#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b SLASD3 finds all square roots of the roots of the secular equation, as defined by the values in D and Z, and then updates the singular vectors by matrix multiplication. Used by sbdsdc. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download SLASD3 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2, */ /* LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z, */ /* INFO ) */ /* INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR, */ /* $ SQRE */ /* INTEGER CTOT( * ), IDXC( * ) */ /* REAL D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ), */ /* $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), */ /* $ Z( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > SLASD3 finds all the square roots of the roots of the secular */ /* > equation, as defined by the values in D and Z. It makes the */ /* > appropriate calls to SLASD4 and then updates the singular */ /* > vectors by matrix multiplication. */ /* > */ /* > This code makes very mild assumptions about floating point */ /* > arithmetic. It will work on machines with a guard digit in */ /* > add/subtract, or on those binary machines without guard digits */ /* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */ /* > It could conceivably fail on hexadecimal or decimal machines */ /* > without guard digits, but we know of none. */ /* > */ /* > SLASD3 is called from SLASD1. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] NL */ /* > \verbatim */ /* > NL is INTEGER */ /* > The row dimension of the upper block. NL >= 1. */ /* > \endverbatim */ /* > */ /* > \param[in] NR */ /* > \verbatim */ /* > NR is INTEGER */ /* > The row dimension of the lower block. NR >= 1. */ /* > \endverbatim */ /* > */ /* > \param[in] SQRE */ /* > \verbatim */ /* > SQRE is INTEGER */ /* > = 0: the lower block is an NR-by-NR square matrix. */ /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */ /* > */ /* > The bidiagonal matrix has N = NL + NR + 1 rows and */ /* > M = N + SQRE >= N columns. */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > The size of the secular equation, 1 =< K = < N. */ /* > \endverbatim */ /* > */ /* > \param[out] D */ /* > \verbatim */ /* > D is REAL array, dimension(K) */ /* > On exit the square roots of the roots of the secular equation, */ /* > in ascending order. */ /* > \endverbatim */ /* > */ /* > \param[out] Q */ /* > \verbatim */ /* > Q is REAL array, dimension (LDQ,K) */ /* > \endverbatim */ /* > */ /* > \param[in] LDQ */ /* > \verbatim */ /* > LDQ is INTEGER */ /* > The leading dimension of the array Q. LDQ >= K. */ /* > \endverbatim */ /* > */ /* > \param[in,out] DSIGMA */ /* > \verbatim */ /* > DSIGMA is REAL array, dimension(K) */ /* > The first K elements of this array contain the old roots */ /* > of the deflated updating problem. These are the poles */ /* > of the secular equation. */ /* > \endverbatim */ /* > */ /* > \param[out] U */ /* > \verbatim */ /* > U is REAL array, dimension (LDU, N) */ /* > The last N - K columns of this matrix contain the deflated */ /* > left singular vectors. */ /* > \endverbatim */ /* > */ /* > \param[in] LDU */ /* > \verbatim */ /* > LDU is INTEGER */ /* > The leading dimension of the array U. LDU >= N. */ /* > \endverbatim */ /* > */ /* > \param[in] U2 */ /* > \verbatim */ /* > U2 is REAL array, dimension (LDU2, N) */ /* > The first K columns of this matrix contain the non-deflated */ /* > left singular vectors for the split problem. */ /* > \endverbatim */ /* > */ /* > \param[in] LDU2 */ /* > \verbatim */ /* > LDU2 is INTEGER */ /* > The leading dimension of the array U2. LDU2 >= N. */ /* > \endverbatim */ /* > */ /* > \param[out] VT */ /* > \verbatim */ /* > VT is REAL array, dimension (LDVT, M) */ /* > The last M - K columns of VT**T contain the deflated */ /* > right singular vectors. */ /* > \endverbatim */ /* > */ /* > \param[in] LDVT */ /* > \verbatim */ /* > LDVT is INTEGER */ /* > The leading dimension of the array VT. LDVT >= N. */ /* > \endverbatim */ /* > */ /* > \param[in,out] VT2 */ /* > \verbatim */ /* > VT2 is REAL array, dimension (LDVT2, N) */ /* > The first K columns of VT2**T contain the non-deflated */ /* > right singular vectors for the split problem. */ /* > \endverbatim */ /* > */ /* > \param[in] LDVT2 */ /* > \verbatim */ /* > LDVT2 is INTEGER */ /* > The leading dimension of the array VT2. LDVT2 >= N. */ /* > \endverbatim */ /* > */ /* > \param[in] IDXC */ /* > \verbatim */ /* > IDXC is INTEGER array, dimension (N) */ /* > The permutation used to arrange the columns of U (and