#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b SLASD2 merges the two sets of singular values together into a single sorted set. Used by sbdsdc . */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download SLASD2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE SLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT, */ /* LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX, */ /* IDXC, IDXQ, COLTYP, INFO ) */ /* INTEGER INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE */ /* REAL ALPHA, BETA */ /* INTEGER COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ), */ /* $ IDXQ( * ) */ /* REAL D( * ), DSIGMA( * ), U( LDU, * ), */ /* $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), */ /* $ Z( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > SLASD2 merges the two sets of singular values together into a single */ /* > sorted set. Then it tries to deflate the size of the problem. */ /* > There are two ways in which deflation can occur: when two or more */ /* > singular values are close together or if there is a tiny entry in the */ /* > Z vector. For each such occurrence the order of the related secular */ /* > equation problem is reduced by one. */ /* > */ /* > SLASD2 is called from SLASD1. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] NL */ /* > \verbatim */ /* > NL is INTEGER */ /* > The row dimension of the upper block. NL >= 1. */ /* > \endverbatim */ /* > */ /* > \param[in] NR */ /* > \verbatim */ /* > NR is INTEGER */ /* > The row dimension of the lower block. NR >= 1. */ /* > \endverbatim */ /* > */ /* > \param[in] SQRE */ /* > \verbatim */ /* > SQRE is INTEGER */ /* > = 0: the lower block is an NR-by-NR square matrix. */ /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */ /* > */ /* > The bidiagonal matrix has N = NL + NR + 1 rows and */ /* > M = N + SQRE >= N columns. */ /* > \endverbatim */ /* > */ /* > \param[out] K */ /* > \verbatim */ /* > K is INTEGER */ /* > Contains the dimension of the non-deflated matrix, */ /* > This is the order of the related secular equation. 1 <= K <=N. */ /* > \endverbatim */ /* > */ /* > \param[in,out] D */ /* > \verbatim */ /* > D is REAL array, dimension (N) */ /* > On entry D contains the singular values of the two submatrices */ /* > to be combined. On exit D contains the trailing (N-K) updated */ /* > singular values (those which were deflated) sorted into */ /* > increasing order. */ /* > \endverbatim */ /* > */ /* > \param[out] Z */ /* > \verbatim */ /* > Z is REAL array, dimension (N) */ /* > On exit Z contains the updating row vector in the secular */ /* > equation. */ /* > \endverbatim */ /* > */ /* > \param[in] ALPHA */ /* > \verbatim */ /* > ALPHA is REAL */ /* > Contains the diagonal element associated with the added row. */ /* > \endverbatim */ /* > */ /* > \param[in] BETA */ /* > \verbatim */ /* > BETA is REAL */ /* > Contains the off-diagonal element associated with the added */ /* > row. */ /* > \endverbatim */ /* > */ /* > \param[in,out] U */ /* > \verbatim */ /* > U is REAL array, dimension (LDU,N) */ /* > On entry U contains the left singular vectors of two */ /* > submatrices in the two square blocks with corners at (1,1), */ /* > (NL, NL), and (NL+2, NL+2), (N,N). */ /* > On exit U contains the trailing (N-K) updated left singular */ /* > vectors (those which were deflated) in its last N-K columns. */ /* > \endverbatim */ /* > */ /* > \param[in] LDU */ /* > \verbatim */ /* > LDU is INTEGER */ /* > The leading dimension of the array U. LDU >= N. */ /* > \endverbatim */ /* > */ /* > \param[in,out] VT */ /* > \verbatim */ /* > VT is REAL array, dimension (LDVT,M) */ /* > On entry VT**T contains the right singular vectors of two */ /* > submatrices in the two square blocks with corners at (1,1), */ /* > (NL+1, NL+1), and (NL+2, NL+2), (M,M). */ /* > On exit VT**T contains the trailing (N-K) updated right singular */ /* > vectors (those which were deflated) in its last N-K columns. */ /* > In case SQRE =1, the last row of VT spans the right null */ /* > space. */ /* > \endverbatim */ /* > */ /* > \param[in] LDVT */ /* > \verbatim */ /* > LDVT is INTEGER */ /* > The leading dimension of the array VT. LDVT >= M. */ /* > \endverbatim */ /* > */ /* > \param[out] DSIGMA */ /* > \verbatim */ /* > DSIGMA is REAL array, dimension (N) */ /* > Contains a copy of the