#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b DSYTRI2X */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download DSYTRI2X + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE DSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO ) */ /* CHARACTER UPLO */ /* INTEGER INFO, LDA, N, NB */ /* INTEGER IPIV( * ) */ /* DOUBLE PRECISION A( LDA, * ), WORK( N+NB+1,* ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > DSYTRI2X computes the inverse of a real symmetric indefinite matrix */ /* > A using the factorization A = U*D*U**T or A = L*D*L**T computed by */ /* > DSYTRF. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > Specifies whether the details of the factorization are stored */ /* > as an upper or lower triangular matrix. */ /* > = 'U': Upper triangular, form is A = U*D*U**T; */ /* > = 'L': Lower triangular, form is A = L*D*L**T. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix A. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is DOUBLE PRECISION array, dimension (LDA,N) */ /* > On entry, the NNB diagonal matrix D and the multipliers */ /* > used to obtain the factor U or L as computed by DSYTRF. */ /* > */ /* > On exit, if INFO = 0, the (symmetric) inverse of the original */ /* > matrix. If UPLO = 'U', the upper triangular part of the */ /* > inverse is formed and the part of A below the diagonal is not */ /* > referenced; if UPLO = 'L' the lower triangular part of the */ /* > inverse is formed and the part of A above the diagonal is */ /* > not referenced. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[in] IPIV */ /* > \verbatim */ /* > IPIV is INTEGER array, dimension (N) */ /* > Details of the interchanges and the NNB structure of D */ /* > as determined by DSYTRF. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is DOUBLE PRECISION array, dimension (N+NB+1,NB+3) */ /* > \endverbatim */ /* > */ /* > \param[in] NB */ /* > \verbatim */ /* > NB is INTEGER */ /* > Block size */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */ /* > inverse could not be computed. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date June 2017 */ /* > \ingroup doubleSYcomputational */ /* ===================================================================== */ /* Subroutine */ int dsytri2x_(char *uplo, integer *n, doublereal *a, integer *lda, integer *ipiv, doublereal *work, integer *nb, integer *info) { /* System generated locals */ integer a_dim1, a_offset, work_dim1, work_offset, i__1, i__2, i__3; /* Local variables */ integer invd; doublereal akkp1; extern /* Subroutine */ int dsyswapr_(char *, integer *, doublereal *, integer *, integer *, integer *); doublereal d__; integer i__, j, k; doublereal t; extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); extern logical lsame_(char *, char *); integer iinfo; extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); integer count; logical upper; doublereal ak, u01_i_j__; integer u11; doublereal u11_i_j__; integer ip; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), dtrtri_( char *, char *, integer *, doublereal *, integer *, integer *); integer nnb, cut; doublereal akp1; extern /* Subroutine */ int dsyconv_(char *, char *, integer *, doublereal *, integer *, integer *, doublereal *, integer *); doublereal u01_ip1_j__, u11_ip1_j__; /* -- LAPACK computational routine (version 3.7.