#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b ILAENV */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ILAENV + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3, N4 ) */ /* CHARACTER*( * ) NAME, OPTS */ /* INTEGER ISPEC, N1, N2, N3, N4 */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ILAENV is called from the LAPACK routines to choose problem-dependent */ /* > parameters for the local environment. See ISPEC for a description of */ /* > the parameters. */ /* > */ /* > ILAENV returns an INTEGER */ /* > if ILAENV >= 0: ILAENV returns the value of the parameter specified by ISPEC */ /* > if ILAENV < 0: if ILAENV = -k, the k-th argument had an illegal value. */ /* > */ /* > This version provides a set of parameters which should give good, */ /* > but not optimal, performance on many of the currently available */ /* > computers. Users are encouraged to modify this subroutine to set */ /* > the tuning parameters for their particular machine using the option */ /* > and problem size information in the arguments. */ /* > */ /* > This routine will not function correctly if it is converted to all */ /* > lower case. Converting it to all upper case is allowed. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] ISPEC */ /* > \verbatim */ /* > ISPEC is INTEGER */ /* > Specifies the parameter to be returned as the value of */ /* > ILAENV. */ /* > = 1: the optimal blocksize; if this value is 1, an unblocked */ /* > algorithm will give the best performance. */ /* > = 2: the minimum block size for which the block routine */ /* > should be used; if the usable block size is less than */ /* > this value, an unblocked routine should be used. */ /* > = 3: the crossover point (in a block routine, for N less */ /* > than this value, an unblocked routine should be used) */ /* > = 4: the number of shifts, used in the nonsymmetric */ /* > eigenvalue routines (DEPRECATED) */ /* > = 5: the minimum column dimension for blocking to be used; */ /* > rectangular blocks must have dimension at least k by m, */ /* > where k is given by ILAENV(2,...) and m by ILAENV(5,...) */ /* > = 6: the crossover point for the SVD (when reducing an m by n */ /* > matrix to bidiagonal form, if f2cmax(m,n)/f2cmin(m,n) exceeds */ /* > this value, a QR factorization is used first to reduce */ /* > the matrix to a triangular form.) */ /* > = 7: the number of processors */ /* > = 8: the crossover point for the multishift QR method */ /* > for nonsymmetric eigenvalue problems (DEPRECATED) */ /* > = 9: maximum size of the subproblems at the bottom of the */ /* > computation tree in the divide-and-conquer algorithm */ /* > (used by xGELSD and xGESDD) */ /* > =10: ieee NaN arithmetic can be trusted not to trap */ /* > =11: infinity arithmetic can be trusted not to trap */ /* > 12 <= ISPEC <= 16: */ /* > xHSEQR or related subroutines, */ /* > see IPARMQ for detailed explanation */ /* > \endverbatim */ /* > */ /* > \param[in] NAME */ /* > \verbatim */ /* > NAME is CHARACTER*(*) */ /* > The name of the calling subroutine, in either upper case or */ /* > lower case. */ /* > \endverbatim */ /* > */ /* > \param[in] OPTS */ /* > \verbatim */ /* > OPTS is CHARACTER*(*) */ /* > The character options to the subroutine NAME, concatenated */ /* > into a single character string. For example, UPLO = 'U', */ /* > TRANS = 'T', and DIAG = 'N' for a triangular routine would */ /* > be specified as OPTS = 'UTN'. */ /* > \endverbatim */ /* > */ /* > \param[in] N1 */ /* > \verbatim */ /* > N1 is INTEGER */ /* > \endverbatim */ /* > */ /* > \param[in] N2 */ /* > \verbatim */ /* > N2 is INTEGER */ /* > \endverbatim */ /* > */ /* > \param[in] N3 */ /* > \verbatim */ /* > N3 is INTEGER */ /* > \endverbatim */ /* > */ /* > \param[in] N4 */ /* > \verbatim */ /* > N4 is INTEGER */ /* > Problem dimensions for the subroutine NAME; these may not all */ /* > be required. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date November 2019 */ /* > \ingroup OTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The following conventions have been used when calling ILAENV from the */ /* > LAPACK routines: */ /* > 1) OPTS is a concatenation of all of the character options to */ /* > subroutine NAME, in the same order that they appear in the */ /* > argument list for NAME, even if they are not used in determining */ /* > the value of the parameter specified by ISPEC. */ /* > 2) The problem dimensions N1, N2, N3, N4 are specified in the order */ /* > that they appear in the argument list for NAME. N1 is used */ /* > first, N2 second, and so on, and unused problem dimensions are */ /* > passed a value of -1. */ /* > 3) The parameter value returned by ILAENV is checked for validity in */ /* > the calling subroutine. For example, ILAENV is used to retrieve */ /* > the optimal blocksize for STRTRI as follows: */ /* > */ /* > NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 ) */ /* > IF( NB.LE.1 ) NB = MAX( 1, N ) */ /* > \endverbatim */ /* > */ /* ===================================================================== */ integer ilaenv_(integer *ispec, char *name__, char *opts, integer *n1, integer *n2, integer *n3, integer *n4, ftnlen name_len, ftnlen opts_len) { /* System generated locals */ integer ret_val; /* Local variables */ logical twostage; integer i__; logical cname; integer nbmin; logical sname; char c1[1], c2[2], c3[3], c4[2]; integer ic, nb; extern integer ieeeck_(integer *, real *, real *); integer iz, nx; char subnam[16]; extern integer iparmq_(integer *, char *, char *, integer *, integer *, integer *, integer *); /* -- LAPACK auxiliary routine (version 3.9.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2019 */ /* ===================================================================== */ switch (*ispec) { case 1: goto L10; case 2: goto L10; case 3: goto L10; case 4: goto L80; case 5: goto L90; case 6: goto L100; case 7: goto L110; case 8: goto L120; case 9: goto L130; case 10: goto L140; case 11: goto L150; case 12: goto L160; case 13: goto L160; case 14: goto L160; case 15: goto L160; case 16: goto L160; } /* Invalid value for ISPEC */ ret_val = -1; return ret_val; L10: /* Convert NAME to upper case if the first character is lower case. */ ret_val = 1; s_copy(subnam, name__, (ftnlen)16, name_len); ic = *(unsigned char *)subnam; iz = 'Z'; if (iz == 90 || iz == 122) { /* ASCII character set */ if (ic >= 97 && ic <= 122) { *(unsigned char *)subnam = (char) (ic - 32); for (i__ = 2; i__ <= 6; ++i__) { ic = *(unsigned char *)&subnam[i__ - 1]; if (ic >= 97 && ic <= 122) { *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32); } /* L20: */ } } } else if (iz == 233 || iz == 169) { /* EBCDIC character set */ if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 162 && ic <= 169) { *(unsigned char *)subnam = (char) (ic + 64); for (i__ = 2; i__ <= 6; ++i__) { ic = *(unsigned char *)&subnam[i__ - 1]; if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 162 && ic <= 169) { *(unsigned char *)&subnam[i__ - 1] = (char) (ic + 64); } /* L30: */ } } } else if (iz == 218 || iz == 250) { /* Prime machines: ASCII+128 */ if (ic >= 225 && ic <= 250) { *(unsigned char *)subnam = (char) (ic - 32); for (i__ = 2; i__ <= 6; ++i__) { ic = *(unsigned char *)&subnam[i__ - 1]; if (ic >= 225 && ic <= 250) { *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32); } /* L40: */ } } } *(unsigned char *)c1 = *(unsigned char *)subnam; sname = *(unsigned char *)c1 == 'S' || *(unsigned char *)c1 == 'D'; cname = *(unsigned char *)c1 == 'C' || *(unsigned char *)c1 == 'Z'; if (! (cname || sname)) { return ret_val; } s_copy(c2, subnam + 1, (ftnlen)2, (ftnlen)2); s_copy(c3, subnam + 3, (ftnlen)3, (ftnlen)3); s_copy(c4, c3 + 1, (ftnlen)2, (ftnlen)2); twostage = i_len(subnam, (ftnlen)16) >= 11 && *(unsigned char *)&subnam[ 10] == '2'; switch (*ispec) { case 1: goto L50; case 2: goto L60; case 3: goto L70; } L50: /* ISPEC = 1: block size */ /* In these examples, separate code is provided for setting NB for */ /* real and complex. We assume that NB will take the same value in */ /* single or double precision. */ nb = 1; if (s_cmp(subnam + 1, "LAORH", (ftnlen)5, (ftnlen)5) == 0) { /* This is for *LAORHR_GETRFNP routine */ if (sname) { nb = 32; } else { nb = 32; } } else if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) { if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nb = 64; } else { nb = 64; } } else if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen) 