diagonal elements (K-1 singular values */ /* > and one zero) in the secular equation. */ /* > \endverbatim */ /* > */ /* > \param[out] U2 */ /* > \verbatim */ /* > U2 is REAL array, dimension (LDU2,N) */ /* > Contains a copy of the first K-1 left singular vectors which */ /* > will be used by SLASD3 in a matrix multiply (SGEMM) to solve */ /* > for the new left singular vectors. U2 is arranged into four */ /* > blocks. The first block contains a column with 1 at NL+1 and */ /* > zero everywhere else; the second block contains non-zero */ /* > entries only at and above NL; the third contains non-zero */ /* > entries only below NL+1; and the fourth is dense. */ /* > \endverbatim */ /* > */ /* > \param[in] LDU2 */ /* > \verbatim */ /* > LDU2 is INTEGER */ /* > The leading dimension of the array U2. LDU2 >= N. */ /* > \endverbatim */ /* > */ /* > \param[out] VT2 */ /* > \verbatim */ /* > VT2 is REAL array, dimension (LDVT2,N) */ /* > VT2**T contains a copy of the first K right singular vectors */ /* > which will be used by SLASD3 in a matrix multiply (SGEMM) to */ /* > solve for the new right singular vectors. VT2 is arranged into */ /* > three blocks. The first block contains a row that corresponds */ /* > to the special 0 diagonal element in SIGMA; the second block */ /* > contains non-zeros only at and before NL +1; the third block */ /* > contains non-zeros only at and after NL +2. */ /* > \endverbatim */ /* > */ /* > \param[in] LDVT2 */ /* > \verbatim */ /* > LDVT2 is INTEGER */ /* > The leading dimension of the array VT2. LDVT2 >= M. */ /* > \endverbatim */ /* > */ /* > \param[out] IDXP */ /* > \verbatim */ /* > IDXP is INTEGER array, dimension (N) */ /* > This will contain the permutation used to place deflated */ /* > values of D at the end of the array. On output IDXP(2:K) */ /* > points to the nondeflated D-values and IDXP(K+1:N) */ /* > points to the deflated singular values. */ /* > \endverbatim */ /* > */ /* > \param[out] IDX */ /* > \verbatim */ /* > IDX is INTEGER array, dimension (N) */ /* > This will contain the permutation used to sort the contents of */ /* > D into ascending order. */ /* > \endverbatim */ /* > */ /* > \param[out] IDXC */ /* > \verbatim */ /* > IDXC is INTEGER array, dimension (N) */ /* > This will contain the permutation used to arrange the columns */ /* > of the deflated U matrix into three groups: the first group */ /* > contains non-zero entries only at and above NL, the second */ /* > contains non-zero entries only below NL+2, and the third is */ /* > dense. */ /* > \endverbatim */ /* > */ /* > \param[in,out] IDXQ */ /* > \verbatim */ /* > IDXQ is INTEGER array, dimension (N) */ /* > This contains the permutation which separately sorts the two */ /* > sub-problems in D into ascending order. Note that entries in */ /* > the first hlaf of this permutation must first be moved one */ /* > position backward; and entries in the second half */ /* > must first have NL+1 added to their values. */ /* > \endverbatim */ /* > */ /* > \param[out] COLTYP */ /* > \verbatim */ /* > COLTYP is INTEGER array, dimension (N) */ /* > As workspace, this will contain a label which will indicate */ /* > which of the following types a column in the U2 matrix or a */ /* > row in the VT2 matrix is: */ /* > 1 : non-zero in the upper half only */ /* > 2 : non-zero in the lower half only */ /* > 3 : dense */ /* > 4 : deflated */ /* > */ /* > On exit, it is an array of dimension 4, with COLTYP(I) being */ /* > the dimension of the I-th type columns. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit. */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup OTHERauxiliary */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Ming Gu and Huan Ren, Computer Science Division, University of */ /* > California at Berkeley, USA */ /* > */ /* ===================================================================== */ /* Subroutine */ int slasd2_(integer *nl, integer *nr, integer *sqre, integer *k, real *d__, real *z__, real *alpha, real *beta, real *u, integer * ldu, real *vt, integer *ldvt, real *dsigma, real *u2, integer *ldu2, real *vt2, integer *ldvt2, integer *idxp, integer *idx, integer *idxc, integer *idxq, integer *coltyp, integer *info) { /* System generated locals */ integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset, vt2_dim1, vt2_offset, i__1; real