#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b SSB2ST_KERNELS */ /* @generated from zhb2st_kernels.f, fortran z -> s, Wed Dec 7 08:22:40 2016 */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download SSB2ST_KERNELS + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE SSB2ST_KERNELS( UPLO, WANTZ, TTYPE, */ /* ST, ED, SWEEP, N, NB, IB, */ /* A, LDA, V, TAU, LDVT, WORK) */ /* IMPLICIT NONE */ /* CHARACTER UPLO */ /* LOGICAL WANTZ */ /* INTEGER TTYPE, ST, ED, SWEEP, N, NB, IB, LDA, LDVT */ /* REAL A( LDA, * ), V( * ), */ /* TAU( * ), WORK( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > SSB2ST_KERNELS is an internal routine used by the SSYTRD_SB2ST */ /* > subroutine. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > \endverbatim */ /* > */ /* > \param[in] WANTZ */ /* > \verbatim */ /* > WANTZ is LOGICAL which indicate if Eigenvalue are requested or both */ /* > Eigenvalue/Eigenvectors. */ /* > \endverbatim */ /* > */ /* > \param[in] TTYPE */ /* > \verbatim */ /* > TTYPE is INTEGER */ /* > \endverbatim */ /* > */ /* > \param[in] ST */ /* > \verbatim */ /* > ST is INTEGER */ /* > internal parameter for indices. */ /* > \endverbatim */ /* > */ /* > \param[in] ED */ /* > \verbatim */ /* > ED is INTEGER */ /* > internal parameter for indices. */ /* > \endverbatim */ /* > */ /* > \param[in] SWEEP */ /* > \verbatim */ /* > SWEEP is INTEGER */ /* > internal parameter for indices. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER. The order of the matrix A. */ /* > \endverbatim */ /* > */ /* > \param[in] NB */ /* > \verbatim */ /* > NB is INTEGER. The size of the band. */ /* > \endverbatim */ /* > */ /* > \param[in] IB */ /* > \verbatim */ /* > IB is INTEGER. */ /* > \endverbatim */ /* > */ /* > \param[in, out] A */ /* > \verbatim */ /* > A is REAL array. A pointer to the matrix A. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER. The leading dimension of the matrix A. */ /* > \endverbatim */ /* > */ /* > \param[out] V */ /* > \verbatim */ /* > V is REAL array, dimension 2*n if eigenvalues only are */ /* > requested or to be queried for vectors. */ /* > \endverbatim */ /* > */ /* > \param[out] TAU */ /* > \verbatim */ /* > TAU is REAL array, dimension (2*n). */ /* > The scalar factors of the Householder reflectors are stored */ /* > in this array. */ /* > \endverbatim */ /* > */ /* > \param[in] LDVT */ /* > \verbatim */ /* > LDVT is INTEGER. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is REAL array. Workspace of size nb. */ /* > \endverbatim */ /* > @param[in] n */ /* > The order of the matrix A. */ /* > */ /* > */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > Implemented by Azzam Haidar. */ /* > */ /* > All details are available on technical report, SC11, SC13 papers. */ /* > */ /* > Azzam Haidar, Hatem Ltaief, and Jack Dongarra. */ /* > Parallel reduction to condensed forms for symmetric eigenvalue problems */ /* > using aggregated fine-grained and memory-aware kernels. In Proceedings */ /* > of 2011 International Conference for High Performance Computing, */ /* > Networking, Storage and Analysis (SC '11), New York, NY, USA, */ /* > Article 8 , 11 pages. */ /* > http://doi.acm.org/10.1145/2063384.2063394 */ /* > */ /* > A. Haidar, J. Kurzak, P. Luszczek, 2013. */ /* > An improved parallel singular value algorithm and its implementation */ /* > for multicore hardware, In Proceedings of 2013 International Conference */ /* > for High Performance Computing, Networking, Storage and Analysis (SC '13). */ /* > Denver, Colorado, USA, 2013. */ /* > Article 90, 12 pages. */ /* > http://doi.acm.org/10.1145/2503210.2503292 */ /* > */ /* > A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. */ /* > A novel hybrid CPU-GPU generalized eigensolver for electronic structure */ /* > calculations based on fine-grained memory aware tasks. */ /* > International Journal of High Performance Computing Applications. */ /* > Volume 28 Issue 2, Pages 196-209, May 2014. */ /* > http://hpc.sagepub.com/content/28/2/196 */ /* > */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int ssb2st_kernels_(char *uplo, logical *wantz, integer * ttype, integer *st, integer *ed, integer *sweep, integer *n, integer * nb, integer *ib, real *a, integer *lda, real *v, real *tau, integer * ldvt, real *work) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; real r__1; /* Local variables */ real ctmp; integer dpos, vpos, i__; extern logical lsame_(char *, char *); logical upper; integer j1, j2, lm, ln, ajeter; extern /* Subroutine */ int slarfg_(integer *, real *, real *, integer *, real *); integer ofdpos; extern /* Subroutine */ int slarfx_(char *, integer *, integer *, real *, real *, real *, integer *, real *), slarfy_(char *, integer *, real *, integer *, real *, real *, integer *, real *); integer taupos; /* -- LAPACK computational routine (version 3.7.