#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b SLA_GBAMV performs a matrix-vector operation to calculate error bounds. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download SLA_GBAMV + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE SLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X, */ /* INCX, BETA, Y, INCY ) */ /* REAL ALPHA, BETA */ /* INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS */ /* REAL AB( LDAB, * ), X( * ), Y( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > SLA_GBAMV performs one of the matrix-vector operations */ /* > */ /* > y := alpha*abs(A)*abs(x) + beta*abs(y), */ /* > or y := alpha*abs(A)**T*abs(x) + beta*abs(y), */ /* > */ /* > where alpha and beta are scalars, x and y are vectors and A is an */ /* > m by n matrix. */ /* > */ /* > This function is primarily used in calculating error bounds. */ /* > To protect against underflow during evaluation, components in */ /* > the resulting vector are perturbed away from zero by (N+1) */ /* > times the underflow threshold. To prevent unnecessarily large */ /* > errors for block-structure embedded in general matrices, */ /* > "symbolically" zero components are not perturbed. A zero */ /* > entry is considered "symbolic" if all multiplications involved */ /* > in computing that entry have at least one zero multiplicand. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] TRANS */ /* > \verbatim */ /* > TRANS is INTEGER */ /* > On entry, TRANS specifies the operation to be performed as */ /* > follows: */ /* > */ /* > BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y) */ /* > BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) */ /* > BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) */ /* > */ /* > Unchanged on exit. */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > On entry, M specifies the number of rows of the matrix A. */ /* > M must be at least zero. */ /* > Unchanged on exit. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > On entry, N specifies the number of columns of the matrix A. */ /* > N must be at least zero. */ /* > Unchanged on exit. */ /* > \endverbatim */ /* > */ /* > \param[in] KL */ /* > \verbatim */ /* > KL is INTEGER */ /* > The number of subdiagonals within the band of A. KL >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] KU */ /* > \verbatim */ /* > KU is INTEGER */ /* > The number of superdiagonals within the band of A. KU >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] ALPHA */ /* > \verbatim */ /* > ALPHA is REAL */ /* > On entry, ALPHA specifies the scalar alpha. */ /* > Unchanged on exit. */ /* > \endverbatim */ /* > */ /* > \param[in] AB */ /* > \verbatim */ /* > AB is REAL array, dimension ( LDAB, n ) */ /* > Before entry, the leading m by n part of the array AB must */ /* > contain the matrix of coefficients. */ /* > Unchanged on exit. */ /* > \endverbatim */ /* > */ /* > \param[in] LDAB */ /* > \verbatim */ /* > LDAB is INTEGER */ /* > On entry, LDA specifies the first dimension of AB as declared */ /* > in the calling (sub) program. LDAB must be at least */ /* > f2cmax( 1, m ). */ /* > Unchanged on exit. */ /* > \endverbatim */ /* > */ /* > \param[in] X */ /* > \verbatim */ /* > X is REAL array, dimension */ /* > ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' */ /* > and at least */ /* > ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. */ /* > Before entry, the incremented array X must contain the */ /* > vector x. */ /* > Unchanged on exit. */ /* > \endverbatim */ /* > */ /* > \param[in] INCX */ /* > \verbatim */ /* > INCX is INTEGER */ /* > On entry, INCX specifies the increment for the elements of */ /* > X. INCX must not be zero. */ /* > Unchanged on exit. */ /* > \endverbatim */ /* > */ /* > \param[in] BETA */ /* > \verbatim */ /* > BETA is REAL */ /* > On entry, BETA specifies the scalar beta. When BETA is */ /* > supplied as zero then Y need not be set on input. */ /* > Unchanged on exit. */ /* > \endverbatim */ /* > */ /* > \param[in,out] Y */ /* > \verbatim */ /* > Y is REAL array, dimension */ /* > ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' */ /* > and at least */ /* > ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. */ /* > Before entry with BETA non-zero, the incremented array Y */ /* > must contain the vector y. On exit, Y is overwritten by the */ /* > updated vector y. */ /* > \endverbatim */ /* > */ /* > \param[in] INCY */ /* > \verbatim */ /* > INCY is INTEGER */ /* > On entry, INCY specifies the increment for the elements of */ /* > Y. INCY must not be zero. */ /* > Unchanged on exit. */ /* > */ /* > Level 2 Blas routine. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date June 2017 */ /* > \ingroup realGBcomputational */ /* ===================================================================== */ /* Subroutine */ int sla_gbamv_(integer *trans, integer *m, integer *n, integer *kl, integer *ku, real *alpha, real *ab, integer *ldab, real * x, integer *incx, real *beta, real *y, integer *incy) { /* System generated locals */ integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4; real r__1; /* Local variables */ integer info; real temp; integer lenx, leny; extern integer ilatrans_(char *); real safe1; integer i__, j; logical symb_zero__; integer kd, ke, iy, jx, kx, ky; extern real slamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); /* -- LAPACK computational routine (version 3.7.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* June 2017 */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1 * 1; ab -= ab_offset; --x; --y; /* Function Body */ info = 0; if (! (*trans == ilatrans_("N") || *trans == ilatrans_("T") || *trans == ilatrans_("C"))) { info = 1; } else if (*m < 0) { info = 2; } else if (*n < 0) { info = 3; } else if (*kl < 0 || *kl > *m - 1) { info = 4; } else if (*ku < 0 || *ku > *n - 1) { info = 5; } else if (*ldab < *kl + *ku + 1) { info = 6; } else if (*incx == 0) { info = 8; } else if (*incy == 0) { info = 11; } if (info != 0) { xerbla_("SLA_GBAMV ", &info, (ftnlen)10); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0 || *alpha == 0.f && *beta == 1.f) { return 0; } /* Set LENX and LENY, the lengths of the vectors x and y, and set */ /* up the start points in X and Y. */ if (*trans == ilatrans_("N")) { lenx = *n; leny = *m; } else { lenx = *m; leny = *n; } if (*incx > 0) { kx = 1; } else { kx = 1 - (lenx - 1) * *incx; } if (*incy > 0) { ky = 1; } else { ky = 1 - (leny - 1) * *incy; } /* Set SAFE1 essentially to be the underflow threshold times the */ /* number of additions in each row. */ safe1 = slamch_("Safe minimum"); safe1 = (*n + 1) * safe1; /* Form y := alpha*abs(A)*abs(x) + beta*abs(y). */ /* The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to */ /* the inexact flag. Still doesn't help change the iteration order */ /* to per-column. */ kd = *ku + 1; ke = *kl + 1; iy = ky; if (*incx == 1) { if (*trans == ilatrans_("N")) { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { if (*beta == 0.f) { symb_zero__ = TRUE_; y[iy] = 0.f; } else if (y[iy] == 0.f) { symb_zero__ = TRUE_; } else { symb_zero__ = FALSE_; y[iy] = *beta * (r__1 = y[iy], abs(r__1)); } if (*alpha != 0.f) { /* Computing MAX */ i__2 = i__ - *kl; /* Computing MIN */ i__4 = i__ + *ku; i__3 = f2cmin(i__4,lenx); for (j = f2cmax(i__2,1); j <= i__3; ++j) { temp = (r__1 = ab[kd + i__ - j + j * ab_dim1], abs( r__1)); symb_zero__ = symb_zero__ && (x[j] == 0.f || temp == 0.f); y[iy] += *alpha * (r__1 = x[j], abs(r__1)) * temp; } } if (! symb_zero__) { y[iy] += r_sign(&safe1, &y[iy]); } iy += *incy; } } else { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { if (*beta == 0.f) { symb_zero__ = TRUE_; y[iy] = 0.f; } else if (y[iy] == 0.f) { symb_zero__ = TRUE_; } else { symb_zero__ = FALSE_; y[iy] = *beta * (r__1 = y[iy], abs(r__1)); } if (*alpha != 0.f) { /* Computing MAX */ i__3 = i__ - *kl; /* Computing MIN */ i__4 = i__ + *ku; i__2 = f2cmin(i__4,lenx); for (j = f2cmax(i__3,1); j <= i__2; ++j) { temp = (r__1 = ab[ke - i__ + j + i__ * ab_dim1], abs( r__1)); symb_zero__ = symb_zero__ && (x[j] == 0.f || temp == 0.f); y[iy] += *alpha * (r__1 = x[j], abs(r__1)) * temp; } } if (! symb_zero__) { y[iy] += r_sign(&safe1, &y[iy]); } iy += *incy; } } } else { if (*trans == ilatrans_("N")) { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { if (*beta == 0.f) { symb_zero__ = TRUE_; y[iy] = 0.f; } else if (y[iy] == 0.f) { symb_zero__ = TRUE_; } else { symb_zero__ = FALSE_; y[iy] = *beta * (r__1 = y[iy], abs(r__1)); } if (*alpha != 0.f) { jx = kx; /* Computing MAX */ i__2 = i__ - *kl; /* Computing MIN */ i__4 = i__ + *ku; i__3 = f2cmin(i__4,lenx); for (j = f2cmax(i__2,1); j <= i__3; ++j) { temp = (r__1 = ab[kd + i__ - j + j * ab_dim1], abs( r__1)); symb_zero__ = symb_zero__ && (x[jx] == 0.f || temp == 0.f); y[iy] += *alpha * (r__1 = x[jx], abs(r__1)) * temp; jx += *incx; } } if (! symb_zero__) { y[iy] += r_sign(&safe1, &y[iy]); } iy += *incy; } } else { i__1 = leny; for (i__ = 1; i__ <= i__1; ++i__) { if (*beta == 0.f) { symb_zero__ = TRUE_; y[iy] = 0.f; } else if (y[iy] == 0.f) { symb_zero__ = TRUE_; } else { symb_zero__ = FALSE_; y[iy] = *beta * (r__1 = y[iy], abs(r__1)); } if (*alpha != 0.f) { jx = kx; /* Computing MAX */ i__3 = i__ - *kl; /* Computing MIN */ i__4 = i__ + *ku; i__2 = f2cmin(i__4,lenx); for (j = f2cmax(i__3,1); j <= i__2; ++j) { temp = (r__1 = ab[ke - i__ + j + i__ * ab_dim1], abs( r__1)); symb_zero__ = symb_zero__ && (x[jx] == 0.f || temp == 0.f); y[iy] += *alpha * (r__1 = x[jx], abs(r__1)) * temp; jx += *incx; } } if (! symb_zero__) { y[iy] += r_sign(&safe1, &y[iy]); } iy += *incy; } } } return 0; /* End of SLA_GBAMV */ } /* sla_gbamv__ */