r__1, r__2; /* Local variables */ integer idxi, idxj, ctot[4]; extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, integer *, real *, real *); real c__; integer i__, j, m, n; real s; integer idxjp, jprev, k2; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); real z1; extern real slapy2_(real *, real *); integer ct, jp; extern real slamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slamrg_( integer *, integer *, real *, integer *, integer *, integer *); real hlftol; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *); real eps, tau, tol; integer psm[4], nlp1, nlp2; /* -- LAPACK auxiliary routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; --z__; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; vt_dim1 = *ldvt; vt_offset = 1 + vt_dim1 * 1; vt -= vt_offset; --dsigma; u2_dim1 = *ldu2; u2_offset = 1 + u2_dim1 * 1; u2 -= u2_offset; vt2_dim1 = *ldvt2; vt2_offset = 1 + vt2_dim1 * 1; vt2 -= vt2_offset; --idxp; --idx; --idxc; --idxq; --coltyp; /* Function Body */ *info = 0; if (*nl < 1) { *info = -1; } else if (*nr < 1) { *info = -2; } else if (*sqre != 1 && *sqre != 0) { *info = -3; } n = *nl + *nr + 1; m = n + *sqre; if (*ldu < n) { *info = -10; } else if (*ldvt < m) { *info = -12; } else if (*ldu2 < n) { *info = -15; } else if (*ldvt2 < m) { *info = -17; } if (*info != 0) { i__1 = -(*info); xerbla_("SLASD2", &i__1, (ftnlen)6); return 0; } nlp1 = *nl + 1; nlp2 = *nl + 2; /* Generate the first part of the vector Z; and move the singular */ /* values in the first part of D one position backward. */ z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1]; z__[1] = z1; for (i__ = *nl; i__ >= 1; --i__) { z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1]; d__[i__ + 1] = d__[i__]; idxq[i__ + 1] = idxq[i__] + 1; /* L10: */ } /* Generate the second part of the vector Z. */ i__1 = m; for (i__ = nlp2; i__ <= i__1; ++i__) { z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1]; /* L20: */ } /* Initialize some reference arrays. */ i__1 = nlp1; for (i__ = 2; i__ <= i__1; ++i__) { coltyp[i__] = 1; /* L30: */ } i__1 = n; for (i__ = nlp2; i__ <= i__1; ++i__) { coltyp[i__] = 2; /* L40: */ } /* Sort the singular values into increasing order */ i__1 = n; for (i__ = nlp2; i__ <= i__1; ++i__) { idxq[i__] += nlp1; /* L50: */ } /* DSIGMA, IDXC, IDXC, and the first column of U2 */ /* are used as storage space. */ i__1 = n; for (i__ = 2; i__ <= i__1; ++i__) { dsigma[i__] = d__[idxq[i__]]; u2[i__ + u2_dim1] = z__[idxq[i__]]; idxc[i__] = coltyp[idxq[i__]]; /* L60: */ } slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]); i__1 = n; for (i__ = 2; i__ <= i__1; ++i__) { idxi = idx[i__] + 1; d__[i__] = dsigma[idxi]; z__[i__] = u2[idxi + u2_dim1]; coltyp[i__] = idxc[idxi]; /* L70: */ } /* Calculate the allowable deflation tolerance */ eps = slamch_("Epsilon"); /* Computing MAX */ r__1 = abs(*alpha), r__2 = abs(*beta); tol = f2cmax(r__1,r__2); /* Computing MAX */ r__2 = (r__1 = d__[n], abs(r__1)); tol = eps * 8.f * f2cmax(r__2,tol); /* There are 2 kinds of deflation -- first a value in the z-vector */ /* is small, second two (or more) singular values are very close */ /* together (their difference is small). */ /* If the value in the z-vector is small, we simply permute the */ /* array so that the corresponding singular value is moved to the */ /* end. */ /* If two values in the D-vector are close, we perform a two-sided */ /* rotation designed to make one of the corresponding z-vector */ /* entries zero, and then permute the array so that the deflated */ /* singular value is moved to the end. */ /* If there are multiple singular values then the problem deflates. */ /* Here the number of equal singular values are found. As each equal */ /* singular value is found, an elementary reflector is computed to */ /* rotate the corresponding singular subspace so that the */ /* corresponding components of Z are zero in this new basis. */ *k = 1; k2 = n + 1; i__1 = n; for (j = 2; j <= i__1; ++j) { if ((r__1 = z__[j], abs(r__1)) <= tol) { /* Deflate due to small z component. */ --k2; idxp[k2] = j; coltyp[j] = 4; if (j == n) { goto L120; } } else { jprev = j; goto L90; } /* L80: */ } L90: j = jprev; L100: ++j; if (j > n) { goto L110; } if ((r__1 = z__[j], abs(r__1)) <= tol) { /* Deflate due to small z component. */ --k2; idxp[k2] = j; coltyp[j] = 4; } else { /* Check if singular