#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b SLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download SLAEIN + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE SLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B, */ /* LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO ) */ /* LOGICAL NOINIT, RIGHTV */ /* INTEGER INFO, LDB, LDH, N */ /* REAL BIGNUM, EPS3, SMLNUM, WI, WR */ /* REAL B( LDB, * ), H( LDH, * ), VI( * ), VR( * ), */ /* $ WORK( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > SLAEIN uses inverse iteration to find a right or left eigenvector */ /* > corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg */ /* > matrix H. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] RIGHTV */ /* > \verbatim */ /* > RIGHTV is LOGICAL */ /* > = .TRUE. : compute right eigenvector; */ /* > = .FALSE.: compute left eigenvector. */ /* > \endverbatim */ /* > */ /* > \param[in] NOINIT */ /* > \verbatim */ /* > NOINIT is LOGICAL */ /* > = .TRUE. : no initial vector supplied in (VR,VI). */ /* > = .FALSE.: initial vector supplied in (VR,VI). */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix H. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] H */ /* > \verbatim */ /* > H is REAL array, dimension (LDH,N) */ /* > The upper Hessenberg matrix H. */ /* > \endverbatim */ /* > */ /* > \param[in] LDH */ /* > \verbatim */ /* > LDH is INTEGER */ /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[in] WR */ /* > \verbatim */ /* > WR is REAL */ /* > \endverbatim */ /* > */ /* > \param[in] WI */ /* > \verbatim */ /* > WI is REAL */ /* > The real and imaginary parts of the eigenvalue of H whose */ /* > corresponding right or left eigenvector is to be computed. */ /* > \endverbatim */ /* > */ /* > \param[in,out] VR */ /* > \verbatim */ /* > VR is REAL array, dimension (N) */ /* > \endverbatim */ /* > */ /* > \param[in,out] VI */ /* > \verbatim */ /* > VI is REAL array, dimension (N) */ /* > On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain */ /* > a real starting vector for inverse iteration using the real */ /* > eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI */ /* > must contain the real and imaginary parts of a complex */ /* > starting vector for inverse iteration using the complex */ /* > eigenvalue (WR,WI); otherwise VR and VI need not be set. */ /* > On exit, if WI = 0.0 (real eigenvalue), VR contains the */ /* > computed real eigenvector; if WI.ne.0.0 (complex eigenvalue), */ /* > VR and VI contain the real and imaginary parts of the */ /* > computed complex eigenvector. The eigenvector is normalized */ /* > so that the component of largest magnitude has magnitude 1; */ /* > here the magnitude of a complex number (x,y) is taken to be */ /* > |x| + |y|. */ /* > VI is not referenced if WI = 0.0. */ /* > \endverbatim */ /* > */ /* > \param[out] B */ /* > \verbatim */ /* > B is REAL array, dimension (LDB,N) */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > The leading dimension of the array B. LDB >= N+1. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is REAL array, dimension (N) */ /* > \endverbatim */ /* > */ /* > \param[in] EPS3 */ /* > \verbatim */ /* > EPS3 is REAL */ /* > A small machine-dependent value which is used to perturb */ /* > close eigenvalues, and to replace zero pivots. */ /* > \endverbatim */ /* > */ /* > \param[in] SMLNUM */ /* > \verbatim */ /* > SMLNUM is REAL */ /* > A machine-dependent value close to the underflow threshold. */ /* > \endverbatim */ /* > */ /* > \param[in] BIGNUM */ /* > \verbatim */ /* > BIGNUM is REAL */ /* > A machine-dependent value close to the overflow threshold. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > = 1: inverse iteration did not converge; VR is set to the */ /* > last iterate, and so is VI if WI.ne.0.0. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup realOTHERauxiliary */ /* ===================================================================== */ /* Subroutine */ int slaein_(logical *rightv, logical *noinit, integer *n, real *h__, integer *ldh, real *wr, real *wi, real *vr, real *vi, real *b, integer *ldb, real *work, real *eps3, real *smlnum, real *bignum, integer *info) { /* System generated locals */ integer b_dim1, b_offset, h_dim1, h_offset, i__1, i__2, i__3, i__4; real r__1, r__2, r__3, r__4; /* Local variables */ integer ierr; real temp, norm, vmax; extern real snrm2_(integer *, real *, integer *); integer i__, j; real scale, w, x, y; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); char trans[1]; real vcrit; extern real sasum_(integer *, real *, integer *); integer i1, i2, i3; real rootn, vnorm, w1; extern real slapy2_(real *, real *); real ei, ej, absbii, absbjj, xi, xr; extern integer isamax_(integer *, real *, integer *); extern /* Subroutine */ int sladiv_(real *, real *, real *, real *, real * , real *); char normin[1]; real nrmsml; extern /* Subroutine */ int slatrs_(char *, char *, char *, char *, integer *, real *, integer *, real *, real *, real *, integer *); real growto, rec; integer its; /* -- LAPACK auxiliary routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Parameter adjustments */ h_dim1 = *ldh; h_offset = 1 + h_dim1 * 1; h__ -= h_offset; --vr; --vi; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --work; /* Function Body */ *info = 0; /* GROWTO is the threshold used in the acceptance test for an */ /* eigenvector. */ rootn = sqrt((real) (*n)); growto = .1f / rootn; /* Computing MAX */ r__1 = 1.f, r__2 = *eps3 * rootn; nrmsml = f2cmax(r__1,r__2) * *smlnum; /* Form B = H - (WR,WI)*I (except that the subdiagonal elements and */ /* the imaginary parts of the diagonal elements are not stored). */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = h__[i__ + j * h_dim1]; /* L10: */ } b[j + j * b_dim1] = h__[j + j * h_dim1] - *wr; /* L20: */ } if (*wi == 0.f) { /* Real eigenvalue. */ if (*noinit) { /* Set initial vector. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { vr[i__] = *eps3; /* L30: */ } } else { /* Scale supplied initial vector. */ vnorm = snrm2_(n, &vr[1], &c__1); r__1 = *eps3 * rootn / f2cmax(vnorm,nrmsml); sscal_(n, &r__1, &vr[1], &c__1); } if (*rightv) { /* LU decomposition with partial pivoting of B, replacing zero */ /* pivots by EPS3. */ i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { ei = h__[i__ + 1 + i__ * h_dim1]; if ((r__1 = b[i__ + i__ * b_dim1], abs(r__1)) < abs(ei)) { /* Interchange rows and eliminate. */ x = b[i__ + i__ * b_dim1] / ei; b[i__ + i__ * b_dim1] = ei; i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { temp = b[i__ + 1 + j * b_dim1]; b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - x * temp; b[i__ + j * b_dim1] = temp; /* L40: */ } } else { /* Eliminate without interchange. */ if (b[i__ + i__ * b_dim1] == 0.f) { b[i__ + i__ * b_dim1] = *eps3; } x = ei / b[i__ + i__ * b_dim1]; if (x != 0.f) { i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { b[i__ + 1 + j * b_dim1] -= x * b[i__ + j * b_dim1] ; /* L50: */ } } } /* L60: */ } if (b[*n + *n * b_dim1] == 0.f) { b[*n + *n * b_dim1] = *eps3; } *(unsigned char *)trans = 'N'; } else { /* UL decomposition with partial pivoting of B, replacing zero */ /* pivots by EPS3. */ for (j = *n; j >= 2; --j) { ej = h__[j + (j - 1) * h_dim1]; if ((r__1 = b[j + j * b_dim1], abs(r__1)) < abs(ej)) { /* Interchange columns and eliminate. */ x = b[j + j * b_dim1] / ej; b[j + j * b_dim1] = ej; i__1 = j - 1; for (i__ = 1; i__ <= i__1; ++i__) { temp = b[i__ + (j - 1) * b_dim1]; b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - x * temp; b[i__ + j * b_dim1] = temp; /* L70: */ } } else { /* Eliminate without interchange. */ if (b[j + j * b_dim1] == 0.f) { b[j + j * b_dim1] = *eps3; } x = ej / b[j + j * b_dim1]; if (x != 0.f) { i__1 = j - 1; for (i__ = 1; i__ <= i__1; ++i__) { b[i__ + (j - 1) * b_dim1] -= x * b[i__ + j * b_dim1]; /* L80: */ } } } /* L90: */ } if (b[b_dim1 + 1] == 0.f) { b[b_dim1 + 1] = *eps3; } *(unsigned char *)trans = 'T'; } *(unsigned char *)normin = 'N'; i__1 = *n; for (its = 1; its <= i__1; ++its) { /* Solve U*x = scale*v for a right eigenvector */ /* or U**T*x = scale*v for a left eigenvector, */ /* overwriting x on v. */ slatrs_("Upper", trans, "Nonunit", normin, n, &b[b_offset], ldb, & vr[1], &scale, &work[1], &ierr); *(unsigned char *)normin = 'Y'; /* Test for sufficient growth in the norm of v. */ vnorm = sasum_(n, &vr[1], &c__1); if (vnorm >= growto * scale) { goto L120; } /* Choose new orthogonal starting vector and try again. */ temp = *eps3 / (rootn + 1.f); vr[1] = *eps3; i__2 = *n; for (i__ = 2; i__ <= i__2; ++i__) { vr[i__] = temp; /* L100: */ } vr[*n - its + 1] -= *eps3 * rootn; /* L110: */ } /* Failure to find eigenvector in N iterations. */ *info = 1; L120: /* Normalize eigenvector. */ i__ = isamax_(n, &vr[1], &c__1); r__2 = 1.f / (r__1 = vr[i__], abs(r__1)); sscal_(n, &r__2, &vr[1], &c__1); } else { /* Complex eigenvalue. */ if (*noinit) { /* Set initial vector. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { vr[i__] = *eps3; vi[i__] = 0.f; /* L130: */ } } else { /* Scale supplied initial vector. */ r__1 = snrm2_(n, &vr[1], &c__1); r__2 = snrm2_(n, &vi[1], &c__1); norm = slapy2_(&r__1, &r__2); rec = *eps3 * rootn / f2cmax(norm,nrmsml); sscal_(n, &rec, &vr[1], &c__1); sscal_(n, &rec, &vi[1], &c__1); } if (*rightv) { /* LU decomposition with partial pivoting of B, replacing zero */ /* pivots by EPS3. */ /* The imaginary part of the (i,j)-th element of