k * a_dim1] = 0.; a[k + k * a_dim1] = w[k + kw * w_dim1]; e[k] = w[k - 1 + kw * w_dim1]; e[k - 1] = 0.; } /* End column K is nonsingular */ } /* Store details of the interchanges in IPIV */ if (kstep == 1) { ipiv[k] = kp; } else { ipiv[k] = -p; ipiv[k - 1] = -kp; } /* Decrease K and return to the start of the main loop */ k -= kstep; goto L10; L30: /* Update the upper triangle of A11 (= A(1:k,1:k)) as */ /* A11 := A11 - U12*D*U12**T = A11 - U12*W**T */ /* computing blocks of NB columns at a time */ i__1 = -(*nb); for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j += i__1) { /* Computing MIN */ i__2 = *nb, i__3 = k - j + 1; jb = f2cmin(i__2,i__3); /* Update the upper triangle of the diagonal block */ i__2 = j + jb - 1; for (jj = j; jj <= i__2; ++jj) { i__3 = jj - j + 1; i__4 = *n - k; dgemv_("No transpose", &i__3, &i__4, &c_b9, &a[j + (k + 1) * a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b10, &a[j + jj * a_dim1], &c__1); /* L40: */ } /* Update the rectangular superdiagonal block */ if (j >= 2) { i__2 = j - 1; i__3 = *n - k; dgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &c_b9, &a[(k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) * w_dim1], ldw, &c_b10, &a[j * a_dim1 + 1], lda); } /* L50: */ } /* Set KB to the number of columns factorized */ *kb = *n - k; } else { /* Factorize the leading columns of A using the lower triangle */ /* of A and working forwards, and compute the matrix W = L21*D */ /* for use in updating A22 */ /* Initialize the unused last entry of the subdiagonal array E. */ e[*n] = 0.; /* K is the main loop index, increasing from 1 in steps of 1 or 2 */ k = 1; L70: /* Exit from loop */ if (k >= *nb && *nb < *n || k > *n) { goto L90; } kstep = 1; p = k; /* Copy column K of A to column K of W and update it */ i__1 = *n - k + 1; dcopy_(&i__1, &a[k + k * a_dim1], &c__1, &w[k + k * w_dim1], &c__1); if (k > 1) { i__1 = *n - k + 1; i__2 = k - 1; dgemv_("No transpose", &i__1, &i__2, &c_b9, &a[k + a_dim1], lda, & w[k + w_dim1], ldw, &c_b10, &w[k + k * w_dim1], &c__1); } /* Determine rows and columns to be interchanged and whether */ /* a 1-by-1 or 2-by-2 pivot block will be used */ absakk = (d__1 = w[k + k * w_dim1], abs(d__1)); /* IMAX is the row-index of the largest off-diagonal element in */ /* column K, and COLMAX is its absolute value. */ /* Determine both COLMAX and IMAX. */ if (k < *n) { i__1 = *n - k; imax = k + idamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1); colmax = (d__1 = w[imax + k * w_dim1], abs(d__1)); } else { colmax = 0.; } if (f2cmax(absakk,colmax) == 0.) { /* Column K is zero or underflow: set INFO and continue */ if (*info == 0) { *info = k; } kp = k; i__1 = *n - k + 1; dcopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], & c__1); /* Set E( K ) to zero */ if (k < *n) { e[k] = 0.; } } else { /* ============================================================ */ /* Test for interchange */ /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */ /* (used to handle NaN and Inf) */ if (! (absakk < alpha * colmax)) { /* no interchange, use 1-by-1 pivot block */ kp = k; } else { done = FALSE_; /* Loop until pivot found */ L72: /* Begin pivot search loop body */ /* Copy column IMAX to column K+1 of W and update it */ i__1 = imax - k; dcopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) * w_dim1], &c__1); i__1 = *n - imax + 1; dcopy_(&i__1, &a[imax + imax * a_dim1], &c__1, &w[imax + (k + 1) * w_dim1], &c__1); if (k > 1) { i__1 = *n - k + 1; i__2 = k - 1; dgemv_("No transpose", &i__1, &i__2, &c_b9, &a[k + a_dim1] , lda, &w[imax + w_dim1], ldw, &c_b10, &w[k + (k + 1) * w_dim1], &c__1); } /* JMAX is the column-index of the largest off-diagonal */ /* element in row IMAX, and ROWMAX is its absolute value. */ /* Determine both ROWMAX and JMAX. */ if (imax != k) { i__1 = imax - k; jmax = k - 1 + idamax_(&i__1, &w[k + (k + 1) * w_dim1], & c__1); rowmax = (d__1 = w[jmax + (k + 1) * w_dim1], abs(d__1)); } else { rowmax = 0.; } if (imax < *n) { i__1 = *n - imax; itemp = imax + idamax_(&i__1, &w[imax + 1 + (k + 1) * w_dim1], &c__1); dtemp = (d__1 = w[itemp + (k + 1) * w_dim1], abs(d__1)); if (dtemp > rowmax) { rowmax = dtemp; jmax = itemp; } } /* Equivalent to testing for */ /* ABS( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX */ /* (used to handle NaN and Inf) */ if (! ((d__1 = w[imax + (k + 1) * w_dim1], abs(d__1)) < alpha * rowmax)) { /* interchange rows and columns K and IMAX, */ /* use 1-by-1 pivot block */ kp = imax; /* copy column K+1 of W to column K of W */ i__1 = *n - k + 1; dcopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k * w_dim1], &c__1); done = TRUE_; /* Equivalent to testing for ROWMAX.EQ.COLMAX, */ /* (used to handle NaN and Inf) */ } else if (p == jmax || rowmax <= colmax) { /* interchange rows and columns K+1 and IMAX, */ /* use 2-by-2 pivot block */ kp = imax; kstep = 2; done = TRUE_; } else { /* Pivot not found: set params and repeat */ p = imax; colmax = rowmax; imax = jmax; /* Copy updated JMAXth (next IMAXth) column to Kth of W */ i__1 = *n - k + 1; dcopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k * w_dim1], &c__1); } /* End pivot search loop body */ if (! done) { goto L72; } } /* ============================================================ */ kk = k + kstep - 1; if (kstep == 2 && p != k) { /* Copy non-updated column K to column P */ i__1 = p - k; dcopy_(&i__1, &a[k + k * a_dim1], &c__1, &a[p + k * a_dim1], lda); i__1 = *n - p + 1; dcopy_(&i__1, &a[p + k * a_dim1], &c__1, &a[p + p * a_dim1], & c__1); /* Interchange rows K and P in first K columns of A */ /* and first K+1 columns of W */ dswap_(&k, &a[k + a_dim1], lda, &a[p + a_dim1], lda); dswap_(&kk, &w[k + w_dim1], ldw, &w[p + w_dim1], ldw); } /* Updated column KP is already stored in column KK of W */ if (kp != kk) { /* Copy non-updated column KK to column KP */ a[kp + k * a_dim1] = a[kk + k * a_dim1]; i__1 = kp - k - 1; dcopy_(&i__1, &a[k + 1 + kk * a_dim1], &c__1, &a[kp + (k + 1) * a_dim1], lda); i__1 = *n - kp + 1; dcopy_(&i__1, &a[kp + kk * a_dim1], &c__1, &a[kp + kp * a_dim1], &c__1); /* Interchange rows KK and KP in first KK columns of A and W */ dswap_(&kk, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda); dswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw); } if (kstep == 1) { /* 1-by-1 pivot block D(k): column k of W now holds */ /* W(k) = L(k)*D(k) */ /* where L(k) is the k-th column of L */ /* Store L(k) in column k of A */ i__1 = *n - k + 1; dcopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], & c__1); if (k < *n) { if ((d__1 = a[k + k * a_dim1], abs(d__1)) >= sfmin) { r1 = 1. / a[k + k * a_dim1]; i__1 = *n - k; dscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1); } else if (a[k + k * a_dim1] != 0.) { i__1 = *n; for (ii = k + 1; ii <= i__1; ++ii) { a[ii + k * a_dim1] /= a[k + k * a_dim1]; /* L74: */ } } /* Store the subdiagonal element of D in array E */ e[k] = 0.; } } else { /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */ /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */ /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */ /* of L */ if (k < *n - 1) { /* Store L(k) and L(k+1) in columns k and k+1 of A */ d21 = w[k + 1 + k * w_dim1]; d11 = w[k + 1 + (k + 1) * w_dim1] / d21; d22 = w[k + k * w_dim1] / d21; t = 1. / (d11 * d22 - 1.); i__1 = *n; for (j = k + 2; j <= i__1; ++j) { a[j + k * a_dim1] = t * ((d11 * w[j + k * w_dim1] - w[ j + (k + 1) * w_dim1]) / d21); a[j + (k + 1) * a_dim1] = t * ((d22 * w[j + (k + 1) * w_dim1] - w[j + k * w_dim1]) / d21); /* L80: */ } } /* Copy diagonal elements of D(K) to A, */ /* copy subdiagonal element of D(K) to E(K) and */ /* ZERO out subdiagonal entry of A */ a[k + k * a_dim1] = w[k + k * w_dim1]; a[k + 1 + k * a_dim1] = 0.; a[k + 1 + (k + 1) * a_dim1] = w[k + 1 + (k + 1) * w_dim1]; e[k] = w[k + 1 + k * w_dim1]; e[k + 1] = 0.; } /* End column K is nonsingular */ } /* Store details of the interchanges in IPIV */ if (kstep == 1) { ipiv[k] = kp; } else { ipiv[k] = -p; ipiv[k + 1] = -kp; } /* Increase K and return to the start of the main loop */ k += kstep; goto L70; L90: /* Update the lower triangle of A22 (= A(k:n,k:n)) as */ /* A22 := A22 - L21*D*L21**T = A22 - L21*W**T */ /* computing blocks of NB columns at a time */ i__1 = *n; i__2 = *nb; for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { /* Computing MIN */ i__3 = *nb, i__4 = *n - j + 1; jb = f2cmin(i__3,i__4); /* Update the lower triangle of the diagonal block */ i__3 = j + jb - 1; for (jj = j; jj <= i__3; ++jj) { i__4 = j + jb - jj; i__5 = k - 1; dgemv_("No transpose", &i__4, &i__5, &c_b9, &a[jj + a_dim1], lda, &w[jj + w_dim1], ldw, &c_b10, &a[jj + jj * a_dim1], &c__1); /* L100: */ } /* Update the rectangular subdiagonal block */ if (j + jb <= *n) { i__3 = *n - j - jb + 1; i__4 = k - 1; dgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &c_b9, &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b10, &a[j + jb + j * a_dim1], lda); } /* L110: */ } /* Set KB to the number of columns factorized */ *kb = k - 1; } return 0; /* End of DLASYF_RK */ } /* dlasyf_rk__ */