rows of */ /* > VT) into three groups: the first group contains non-zero */ /* > entries only at and above (or before) NL +1; the second */ /* > contains non-zero entries only at and below (or after) NL+2; */ /* > and the third is dense. The first column of U and the row of */ /* > VT are treated separately, however. */ /* > */ /* > The rows of the singular vectors found by SLASD4 */ /* > must be likewise permuted before the matrix multiplies can */ /* > take place. */ /* > \endverbatim */ /* > */ /* > \param[in] CTOT */ /* > \verbatim */ /* > CTOT is INTEGER array, dimension (4) */ /* > A count of the total number of the various types of columns */ /* > in U (or rows in VT), as described in IDXC. The fourth column */ /* > type is any column which has been deflated. */ /* > \endverbatim */ /* > */ /* > \param[in,out] Z */ /* > \verbatim */ /* > Z is REAL array, dimension (K) */ /* > The first K elements of this array contain the components */ /* > of the deflation-adjusted updating row vector. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit. */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > > 0: if INFO = 1, a singular value did not converge */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date June 2017 */ /* > \ingroup OTHERauxiliary */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Ming Gu and Huan Ren, Computer Science Division, University of */ /* > California at Berkeley, USA */ /* > */ /* ===================================================================== */ /* Subroutine */ int slasd3_(integer *nl, integer *nr, integer *sqre, integer *k, real *d__, real *q, integer *ldq, real *dsigma, real *u, integer * ldu, real *u2, integer *ldu2, real *vt, integer *ldvt, real *vt2, integer *ldvt2, integer *idxc, integer *ctot, real *z__, integer * info) { /* System generated locals */ integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset, vt2_dim1, vt2_offset, i__1, i__2; real r__1, r__2; /* Local variables */ real temp; extern real snrm2_(integer *, real *, integer *); integer i__, j, m, n, ctemp; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); integer ktemp; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); extern real slamc3_(real *, real *); extern /* Subroutine */ int slasd4_(integer *, integer *, real *, real *, real *, real *, real *, real *, integer *); integer jc; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slascl_( char *, integer *, integer *, real *, real *, integer *, integer * , real *, integer *, integer *), slacpy_(char *, integer * , integer *, real *, integer *, real *, integer *); real rho; integer nlp1, nlp2, nrp1; /* -- LAPACK auxiliary routine (version 3.7.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* June 2017 */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1 * 1; q -= q_offset; --dsigma; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; u2_dim1 = *ldu2; u2_offset = 1 + u2_dim1 * 1; u2 -= u2_offset; vt_dim1 = *ldvt; vt_offset = 1 + vt_dim1 * 1; vt -= vt_offset; vt2_dim1 = *ldvt2; vt2_offset = 1 + vt2_dim1 * 1; vt2 -= vt2_offset; --idxc; --ctot; --z__; /* Function Body */ *info = 0; if (*nl < 1) { *info = -1; } else if (*nr < 1) { *info = -2; } else if (*sqre != 1 && *sqre != 0) { *info = -3; } n = *nl + *nr + 1; m = n + *sqre; nlp1 = *nl + 1; nlp2 = *nl + 2; if (*k < 1 || *k > n) { *info = -4; } else if (*ldq < *k) { *info = -7; } else if (*ldu < n) { *info = -10; } else if (*ldu2 < n) { *info = -12; } else if (*ldvt < m) { *info = -14; } else if (*ldvt2 < m) { *info = -16; } if (*info != 0) { i__1 = -(*info); xerbla_("SLASD3", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*k == 1) { d__[1] = abs(z__[1]); scopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt); if (z__[1] > 0.f) { scopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1); } else { i__1 = n; for (i__ = 1; i__ <= i__1; ++i__) { u[i__ + u_dim1] = -u2[i__ + u2_dim1]; /* L10: */ } } return 0; } /* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */ /* be computed with high relative accuracy (barring over/underflow). */ /* This is a problem on machines without a guard digit in */ /* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */ /* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */ /* which on any of these machines zeros out the bottommost */ /* bit of DSIGMA(I) if it is 1; this makes the subsequent */ /* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */ /* occurs. On binary machines with a guard digit (almost all */ /* machines) it does not change DSIGMA(I) at all. On hexadecimal */ /* and decimal machines