U is stored in */ /* B(j+1,i). */ b[b_dim1 + 2] = -(*wi); i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { b[i__ + 1 + b_dim1] = 0.f; /* L140: */ } i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { absbii = slapy2_(&b[i__ + i__ * b_dim1], &b[i__ + 1 + i__ * b_dim1]); ei = h__[i__ + 1 + i__ * h_dim1]; if (absbii < abs(ei)) { /* Interchange rows and eliminate. */ xr = b[i__ + i__ * b_dim1] / ei; xi = b[i__ + 1 + i__ * b_dim1] / ei; b[i__ + i__ * b_dim1] = ei; b[i__ + 1 + i__ * b_dim1] = 0.f; i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { temp = b[i__ + 1 + j * b_dim1]; b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - xr * temp; b[j + 1 + (i__ + 1) * b_dim1] = b[j + 1 + i__ * b_dim1] - xi * temp; b[i__ + j * b_dim1] = temp; b[j + 1 + i__ * b_dim1] = 0.f; /* L150: */ } b[i__ + 2 + i__ * b_dim1] = -(*wi); b[i__ + 1 + (i__ + 1) * b_dim1] -= xi * *wi; b[i__ + 2 + (i__ + 1) * b_dim1] += xr * *wi; } else { /* Eliminate without interchanging rows. */ if (absbii == 0.f) { b[i__ + i__ * b_dim1] = *eps3; b[i__ + 1 + i__ * b_dim1] = 0.f; absbii = *eps3; } ei = ei / absbii / absbii; xr = b[i__ + i__ * b_dim1] * ei; xi = -b[i__ + 1 + i__ * b_dim1] * ei; i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { b[i__ + 1 + j * b_dim1] = b[i__ + 1 + j * b_dim1] - xr * b[i__ + j * b_dim1] + xi * b[j + 1 + i__ * b_dim1]; b[j + 1 + (i__ + 1) * b_dim1] = -xr * b[j + 1 + i__ * b_dim1] - xi * b[i__ + j * b_dim1]; /* L160: */ } b[i__ + 2 + (i__ + 1) * b_dim1] -= *wi; } /* Compute 1-norm of offdiagonal elements of i-th row. */ i__2 = *n - i__; i__3 = *n - i__; work[i__] = sasum_(&i__2, &b[i__ + (i__ + 1) * b_dim1], ldb) + sasum_(&i__3, &b[i__ + 2 + i__ * b_dim1], &c__1); /* L170: */ } if (b[*n + *n * b_dim1] == 0.f && b[*n + 1 + *n * b_dim1] == 0.f) { b[*n + *n * b_dim1] = *eps3; } work[*n] = 0.f; i1 = *n; i2 = 1; i3 = -1; } else { /* UL decomposition with partial pivoting of conjg(B), */ /* replacing zero pivots by EPS3. */ /* The imaginary part of the (i,j)-th element of U is stored in */ /* B(j+1,i). */ b[*n + 1 + *n * b_dim1] = *wi; i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { b[*n + 1 + j * b_dim1] = 0.f; /* L180: */ } for (j = *n; j >= 2; --j) { ej = h__[j + (j - 1) * h_dim1]; absbjj = slapy2_(&b[j + j * b_dim1], &b[j + 1 + j * b_dim1]); if (absbjj < abs(ej)) { /* Interchange columns and eliminate */ xr = b[j + j * b_dim1] / ej; xi = b[j + 1 + j * b_dim1] / ej; b[j + j * b_dim1] = ej; b[j + 1 + j * b_dim1] = 0.f; i__1 = j - 1; for (i__ = 1; i__ <= i__1; ++i__) { temp = b[i__ + (j - 1) * b_dim1]; b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - xr * temp; b[j + i__ * b_dim1] = b[j + 1 + i__ * b_dim1] - xi * temp; b[i__ + j * b_dim1] = temp; b[j + 1 + i__ * b_dim1] = 0.f; /* L190: */ } b[j + 1 + (j - 1) * b_dim1] = *wi; b[j - 1 + (j - 1) * b_dim1] += xi * *wi; b[j + (j - 1) * b_dim1] -= xr * *wi; } else { /* Eliminate without interchange. */ if (absbjj == 0.f) { b[j + j * b_dim1] = *eps3; b[j + 1 + j * b_dim1] = 0.f; absbjj = *eps3; } ej = ej / absbjj / absbjj; xr = b[j + j * b_dim1] * ej; xi = -b[j + 1 + j * b_dim1] * ej; i__1 = j - 1; for (i__ = 1; i__ <= i__1; ++i__) { b[i__ + (j - 1) * b_dim1] = b[i__ + (j - 1) * b_dim1] - xr * b[i__ + j * b_dim1] + xi * b[j + 1 + i__ * b_dim1]; b[j + i__ * b_dim1] = -xr * b[j + 1 + i__ * b_dim1] - xi * b[i__ + j * b_dim1]; /* L200: */ } b[j + (j - 1) * b_dim1] += *wi; } /* Compute 1-norm of offdiagonal elements of j-th column. */ i__1 = j - 1; i__2 = j - 1; work[j] = sasum_(&i__1, &b[j * b_dim1 + 1], &c__1) + sasum_(& i__2, &b[j + 1 + b_dim1], ldb); /* L210: */ } if (b[b_dim1 + 1] == 0.f && b[b_dim1 + 2] == 0.f) { b[b_dim1 + 1] = *eps3; } work[1] = 0.f; i1 = 1; i2 = *n; i3 = 1; } i__1 = *n; for (its = 1; its <= i__1; ++its) { scale = 1.f; vmax = 1.f; vcrit = *bignum; /* Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector, */ /* or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector, */ /* overwriting (xr,xi) on (vr,vi). */ i__2 = i2; i__3 = i3; for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3) { if (work[i__] > vcrit) { rec = 1.f / vmax; sscal_(n, &rec, &vr[1], &c__1); sscal_(n, &rec, &vi[1], &c__1); scale *= rec; vmax = 1.f; vcrit = *bignum; } xr = vr[i__]; xi = vi[i__]; if (*rightv) { i__4 = *n; for (j = i__ + 1; j <= i__4; ++j) { xr = xr - b[i__ + j * b_dim1] * vr[j] + b[j + 1 + i__ * b_dim1] * vi[j]; xi = xi - b[i__ + j * b_dim1] * vi[j] - b[j + 1 + i__ * b_dim1] * vr[j]; /* L220: */ } } else { i__4 = i__ - 1; for (j = 1; j <= i__4; ++j) { xr = xr - b[j + i__ * b_dim1] * vr[j] + b[i__ + 1 + j * b_dim1] * vi[j]; xi = xi - b[j + i__ * b_dim1] * vi[j] - b[i__ + 1 + j * b_dim1] * vr[j]; /* L230: */ } } w = (r__1 = b[i__ + i__ * b_dim1], abs(r__1)) + (r__2 = b[i__ + 1 + i__ * b_dim1], abs(r__2)); if (w > *smlnum) { if (w < 1.f) { w1 = abs(xr) + abs(xi); if (w1 > w * *bignum) { rec = 1.f / w1; sscal_(n, &rec, &vr[1], &c__1); sscal_(n, &rec, &vi[1], &c__1); xr = vr[i__]; xi = vi[i__]; scale *= rec; vmax *= rec; } } /* Divide by diagonal element of B. */ sladiv_(&xr, &xi, &b[i__ + i__ * b_dim1], &b[i__ + 1 + i__ * b_dim1], &vr[i__], &vi[i__]); /* Computing MAX */ r__3 = (r__1 = vr[i__], abs(r__1)) + (r__2 = vi[i__], abs( r__2)); vmax = f2cmax(r__3,vmax); vcrit = *bignum / vmax; } else { i__4 = *n; for (j = 1; j <= i__4; ++j) { vr[j] = 0.f; vi[j] = 0.f; /* L240: */ } vr[i__] = 1.f; vi[i__] = 1.f; scale = 0.f; vmax = 1.f; vcrit = *bignum; } /* L250: */ } /* Test for sufficient growth in the norm of (VR,VI). */ vnorm = sasum_(n, &vr[1], &c__1) + sasum_(n, &vi[1], &c__1); if (vnorm >= growto * scale) { goto L280; } /* Choose a new orthogonal starting vector and try again. */ y = *eps3 / (rootn + 1.f); vr[1] = *eps3; vi[1] = 0.f; i__3 = *n; for (i__ = 2; i__ <= i__3; ++i__) { vr[i__] = y; vi[i__] = 0.f; /* L260: */ } vr[*n - its + 1] -= *eps3 * rootn; /* L270: */ } /* Failure to find eigenvector in N iterations */ *info = 1; L280: /* Normalize eigenvector. */ vnorm = 0.f; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ r__3 = vnorm, r__4 = (r__1 = vr[i__], abs(r__1)) + (r__2 = vi[i__] , abs(r__2)); vnorm = f2cmax(r__3,r__4); /* L290: */ } r__1 = 1.f / vnorm; sscal_(n, &r__1, &vr[1], &c__1); r__1 = 1.f / vnorm; sscal_(n, &r__1, &vi[1], &c__1); } return 0; /* End of SLAEIN */ } /* slaein_ */