values are close enough to allow deflation. */ if ((r__1 = d__[j] - d__[jprev], abs(r__1)) <= tol) { /* Deflation is possible. */ s = z__[jprev]; c__ = z__[j]; /* Find sqrt(a**2+b**2) without overflow or */ /* destructive underflow. */ tau = slapy2_(&c__, &s); c__ /= tau; s = -s / tau; z__[j] = tau; z__[jprev] = 0.f; /* Apply back the Givens rotation to the left and right */ /* singular vector matrices. */ idxjp = idxq[idx[jprev] + 1]; idxj = idxq[idx[j] + 1]; if (idxjp <= nlp1) { --idxjp; } if (idxj <= nlp1) { --idxj; } srot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], & c__1, &c__, &s); srot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, & c__, &s); if (coltyp[j] != coltyp[jprev]) { coltyp[j] = 3; } coltyp[jprev] = 4; --k2; idxp[k2] = jprev; jprev = j; } else { ++(*k); u2[*k + u2_dim1] = z__[jprev]; dsigma[*k] = d__[jprev]; idxp[*k] = jprev; jprev = j; } } goto L100; L110: /* Record the last singular value. */ ++(*k); u2[*k + u2_dim1] = z__[jprev]; dsigma[*k] = d__[jprev]; idxp[*k] = jprev; L120: /* Count up the total number of the various types of columns, then */ /* form a permutation which positions the four column types into */ /* four groups of uniform structure (although one or more of these */ /* groups may be empty). */ for (j = 1; j <= 4; ++j) { ctot[j - 1] = 0; /* L130: */ } i__1 = n; for (j = 2; j <= i__1; ++j) { ct = coltyp[j]; ++ctot[ct - 1]; /* L140: */ } /* PSM(*) = Position in SubMatrix (of types 1 through 4) */ psm[0] = 2; psm[1] = ctot[0] + 2; psm[2] = psm[1] + ctot[1]; psm[3] = psm[2] + ctot[2]; /* Fill out the IDXC array so that the permutation which it induces */ /* will place all type-1 columns first, all type-2 columns next, */ /* then all type-3's, and finally all type-4's, starting from the */ /* second column. This applies similarly to the rows of VT. */ i__1 = n; for (j = 2; j <= i__1; ++j) { jp = idxp[j]; ct = coltyp[jp]; idxc[psm[ct - 1]] = j; ++psm[ct - 1]; /* L150: */ } /* Sort the singular values and corresponding singular vectors into */ /* DSIGMA, U2, and VT2 respectively. The singular values/vectors */ /* which were not deflated go into the first K slots of DSIGMA, U2, */ /* and VT2 respectively, while those which were deflated go into the */ /* last N - K slots, except that the first column/row will be treated */ /* separately. */ i__1 = n; for (j = 2; j <= i__1; ++j) { jp = idxp[j]; dsigma[j] = d__[jp]; idxj = idxq[idx[idxp[idxc[j]]] + 1]; if (idxj <= nlp1) { --idxj; } scopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1); scopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2); /* L160: */ } /* Determine DSIGMA(1), DSIGMA(2) and Z(1) */ dsigma[1] = 0.f; hlftol = tol / 2.f; if (abs(dsigma[2]) <= hlftol) { dsigma[2] = hlftol; } if (m > n) { z__[1] = slapy2_(&z1, &z__[m]); if (z__[1] <= tol) { c__ = 1.f; s = 0.f; z__[1] = tol; } else { c__ = z1 / z__[1]; s = z__[m] / z__[1]; } } else { if (abs(z1) <= tol) { z__[1] = tol; } else { z__[1] = z1; } } /* Move the rest of the updating row to Z. */ i__1 = *k - 1; scopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1); /* Determine the first column of U2, the first row of VT2 and the */ /* last row of VT. */ slaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2); u2[nlp1 + u2_dim1] = 1.f; if (m > n) { i__1 = nlp1; for (i__ = 1; i__ <= i__1; ++i__) { vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1]; vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1]; /* L170: */ } i__1 = m; for (i__ = nlp2; i__ <= i__1; ++i__) { vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1]; vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1]; /* L180: */ } } else { scopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2); } if (m > n) { scopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2); } /* The deflated singular values and their corresponding vectors go */ /* into the back of D, U, and V respectively. */ if (n > *k) { i__1 = n - *k; scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1); i__1 = n - *k; slacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1) * u_dim1 + 1], ldu); i__1 = n - *k; slacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 + vt_dim1], ldvt); } /* Copy CTOT into COLTYP for referencing in SLASD3. */ for (j = 1; j <= 4; ++j) { coltyp[j] = ctot[j - 1]; /* L190: */ } return 0; /* End of SLASD2 */ } /* slasd2_ */