with a guard digit, it slightly */ /* changes the bottommost bits of DSIGMA(I). It does not account */ /* for hexadecimal or decimal machines without guard digits */ /* (we know of none). We use a subroutine call to compute */ /* 2*DSIGMA(I) to prevent optimizing compilers from eliminating */ /* this code. */ i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { dsigma[i__] = slamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__]; /* L20: */ } /* Keep a copy of Z. */ scopy_(k, &z__[1], &c__1, &q[q_offset], &c__1); /* Normalize Z. */ rho = snrm2_(k, &z__[1], &c__1); slascl_("G", &c__0, &c__0, &rho, &c_b13, k, &c__1, &z__[1], k, info); rho *= rho; /* Find the new singular values. */ i__1 = *k; for (j = 1; j <= i__1; ++j) { slasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j], &vt[j * vt_dim1 + 1], info); /* If the zero finder fails, report the convergence failure. */ if (*info != 0) { return 0; } /* L30: */ } /* Compute updated Z. */ i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1]; i__2 = i__ - 1; for (j = 1; j <= i__2; ++j) { z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[ i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]); /* L40: */ } i__2 = *k - 1; for (j = i__; j <= i__2; ++j) { z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[ i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]); /* L50: */ } r__2 = sqrt((r__1 = z__[i__], abs(r__1))); z__[i__] = r_sign(&r__2, &q[i__ + q_dim1]); /* L60: */ } /* Compute left singular vectors of the modified diagonal matrix, */ /* and store related information for the right singular vectors. */ i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ * vt_dim1 + 1]; u[i__ * u_dim1 + 1] = -1.f; i__2 = *k; for (j = 2; j <= i__2; ++j) { vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__ * vt_dim1]; u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1]; /* L70: */ } temp = snrm2_(k, &u[i__ * u_dim1 + 1], &c__1); q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp; i__2 = *k; for (j = 2; j <= i__2; ++j) { jc = idxc[j]; q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp; /* L80: */ } /* L90: */ } /* Update the left singular vector matrix. */ if (*k == 2) { sgemm_("N", "N", &n, k, k, &c_b13, &u2[u2_offset], ldu2, &q[q_offset], ldq, &c_b26, &u[u_offset], ldu); goto L100; } if (ctot[1] > 0) { sgemm_("N", "N", nl, k, &ctot[1], &c_b13, &u2[(u2_dim1 << 1) + 1], ldu2, &q[q_dim1 + 2], ldq, &c_b26, &u[u_dim1 + 1], ldu); if (ctot[3] > 0) { ktemp = ctot[1] + 2 + ctot[2]; sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1] , ldu2, &q[ktemp + q_dim1], ldq, &c_b13, &u[u_dim1 + 1], ldu); } } else if (ctot[3] > 0) { ktemp = ctot[1] + 2 + ctot[2]; sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1], ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[u_dim1 + 1], ldu); } else { slacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu); } scopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu); ktemp = ctot[1] + 2; ctemp = ctot[2] + ctot[3]; sgemm_("N", "N", nr, k, &ctemp, &c_b13, &u2[nlp2 + ktemp * u2_dim1], ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[nlp2 + u_dim1], ldu); /* Generate the right singular vectors. */ L100: i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { temp = snrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1); q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp; i__2 = *k; for (j = 2; j <= i__2; ++j) { jc = idxc[j]; q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp; /* L110: */ } /* L120: */ } /* Update the right singular vector matrix. */ if (*k == 2) { sgemm_("N", "N", k, &m, k, &c_b13, &q[q_offset], ldq, &vt2[vt2_offset] , ldvt2, &c_b26, &vt[vt_offset], ldvt); return 0; } ktemp = ctot[1] + 1; sgemm_("N", "N", k, &nlp1, &ktemp, &c_b13, &q[q_dim1 + 1], ldq, &vt2[ vt2_dim1 + 1], ldvt2, &c_b26, &vt[vt_dim1 + 1], ldvt); ktemp = ctot[1] + 2 + ctot[2]; if (ktemp <= *ldvt2) { sgemm_("N", "N", k, &nlp1, &ctot[3], &c_b13, &q[ktemp * q_dim1 + 1], ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b13, &vt[vt_dim1 + 1], ldvt); } ktemp = ctot[1] + 1; nrp1 = *nr + *sqre; if (ktemp > 1) { i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { q[i__ + ktemp * q_dim1] = q[i__ + q_dim1]; /* L130: */ } i__1 = m; for (i__ = nlp2; i__ <= i__1; ++i__) { vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1]; /* L140: */ } } ctemp = ctot[2] + 1 + ctot[3]; sgemm_("N", "N", k, &nrp1, &ctemp, &c_b13, &q[ktemp * q_dim1 + 1], ldq, & vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b26, &vt[nlp2 * vt_dim1 + 1], ldvt); return 0; /* End of SLASD3 */ } /* slasd3_ */