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* June 2017 */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --ipiv; work_dim1 = *n + *nb + 1; work_offset = 1 + work_dim1 * 1; work -= work_offset; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < f2cmax(1,*n)) { *info = -4; } /* Quick return if possible */ if (*info != 0) { i__1 = -(*info); xerbla_("DSYTRI2X", &i__1, (ftnlen)8); return 0; } if (*n == 0) { return 0; } /* Convert A */ /* Workspace got Non-diag elements of D */ dsyconv_(uplo, "C", n, &a[a_offset], lda, &ipiv[1], &work[work_offset], & iinfo); /* Check that the diagonal matrix D is nonsingular. */ if (upper) { /* Upper triangular storage: examine D from bottom to top */ for (*info = *n; *info >= 1; --(*info)) { if (ipiv[*info] > 0 && a[*info + *info * a_dim1] == 0.) { return 0; } } } else { /* Lower triangular storage: examine D from top to bottom. */ i__1 = *n; for (*info = 1; *info <= i__1; ++(*info)) { if (ipiv[*info] > 0 && a[*info + *info * a_dim1] == 0.) { return 0; } } } *info = 0; /* Splitting Workspace */ /* U01 is a block (N,NB+1) */ /* The first element of U01 is in WORK(1,1) */ /* U11 is a block (NB+1,NB+1) */ /* The first element of U11 is in WORK(N+1,1) */ u11 = *n; /* INVD is a block (N,2) */ /* The first element of INVD is in WORK(1,INVD) */ invd = *nb + 2; if (upper) { /* invA = P * inv(U**T)*inv(D)*inv(U)*P**T. */ dtrtri_(uplo, "U", n, &a[a_offset], lda, info); /* inv(D) and inv(D)*inv(U) */ k = 1; while(k <= *n) { if (ipiv[k] > 0) { /* 1 x 1 diagonal NNB */ work[k + invd * work_dim1] = 1. / a[k + k * a_dim1]; work[k + (invd + 1) * work_dim1] = 0.; ++k; } else { /* 2 x 2 diagonal NNB */ t = work[k + 1 + work_dim1]; ak = a[k + k * a_dim1] / t; akp1 = a[k + 1 + (k + 1) * a_dim1] / t; akkp1 = work[k + 1 + work_dim1] / t; d__ = t * (ak * akp1 - 1.); work[k + invd * work_dim1] = akp1 / d__; work[k + 1 + (invd + 1) * work_dim1] = ak / d__; work[k + (invd + 1) * work_dim1] = -akkp1 / d__; work[k + 1 + invd * work_dim1] = -akkp1 / d__; k += 2; } } /* inv(U**T) = (inv(U))**T */ /* inv(U**T)*inv(D)*inv(U) */ cut = *n; while(cut > 0) { nnb = *nb; if (cut <= nnb) { nnb = cut; } else { count = 0; /* count negative elements, */ i__1 = cut; for (i__ = cut + 1 - nnb; i__ <= i__1; ++i__) { if (ipiv[i__] < 0) { ++count; } } /* need a even number for a clear cut */ if (count % 2 == 1) { ++nnb; } } cut -= nnb; /* U01 Block */ i__1 = cut; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = nnb; for (j = 1; j <= i__2; ++j) { work[i__ + j * work_dim1] = a[i__ + (cut + j) * a_dim1]; } } /* U11 Block */ i__1 = nnb; for (i__ = 1; i__ <= i__1; ++i__) { work[u11 + i__ + i__ * work_dim1] = 1.; i__2 = i__ - 1; for (j = 1; j <= i__2; ++j) { work[u11 + i__ + j * work_dim1] = 0.; } i__2 = nnb; for (j = i__ + 1; j <= i__2; ++j) { work[u11 + i__ + j * work_dim1] = a[cut + i__ + (cut + j) * a_dim1]; } } /* invD*U01 */ i__ = 1; while(i__ <= cut) { if (ipiv[i__] > 0) { i__1 = nnb; for (j = 1; j <= i__1; ++j) { work[i__ + j * work_dim1] = work[i__ + invd * work_dim1] * work[i__ + j * work_dim1]; } ++i__; } else { i__1 = nnb; for (j = 1; j <= i__1; ++j) { u01_i_j__ = work[i__ + j * work_dim1]; u01_ip1_j__ = work[i__ + 1 + j * work_dim1]; work[i__ + j * work_dim1] = work[i__ + invd * work_dim1] * u01_i_j__ + work[i__ + (invd + 1) * work_dim1] * u01_ip1_j__; work[i__ + 1 + j * work_dim1] = work[i__ + 1 + invd * work_dim1] * u01_i_j__ + work[i__ + 1 + (invd + 1) * work_dim1] * u01_ip1_j__; } i__ += 2; } } /* invD1*U11 */ i__ = 1; while(i__ <= nnb) { if (ipiv[cut + i__] > 0) { i__1 = nnb; for (j = i__; j <= i__1; ++j) { work[u11 + i__ + j * work_dim1] = work[cut + i__ + invd * work_dim1] * work[u11 + i__ + j * work_dim1]; } ++i__; } else { i__1 = nnb; for (j = i__; j <= i__1; ++j) { u11_i_j__ = work[u11 + i__ + j * work_dim1]; u11_ip1_j__ = work[u11 + i__ + 1 + j * work_dim1]; work[u11 + i__ + j * work_dim1] = work[cut + i__ + invd * work_dim1] * work[u11 + i__ + j * work_dim1] + work[cut + i__ + (invd + 1) * work_dim1] * work[u11 + i__ + 1 + j * work_dim1]; work[u11 + i__ + 1 + j * work_dim1] = work[cut + i__ + 1 + invd * work_dim1] * u11_i_j__ + work[ cut + i__ + 1 + (invd + 1) * work_dim1] * u11_ip1_j__; } i__ += 2; } } /* U11**T*invD1*U11->U11 */ i__1 = *n + *nb + 1; dtrmm_("L", "U", "T", "U", &nnb, &nnb, &c_b11, &a[cut + 1 + (cut + 1) * a_dim1], lda, &work[u11 + 1 + work_dim1], &i__1); i__1 = nnb; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = nnb; for (j = i__; j <= i__2; ++j) { a[cut + i__ + (cut + j) * a_dim1] = work[u11 + i__ + j * work_dim1]; } } /* U01**T*invD*U01->A(CUT+I,CUT+J) */ i__1 = *n + *nb + 1; i__2 = *n + *nb + 1; dgemm_("T", "N", &nnb, &nnb, &cut, &c_b11, &a[(cut + 1) * a_dim1 + 1], lda, &work[work_offset], &i__1, &c_b15, &work[u11 + 1 + work_dim1], &i__2); /* U11 = U11**T*invD1*U11 + U01**T*invD*U01 */ i__1 = nnb; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = nnb; for (j = i__; j <= i__2; ++j) { a[cut + i__ + (cut + j) * a_dim1] += work[u11 + i__ + j * work_dim1]; } } /* U01 = U00**T*invD0*U01 */ i__1 = *n + *nb + 1; dtrmm_("L", uplo, "T", "U", &cut, &nnb, &c_b11, &a[a_offset], lda, &work[work_offset], &i__1); /* Update U01 */ i__1 = cut; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = nnb; for (j = 1; j <= i__2; ++j) { a[i__ + (cut + j) * a_dim1] = work[i__ + j * work_dim1]; } } /* Next Block */ } /* Apply PERMUTATIONS P and P**T: P * inv(U**T)*inv(D)*inv(U) *P**T */ i__ = 1; while(i__ <= *n) { if (ipiv[i__] > 0) { ip = ipiv[i__]; if (i__ < ip) { dsyswapr_(uplo, n, &a[a_offset], lda, &i__, &ip); } if (i__ > ip) { dsyswapr_(uplo, n, &a[a_offset], lda, &ip, &i__); } } else { ip = -ipiv[i__]; ++i__; if (i__ - 1 < ip) { i__1 = i__ - 1; dsyswapr_(uplo, n, &a[a_offset], lda, &i__1, &ip); } if (i__ - 1 > ip) { i__1 = i__ - 1; dsyswapr_(uplo, n, &a[a_offset], lda, &ip, &i__1); } } ++i__; } } else { /* LOWER... */ /* invA = P * inv(U**T)*inv(D)*inv(U)*P**T. */ dtrtri_(uplo, "U", n, &a[a_offset], lda, info); /* inv(D) and inv(D)*inv(U) */ k = *n; while(k >= 1) { if (ipiv[k] > 0) { /* 1 x 1 diagonal NNB */ work[k + invd * work_dim1] = 1. / a[k + k * a_dim1]; work[k + (invd + 1) * work_dim1] = 0.; --k; } else { /* 2 x 2 diagonal NNB */ t = work[k - 1 + work_dim1]; ak = a[k - 1 + (k - 1) * a_dim1] / t; akp1 = a[k + k * a_dim1] / t; akkp1 = work[k - 1 + work_dim1] / t; d__ = t * (ak * akp1 - 1.); work[k - 1 + invd * work_dim1] = akp1 / d__; work[k + invd * work_dim1] = ak / d__; work[k + (invd + 1) * work_dim1] = -akkp1 / d__; work[k - 1 + (invd + 1) * work_dim1] = -akkp1 / d__; k += -2; } } /* inv(U**T) = (inv(U))**T */ /* inv(U**T)*inv(D)*inv(U) */ cut = 0; while(cut < *n) { nnb = *nb; if (cut + nnb > *n) { nnb = *n - cut; } else { count = 0; /* count negative elements, */ i__1 = cut + nnb; for (i__ = cut + 1; i__ <= i__1; ++i__) { if (ipiv[i__] < 0) { ++count; } } /* need a even number for a clear cut */ if (count % 2 == 1) { ++nnb; } } /* L21 Block */ i__1 = *n - cut - nnb; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = nnb; for (j = 1; j <= i__2; ++j) { work[i__ + j * work_dim1] = a[cut + nnb + i__ + (cut + j) * a_dim1]; } } /* L11 Block */ i__1 = nnb; for (i__ = 1; i__ <= i__1; ++i__) { work[u11 + i__ + i__ * work_dim1] = 1.; i__2 = nnb; for (j = i__ + 1; j <= i__2; ++j) { work[u11 + i__ + j * work_dim1] = 0.; } i__2 = i__ - 1; for (j = 1; j <= i__2; ++j) { work[u11 + i__ + j * work_dim1] = a[cut + i__ + (cut + j) * a_dim1]; } } /* invD*L21 */ i__ = *n - cut - nnb; while(i__ >= 1) { if (ipiv[cut + nnb + i__] > 0) { i__1 = nnb; for (j = 1; j <= i__1; ++j) { work[i__ + j * work_dim1] = work[cut + nnb + i__ + invd * work_dim1] * work[i__ + j * work_dim1]; } --i__; } else { i__1 = nnb; for (j = 1; j <= i__1; ++j) { u01_i_j__ = work[i__ + j * work_dim1]; u01_ip1_j__ = work[i__ - 1 + j * work_dim1]; work[i__ + j * work_dim1] = work[cut + nnb + i__ + invd * work_dim1] * u01_i_j__ + work[cut + nnb + i__ + (invd + 1) * work_dim1] * u01_ip1_j__; work[i__ - 1 + j * work_dim1] = work[cut + nnb + i__ - 1 + (invd + 1) * work_dim1] * u01_i_j__ + work[cut + nnb + i__ - 1 + invd * work_dim1] * u01_ip1_j__; } i__ += -2; } } /* invD1*L11 */ i__ = nnb; while(i__ >= 1) { if (ipiv[cut + i__] > 0) { i__1 = nnb; for (j = 1; j <= i__1; ++j) { work[u11 + i__ + j * work_dim1] = work[cut + i__ + invd * work_dim1] * work[u11 + i__ + j * work_dim1]; } --i__; } else { i__1 = nnb; for (j = 1; j <= i__1; ++j) { u11_i_j__ = work[u11 + i__ + j * work_dim1]; u11_ip1_j__ = work[u11 + i__ - 1 + j * work_dim1]; work[u11 + i__ + j * work_dim1] = work[cut + i__ + invd * work_dim1] * work[u11 + i__ + j * work_dim1] + work[cut + i__ + (invd + 1) * work_dim1] * u11_ip1_j__; work[u11 + i__ - 1 + j * work_dim1] = work[cut + i__ - 1 + (invd + 1) * work_dim1] * u11_i_j__ + work[cut + i__ - 1 + invd * work_dim1] * u11_ip1_j__; } i__ += -2; } } /* L11**T*invD1*L11->L11 */ i__1 = *n + *nb + 1; dtrmm_("L", uplo, "T", "U", &nnb, &nnb, &c_b11, &a[cut + 1 + (cut + 1) * a_dim1], lda, &work[u11 + 1 + work_dim1], &i__1); i__1 = nnb; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; for (j = 1; j <= i__2; ++j) { a[cut + i__ + (cut + j) * a_dim1] = work[u11 + i__ + j * work_dim1]; } } if (cut + nnb < *n) { /* L21**T*invD2*L21->A(CUT+I,CUT+J) */ i__1 = *n - nnb - cut; i__2 = *n + *nb + 1; i__3 = *n + *nb + 1; dgemm_("T", "N", &nnb, &nnb, &i__1, &c_b11, &a[cut + nnb + 1 + (cut + 1) * a_dim1], lda, &work[work_offset], &i__2, &c_b15, &work[u11 + 1 + work_dim1], &i__3); /* L11 = L11**T*invD1*L11 + U01**T*invD*U01 */ i__1 = nnb; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; for (j = 1; j <= i__2; ++j) { a[cut + i__ + (cut + j) * a_dim1] += work[u11 + i__ + j * work_dim1]; } } /* L01 = L22**T*invD2*L21 */ i__1 = *n - nnb - cut; i__2 = *n + *nb + 1; dtrmm_("L", uplo, "T", "U", &i__1, &nnb, &c_b11, &a[cut + nnb + 1 + (cut + nnb + 1) * a_dim1], lda, &work[ work_offset], &i__2); /* Update L21 */ i__1 = *n - cut - nnb; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = nnb; for (j = 1; j <= i__2; ++j) { a[cut + nnb + i__ + (cut + j) * a_dim1] = work[i__ + j * work_dim1]; } } } else { /* L11 = L11**T*invD1*L11 */ i__1 = nnb; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; for (j = 1; j <= i__2; ++j) { a[cut + i__ + (cut + j) * a_dim1] = work[u11 + i__ + j * work_dim1]; } } } /* Next Block */ cut += nnb; } /* Apply PERMUTATIONS P and P**T: P * inv(U**T)*inv(D)*inv(U) *P**T */ i__ = *n; while(i__ >= 1) { if (ipiv[i__] > 0) { ip = ipiv[i__]; if (i__ < ip) { dsyswapr_(uplo, n, &a[a_offset], lda, &i__, &ip); } if (i__ > ip) { dsyswapr_(uplo, n, &a[a_offset], lda, &ip, &i__); } } else { ip = -ipiv[i__]; if (i__ < ip) { dsyswapr_(uplo, n, &a[a_offset], lda, &i__, &ip); } if (i__ > ip) { dsyswapr_(uplo, n, &a[a_offset], lda, &ip, &i__); } --i__; } --i__; } } return 0; /* End of DSYTRI2X */ } /* dsytri2x_ */