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* June 2017 */ /* ===================================================================== */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --v; --tau; --work; /* Function Body */ ajeter = *ib + *ldvt; upper = lsame_(uplo, "U"); if (upper) { dpos = (*nb << 1) + 1; ofdpos = *nb << 1; } else { dpos = 1; ofdpos = 2; } /* Upper case */ if (upper) { if (*wantz) { vpos = (*sweep - 1) % 2 * *n + *st; taupos = (*sweep - 1) % 2 * *n + *st; } else { vpos = (*sweep - 1) % 2 * *n + *st; taupos = (*sweep - 1) % 2 * *n + *st; } if (*ttype == 1) { lm = *ed - *st + 1; v[vpos] = 1.f; i__1 = lm - 1; for (i__ = 1; i__ <= i__1; ++i__) { v[vpos + i__] = a[ofdpos - i__ + (*st + i__) * a_dim1]; a[ofdpos - i__ + (*st + i__) * a_dim1] = 0.f; /* L10: */ } ctmp = a[ofdpos + *st * a_dim1]; slarfg_(&lm, &ctmp, &v[vpos + 1], &c__1, &tau[taupos]); a[ofdpos + *st * a_dim1] = ctmp; lm = *ed - *st + 1; r__1 = tau[taupos]; i__1 = *lda - 1; slarfy_(uplo, &lm, &v[vpos], &c__1, &r__1, &a[dpos + *st * a_dim1] , &i__1, &work[1]); } if (*ttype == 3) { lm = *ed - *st + 1; r__1 = tau[taupos]; i__1 = *lda - 1; slarfy_(uplo, &lm, &v[vpos], &c__1, &r__1, &a[dpos + *st * a_dim1] , &i__1, &work[1]); } if (*ttype == 2) { j1 = *ed + 1; /* Computing MIN */ i__1 = *ed + *nb; j2 = f2cmin(i__1,*n); ln = *ed - *st + 1; lm = j2 - j1 + 1; if (lm > 0) { r__1 = tau[taupos]; i__1 = *lda - 1; slarfx_("Left", &ln, &lm, &v[vpos], &r__1, &a[dpos - *nb + j1 * a_dim1], &i__1, &work[1]); if (*wantz) { vpos = (*sweep - 1) % 2 * *n + j1; taupos = (*sweep - 1) % 2 * *n + j1; } else { vpos = (*sweep - 1) % 2 * *n + j1; taupos = (*sweep - 1) % 2 * *n + j1; } v[vpos] = 1.f; i__1 = lm - 1; for (i__ = 1; i__ <= i__1; ++i__) { v[vpos + i__] = a[dpos - *nb - i__ + (j1 + i__) * a_dim1]; a[dpos - *nb - i__ + (j1 + i__) * a_dim1] = 0.f; /* L30: */ } ctmp = a[dpos - *nb + j1 * a_dim1]; slarfg_(&lm, &ctmp, &v[vpos + 1], &c__1, &tau[taupos]); a[dpos - *nb + j1 * a_dim1] = ctmp; i__1 = ln - 1; i__2 = *lda - 1; slarfx_("Right", &i__1, &lm, &v[vpos], &tau[taupos], &a[dpos - *nb + 1 + j1 * a_dim1], &i__2, &work[1]); } } /* Lower case */ } else { if (*wantz) { vpos = (*sweep - 1) % 2 * *n + *st; taupos = (*sweep - 1) % 2 * *n + *st; } else { vpos = (*sweep - 1) % 2 * *n + *st; taupos = (*sweep - 1) % 2 * *n + *st; } if (*ttype == 1) { lm = *ed - *st + 1; v[vpos] = 1.f; i__1 = lm - 1; for (i__ = 1; i__ <= i__1; ++i__) { v[vpos + i__] = a[ofdpos + i__ + (*st - 1) * a_dim1]; a[ofdpos + i__ + (*st - 1) * a_dim1] = 0.f; /* L20: */ } slarfg_(&lm, &a[ofdpos + (*st - 1) * a_dim1], &v[vpos + 1], &c__1, &tau[taupos]); lm = *ed - *st + 1; r__1 = tau[taupos]; i__1 = *lda - 1; slarfy_(uplo, &lm, &v[vpos], &c__1, &r__1, &a[dpos + *st * a_dim1] , &i__1, &work[1]); } if (*ttype == 3) { lm = *ed - *st + 1; r__1 = tau[taupos]; i__1 = *lda - 1; slarfy_(uplo, &lm, &v[vpos], &c__1, &r__1, &a[dpos + *st * a_dim1] , &i__1, &work[1]); } if (*ttype == 2) { j1 = *ed + 1; /* Computing MIN */ i__1 = *ed + *nb; j2 = f2cmin(i__1,*n); ln = *ed - *st + 1; lm = j2 - j1 + 1; if (lm > 0) { i__1 = *lda - 1; slarfx_("Right", &lm, &ln, &v[vpos], &tau[taupos], &a[dpos + * nb + *st * a_dim1], &i__1, &work[1]); if (*wantz) { vpos = (*sweep - 1) % 2 * *n + j1; taupos = (*sweep - 1) % 2 * *n + j1; } else { vpos = (*sweep - 1) % 2 * *n + j1; taupos = (*sweep - 1) % 2 * *n + j1; } v[vpos] = 1.f; i__1 = lm - 1; for (i__ = 1; i__ <= i__1; ++i__) { v[vpos + i__] = a[dpos + *nb + i__ + *st * a_dim1]; a[dpos + *nb + i__ + *st * a_dim1] = 0.f; /* L40: */ } slarfg_(&lm, &a[dpos + *nb + *st * a_dim1], &v[vpos + 1], & c__1, &tau[taupos]); i__1 = ln - 1; r__1 = tau[taupos]; i__2 = *lda - 1; slarfx_("Left", &lm, &i__1, &v[vpos], &r__1, &a[dpos + *nb - 1 + (*st + 1) * a_dim1], &i__2, &work[1]); } } } return 0; /* END OF SSB2ST_KERNELS */ } /* ssb2st_kernels__ */