#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download SLAGV2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE SLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL, */ /* CSR, SNR ) */ /* INTEGER LDA, LDB */ /* REAL CSL, CSR, SNL, SNR */ /* REAL A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ), */ /* $ B( LDB, * ), BETA( 2 ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 */ /* > matrix pencil (A,B) where B is upper triangular. This routine */ /* > computes orthogonal (rotation) matrices given by CSL, SNL and CSR, */ /* > SNR such that */ /* > */ /* > 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 */ /* > types), then */ /* > */ /* > [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] */ /* > [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] */ /* > */ /* > [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] */ /* > [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ], */ /* > */ /* > 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, */ /* > then */ /* > */ /* > [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] */ /* > [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] */ /* > */ /* > [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] */ /* > [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ] */ /* > */ /* > where b11 >= b22 > 0. */ /* > */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is REAL array, dimension (LDA, 2) */ /* > On entry, the 2 x 2 matrix A. */ /* > On exit, A is overwritten by the ``A-part'' of the */ /* > generalized Schur form. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > THe leading dimension of the array A. LDA >= 2. */ /* > \endverbatim */ /* > */ /* > \param[in,out] B */ /* > \verbatim */ /* > B is REAL array, dimension (LDB, 2) */ /* > On entry, the upper triangular 2 x 2 matrix B. */ /* > On exit, B is overwritten by the ``B-part'' of the */ /* > generalized Schur form. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > THe leading dimension of the array B. LDB >= 2. */ /* > \endverbatim */ /* > */ /* > \param[out] ALPHAR */ /* > \verbatim */ /* > ALPHAR is REAL array, dimension (2) */ /* > \endverbatim */ /* > */ /* > \param[out] ALPHAI */ /* > \verbatim */ /* > ALPHAI is REAL array, dimension (2) */ /* > \endverbatim */ /* > */ /* > \param[out] BETA */ /* > \verbatim */ /* > BETA is REAL array, dimension (2) */ /* > (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the */ /* > pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may */ /* > be zero. */ /* > \endverbatim */ /* > */ /* > \param[out] CSL */ /* > \verbatim */ /* > CSL is REAL */ /* > The cosine of the left rotation matrix. */ /* > \endverbatim */ /* > */ /* > \param[out] SNL */ /* > \verbatim */ /* > SNL is REAL */ /* > The sine of the left rotation matrix. */ /* > \endverbatim */ /* > */ /* > \param[out] CSR */ /* > \verbatim */ /* > CSR is REAL */ /* > The cosine of the right rotation matrix. */ /* > \endverbatim */ /* > */ /* > \param[out] SNR */ /* > \verbatim */ /* > SNR is REAL */ /* > The sine of the right rotation matrix. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup realOTHERauxiliary */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */ /* ===================================================================== */ /* Subroutine */ int slagv2_(real *a, integer *lda, real *b, integer *ldb, real *alphar, real *alphai, real *beta, real *csl, real *snl, real * csr, real *snr) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset; real r__1, r__2, r__3, r__4, r__5, r__6; /* Local variables */ extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, integer *, real *, real *), slag2_(real *, integer *, real *, integer *, real *, real *, real *, real *, real *, real *); real r__, t, anorm, bnorm, h1, h2, h3, scale1, scale2; extern /* Subroutine */ int slasv2_(real *, real *, real *, real *, real * , real *, real *, real *, real *); extern real slapy2_(real *, real *); real ascale, bscale, wi, qq, rr; extern real slamch_(char *); real safmin; extern /* Subroutine */ int slartg_(real *, real *, real *, real *, real * ); real wr1, wr2, ulp; /* -- LAPACK auxiliary routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --alphar; --alphai; --beta; /* Function Body */ safmin = slamch_("S"); ulp = slamch_("P"); /* Scale A */ /* Computing MAX */ r__5 = (r__1 = a[a_dim1 + 1], abs(r__1)) + (r__2 = a[a_dim1 + 2], abs( r__2)), r__6 = (r__3 = a[(a_dim1 << 1) + 1], abs(r__3)) + (r__4 = a[(a_dim1 << 1) + 2], abs(r__4)), r__5 = f2cmax(r__5,r__6); anorm = f2cmax(r__5,safmin); ascale = 1.f / anorm; a[a_dim1 + 1] = ascale * a[a_dim1 + 1]; a[(a_dim1 << 1) + 1] = ascale * a[(a_dim1 << 1) + 1]; a[a_dim1 + 2] = ascale * a[a_dim1 + 2]; a[(a_dim1 << 1) + 2] = ascale * a[(a_dim1 << 1) + 2]; /* Scale B */ /* Computing MAX */ r__4 = (r__3 = b[b_dim1 + 1], abs(r__3)), r__5 = (r__1 = b[(b_dim1 << 1) + 1], abs(r__1)) + (r__2 = b[(b_dim1 << 1) + 2], abs(r__2)), r__4 = f2cmax(r__4,r__5); bnorm = f2cmax(r__4,safmin); bscale = 1.f / bnorm; b[b_dim1 + 1] = bscale * b[b_dim1 + 1]; b[(b_dim1 << 1) + 1] = bscale * b[(b_dim1 << 1) + 1]; b[(b_dim1 << 1) + 2] = bscale * b[(b_dim1 << 1) + 2]; /* Check if A can be deflated */ if ((r__1 = a[a_dim1 + 2], abs(r__1)) <= ulp) { *csl = 1.f; *snl = 0.f; *csr = 1.f; *snr = 0.f; a[a_dim1 + 2] = 0.f; b[b_dim1 + 2] = 0.f; wi = 0.f; /* Check if B is singular */ } else if ((r__1 = b[b_dim1 + 1], abs(r__1)) <= ulp) { slartg_(&a[a_dim1 + 1], &a[a_dim1 + 2], csl, snl, &r__); *csr = 1.f; *snr = 0.f; srot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl); srot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl); a[a_dim1 + 2] = 0.f; b[b_dim1 + 1] = 0.f; b[b_dim1 + 2] = 0.f; wi = 0.f; } else if ((r__1 = b[(b_dim1 << 1) + 2], abs(r__1)) <= ulp) { slartg_(&a[(a_dim1 << 1) + 2], &a[a_dim1 + 2], csr, snr, &t); *snr = -(*snr); srot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1, csr, snr); srot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1, csr, snr); *csl = 1.f; *snl = 0.f; a[a_dim1 + 2] = 0.f; b[b_dim1 + 2] = 0.f; b[(b_dim1 << 1) + 2] = 0.f; wi = 0.f; } else { /* B is nonsingular, first compute the eigenvalues of (A,B) */ slag2_(&a[a_offset], lda, &b[b_offset], ldb, &safmin, &scale1, & scale2, &wr1, &wr2, &wi); if (wi == 0.f) { /* two real eigenvalues, compute s*A-w*B */ h1 = scale1 * a[a_dim1 + 1] - wr1 * b[b_dim1 + 1]; h2 = scale1 * a[(a_dim1 << 1) + 1] - wr1 * b[(b_dim1 << 1) + 1]; h3 = scale1 * a[(a_dim1 << 1) + 2] - wr1 * b[(b_dim1 << 1) + 2]; rr = slapy2_(&h1, &h2); r__1 = scale1 * a[a_dim1 + 2]; qq = slapy2_(&r__1, &h3); if (rr > qq) { /* find right rotation matrix to zero 1,1 element of */ /* (sA - wB) */ slartg_(&h2, &h1, csr, snr, &t); } else { /* find right rotation matrix to zero 2,1 element of */ /* (sA - wB) */ r__1 = scale1 * a[a_dim1 + 2]; slartg_(&h3, &r__1, csr, snr, &t); } *snr = -(*snr); srot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1, csr, snr); srot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1, csr, snr); /* compute inf norms of A and B */ /* Computing MAX */ r__5 = (r__1 = a[a_dim1 + 1], abs(r__1)) + (r__2 = a[(a_dim1 << 1) + 1], abs(r__2)), r__6 = (r__3 = a[a_dim1 + 2], abs(r__3) ) + (r__4 = a[(a_dim1 << 1) + 2], abs(r__4)); h1 = f2cmax(r__5,r__6); /* Computing MAX */ r__5 = (r__1 = b[b_dim1 + 1], abs(r__1)) + (r__2 = b[(b_dim1 << 1) + 1], abs(r__2)), r__6 = (r__3 = b[b_dim1 + 2], abs(r__3) ) + (r__4 = b[(b_dim1 << 1) + 2], abs(r__4)); h2 = f2cmax(r__5,r__6); if (scale1 * h1 >= abs(wr1) * h2) { /* find left rotation matrix Q to zero out B(2,1) */ slartg_(&b[b_dim1 + 1], &b[b_dim1 + 2], csl, snl, &r__); } else { /* find left rotation matrix Q to zero out A(2,1) */ slartg_(&a[a_dim1 + 1], &a[a_dim1 + 2], csl, snl, &r__); } srot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl); srot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl); a[a_dim1 + 2] = 0.f; b[b_dim1 + 2] = 0.f; } else { /* a pair of complex conjugate eigenvalues */ /* first compute the SVD of the matrix B */ slasv2_(&b[b_dim1 + 1], &b[(b_dim1 << 1) + 1], &b[(b_dim1 << 1) + 2], &r__, &t, snr, csr, snl, csl); /* Form (A,B) := Q(A,B)Z**T where Q is left rotation matrix and */ /* Z is right rotation matrix computed from SLASV2 */ srot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl); srot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl); srot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1, csr, snr); srot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1, csr, snr); b[b_dim1 + 2] = 0.f; b[(b_dim1 << 1) + 1] = 0.f; } } /* Unscaling */ a[a_dim1 + 1] = anorm * a[a_dim1 + 1]; a[a_dim1 + 2] = anorm * a[a_dim1 + 2]; a[(a_dim1 << 1) + 1] = anorm * a[(a_dim1 << 1) + 1]; a[(a_dim1 << 1) + 2] = anorm * a[(a_dim1 << 1) + 2]; b[b_dim1 + 1] = bnorm * b[b_dim1 + 1]; b[b_dim1 + 2] = bnorm * b[b_dim1 + 2]; b[(b_dim1 << 1) + 1] = bnorm * b[(b_dim1 << 1) + 1]; b[(b_dim1 << 1) + 2] = bnorm * b[(b_dim1 << 1) + 2]; if (wi == 0.f) { alphar[1] = a[a_dim1 + 1]; alphar[2] = a[(a_dim1 << 1) + 2]; alphai[1] = 0.f; alphai[2] = 0.f; beta[1] = b[b_dim1 + 1]; beta[2] = b[(b_dim1 << 1) + 2]; } else { alphar[1] = anorm * wr1 / scale1 / bnorm; alphai[1] = anorm * wi / scale1 / bnorm; alphar[2] = alphar[1]; alphai[2] = -alphai[1]; beta[1] = 1.f; beta[2] = 1.f; } return 0; /* End of SLAGV2 */ } /* slagv2_ */