3, (ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nb = 32; } else { nb = 32; } } else if (s_cmp(c3, "QR ", (ftnlen)3, (ftnlen)3) == 0) { if (*n3 == 1) { if (sname) { /* M*N */ if (*n1 * *n2 <= 131072 || *n1 <= 8192) { nb = *n1; } else { nb = 32768 / *n2; } } else { if (*n1 * *n2 <= 131072 || *n1 <= 8192) { nb = *n1; } else { nb = 32768 / *n2; } } } else { if (sname) { nb = 1; } else { nb = 1; } } } else if (s_cmp(c3, "LQ ", (ftnlen)3, (ftnlen)3) == 0) { if (*n3 == 2) { if (sname) { /* M*N */ if (*n1 * *n2 <= 131072 || *n1 <= 8192) { nb = *n1; } else { nb = 32768 / *n2; } } else { if (*n1 * *n2 <= 131072 || *n1 <= 8192) { nb = *n1; } else { nb = 32768 / *n2; } } } else { if (sname) { nb = 1; } else { nb = 1; } } } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nb = 32; } else { nb = 32; } } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nb = 32; } else { nb = 32; } } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nb = 64; } else { nb = 64; } } } else if (s_cmp(c2, "PO", (ftnlen)2, (ftnlen)2) == 0) { if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nb = 64; } else { nb = 64; } } } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) { if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { if (twostage) { nb = 192; } else { nb = 64; } } else { if (twostage) { nb = 192; } else { nb = 64; } } } else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { nb = 32; } else if (sname && s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) { nb = 64; } } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) { if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { if (twostage) { nb = 192; } else { nb = 64; } } else if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { nb = 32; } else if (s_cmp(c3, "GST", (ftnlen)3, (ftnlen)3) == 0) { nb = 64; } } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) { if (*(unsigned char *)c3 == 'G') { if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( ftnlen)2, (ftnlen)2) == 0) { nb = 32; } } else if (*(unsigned char *)c3 == 'M') { if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( ftnlen)2, (ftnlen)2) == 0) { nb = 32; } } } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) { if (*(unsigned char *)c3 == 'G') { if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( ftnlen)2, (ftnlen)2) == 0) { nb = 32; } } else if (*(unsigned char *)c3 == 'M') { if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( ftnlen)2, (ftnlen)2) == 0) { nb = 32; } } } else if (s_cmp(c2, "GB", (ftnlen)2, (ftnlen)2) == 0) { if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { if (*n4 <= 64) { nb = 1; } else { nb = 32; } } else { if (*n4 <= 64) { nb = 1; } else { nb = 32; } } } } else if (s_cmp(c2, "PB", (ftnlen)2, (ftnlen)2) == 0) { if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { if (*n2 <= 64) { nb = 1; } else { nb = 32; } } else { if (*n2 <= 64) { nb = 1; } else { nb = 32; } } } } else if (s_cmp(c2, "TR", (ftnlen)2, (ftnlen)2) == 0) { if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nb = 64; } else { nb = 64; } } else if (s_cmp(c3, "EVC", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nb = 64; } else { nb = 64; } } } else if (s_cmp(c2, "LA", (ftnlen)2, (ftnlen)2) == 0) { if (s_cmp(c3, "UUM", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nb = 64; } else { nb = 64; } } } else if (sname && s_cmp(c2, "ST", (ftnlen)2, (ftnlen)2) == 0) { if (s_cmp(c3, "EBZ", (ftnlen)3, (ftnlen)3) == 0) { nb = 1; } } else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) { nb = 32; if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nb = 32; } else { nb = 32; } } } ret_val = nb; return ret_val; L60: /* ISPEC = 2: minimum block size */ nbmin = 2; if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) { if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", ( ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, ( ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nbmin = 2; } else { nbmin = 2; } } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nbmin = 2; } else { nbmin = 2; } } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nbmin = 2; } else { nbmin = 2; } } else if (s_cmp(c3, "TRI", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nbmin = 2; } else { nbmin = 2; } } } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) { if (s_cmp(c3, "TRF", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nbmin = 8; } else { nbmin = 8; } } else if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { nbmin = 2; } } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) { if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { nbmin = 2; } } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) { if (*(unsigned char *)c3 == 'G') { if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( ftnlen)2, (ftnlen)2) == 0) { nbmin = 2; } } else if (*(unsigned char *)c3 == 'M') { if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( ftnlen)2, (ftnlen)2) == 0) { nbmin = 2; } } } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) { if (*(unsigned char *)c3 == 'G') { if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( ftnlen)2, (ftnlen)2) == 0) { nbmin = 2; } } else if (*(unsigned char *)c3 == 'M') { if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( ftnlen)2, (ftnlen)2) == 0) { nbmin = 2; } } } else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) { nbmin = 2; if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) { nbmin = 2; } } ret_val = nbmin; return ret_val; L70: /* ISPEC = 3: crossover point */ nx = 0; if (s_cmp(c2, "GE", (ftnlen)2, (ftnlen)2) == 0) { if (s_cmp(c3, "QRF", (ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "RQF", ( ftnlen)3, (ftnlen)3) == 0 || s_cmp(c3, "LQF", (ftnlen)3, ( ftnlen)3) == 0 || s_cmp(c3, "QLF", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nx = 128; } else { nx = 128; } } else if (s_cmp(c3, "HRD", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nx = 128; } else { nx = 128; } } else if (s_cmp(c3, "BRD", (ftnlen)3, (ftnlen)3) == 0) { if (sname) { nx = 128; } else { nx = 128; } } } else if (s_cmp(c2, "SY", (ftnlen)2, (ftnlen)2) == 0) { if (sname && s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { nx = 32; } } else if (cname && s_cmp(c2, "HE", (ftnlen)2, (ftnlen)2) == 0) { if (s_cmp(c3, "TRD", (ftnlen)3, (ftnlen)3) == 0) { nx = 32; } } else if (sname && s_cmp(c2, "OR", (ftnlen)2, (ftnlen)2) == 0) { if (*(unsigned char *)c3 == 'G') { if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( ftnlen)2, (ftnlen)2) == 0) { nx = 128; } } } else if (cname && s_cmp(c2, "UN", (ftnlen)2, (ftnlen)2) == 0) { if (*(unsigned char *)c3 == 'G') { if (s_cmp(c4, "QR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "RQ", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "LQ", (ftnlen)2, ( ftnlen)2) == 0 || s_cmp(c4, "QL", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "HR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp( c4, "TR", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(c4, "BR", ( ftnlen)2, (ftnlen)2) == 0) { nx = 128; } } } else if (s_cmp(c2, "GG", (ftnlen)2, (ftnlen)2) == 0) { nx = 128; if (s_cmp(c3, "HD3", (ftnlen)3, (ftnlen)3) == 0) { nx = 128; } } ret_val = nx; return ret_val; L80: /* ISPEC = 4: number of shifts (used by xHSEQR) */ ret_val = 6; return ret_val; L90: /* ISPEC = 5: minimum column dimension (not used) */ ret_val = 2; return ret_val; L100: /* ISPEC = 6: crossover point for SVD (used by xGELSS and xGESVD) */ ret_val = (integer) ((real) f2cmin(*n1,*n2) * 1.6f); return ret_val; L110: /* ISPEC = 7: number of processors (not used) */ ret_val = 1; return ret_val; L120: /* ISPEC = 8: crossover point for multishift (used by xHSEQR) */ ret_val = 50; return ret_val; L130: /* ISPEC = 9: maximum size of the subproblems at the bottom of the */ /* computation tree in the divide-and-conquer algorithm */ /* (used by xGELSD and xGESDD) */ ret_val = 25; return ret_val; L140: /* ISPEC = 10: ieee NaN arithmetic can be trusted not to trap */ /* ILAENV = 0 */ ret_val = 1; if (ret_val == 1) { ret_val = ieeeck_(&c__1, &c_b174, &c_b175); } return ret_val; L150: /* ISPEC = 11: infinity arithmetic can be trusted not to trap */ /* ILAENV = 0 */ ret_val = 1; if (ret_val == 1) { ret_val = ieeeck_(&c__0, &c_b174, &c_b175); } return ret_val; L160: /* 12 <= ISPEC <= 16: xHSEQR or related subroutines. */ ret_val = iparmq_(ispec, name__, opts, n1, n2, n3, n4) ; return ret_val; /* End of ILAENV */ } /* ilaenv_ */