#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b SSBGVX */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download SSBGVX + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE SSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, */ /* LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, */ /* LDZ, WORK, IWORK, IFAIL, INFO ) */ /* CHARACTER JOBZ, RANGE, UPLO */ /* INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M, */ /* $ N */ /* REAL ABSTOL, VL, VU */ /* INTEGER IFAIL( * ), IWORK( * ) */ /* REAL AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ), */ /* $ W( * ), WORK( * ), Z( LDZ, * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > SSBGVX computes selected eigenvalues, and optionally, eigenvectors */ /* > of a real generalized symmetric-definite banded eigenproblem, of */ /* > the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric */ /* > and banded, and B is also positive definite. Eigenvalues and */ /* > eigenvectors can be selected by specifying either all eigenvalues, */ /* > a range of values or a range of indices for the desired eigenvalues. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] JOBZ */ /* > \verbatim */ /* > JOBZ is CHARACTER*1 */ /* > = 'N': Compute eigenvalues only; */ /* > = 'V': Compute eigenvalues and eigenvectors. */ /* > \endverbatim */ /* > */ /* > \param[in] RANGE */ /* > \verbatim */ /* > RANGE is CHARACTER*1 */ /* > = 'A': all eigenvalues will be found. */ /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */ /* > will be found. */ /* > = 'I': the IL-th through IU-th eigenvalues will be found. */ /* > \endverbatim */ /* > */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > = 'U': Upper triangles of A and B are stored; */ /* > = 'L': Lower triangles of A and B are stored. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrices A and B. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] KA */ /* > \verbatim */ /* > KA is INTEGER */ /* > The number of superdiagonals of the matrix A if UPLO = 'U', */ /* > or the number of subdiagonals if UPLO = 'L'. KA >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] KB */ /* > \verbatim */ /* > KB is INTEGER */ /* > The number of superdiagonals of the matrix B if UPLO = 'U', */ /* > or the number of subdiagonals if UPLO = 'L'. KB >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] AB */ /* > \verbatim */ /* > AB is REAL array, dimension (LDAB, N) */ /* > On entry, the upper or lower triangle of the symmetric band */ /* > matrix A, stored in the first ka+1 rows of the array. The */ /* > j-th column of A is stored in the j-th column of the array AB */ /* > as follows: */ /* > if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for f2cmax(1,j-ka)<=i<=j; */ /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+ka). */ /* > */ /* > On exit, the contents of AB are destroyed. */ /* > \endverbatim */ /* > */ /* > \param[in] LDAB */ /* > \verbatim */ /* > LDAB is INTEGER */ /* > The leading dimension of the array AB. LDAB >= KA+1. */ /* > \endverbatim */ /* > */ /* > \param[in,out] BB */ /* > \verbatim */ /* > BB is REAL array, dimension (LDBB, N) */ /* > On entry, the upper or lower triangle of the symmetric band */ /* > matrix B, stored in the first kb+1 rows of the array. The */ /* > j-th column of B is stored in the j-th column of the array BB */ /* > as follows: */ /* > if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for f2cmax(1,j-kb)<=i<=j; */ /* > if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=f2cmin(n,j+kb). */ /* > */ /* > On exit, the factor S from the split Cholesky factorization */ /* > B = S**T*S, as returned by SPBSTF. */ /* > \endverbatim */ /* > */ /* > \param[in] LDBB */ /* > \verbatim */ /* > LDBB is INTEGER */ /* > The leading dimension of the array BB. LDBB >= KB+1. */ /* > \endverbatim */ /* > */ /* > \param[out] Q */ /* > \verbatim */ /* > Q is REAL array, dimension (LDQ, N) */ /* > If JOBZ = 'V', the n-by-n matrix used in the reduction of */ /* > A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, */ /* > and consequently C to tridiagonal form. */ /* > If JOBZ = 'N', the array Q is not referenced. */ /* > \endverbatim */ /* > */ /* > \param[in] LDQ */ /* > \verbatim */ /* > LDQ is INTEGER */ /* > The leading dimension of the array Q. If JOBZ = 'N', */ /* > LDQ >= 1. If JOBZ = 'V', LDQ >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[in] VL */ /* > \verbatim */ /* > VL is REAL */ /* > */ /* > If RANGE='V', the lower bound of the interval to */ /* > be searched for eigenvalues. VL < VU. */ /* > Not referenced if RANGE = 'A' or 'I'. */ /* > \endverbatim */ /* > */ /* > \param[in] VU */ /* > \verbatim */ /* > VU is REAL */ /* > */ /* > If RANGE='V', the upper bound of the interval to */ /* > be searched for eigenvalues. VL < VU. */ /* > Not referenced if RANGE = 'A' or 'I'. */ /* > \endverbatim */ /* > */ /* > \param[in] IL */ /* > \verbatim */ /* > IL is INTEGER */ /* > */ /* > If RANGE='I', the index of the */ /* > smallest eigenvalue to be returned. */ /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ /* > Not referenced if RANGE = 'A' or 'V'. */ /* > \endverbatim */ /* > */ /* > \param[in] IU */ /* > \verbatim */ /* > IU is INTEGER */ /* > */ /* > If RANGE='I', the index of the */ /* > largest eigenvalue to be returned. */ /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ /* > Not referenced if RANGE = 'A' or 'V'. */ /* > \endverbatim */ /* > */ /* > \param[in] ABSTOL */ /* > \verbatim */ /* > ABSTOL is REAL */ /* > The absolute error tolerance for the eigenvalues. */ /* > An approximate eigenvalue is accepted as converged */ /* > when it is determined to lie in an interval [a,b] */ /* > of width less than or equal to */ /* > */ /* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */ /* > */ /* > where EPS is the machine precision. If ABSTOL is less than */ /* > or equal to zero, then EPS*|T| will be used in its place, */ /* > where |T| is the 1-norm of the tridiagonal matrix obtained */ /* > by reducing A to tridiagonal form. */ /* > */ /* > Eigenvalues will be computed most accurately when ABSTOL is */ /* > set to twice the underflow threshold 2*SLAMCH('S'), not zero. */ /* > If this routine returns with INFO>0, indicating that some */ /* > eigenvectors did not converge, try setting ABSTOL to */ /* > 2*SLAMCH('S'). */ /* > \endverbatim */ /* > */ /* > \param[out] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The total number of eigenvalues found. 0 <= M <= N. */ /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ /* > \endverbatim */ /* > */ /* > \param[out] W */ /* > \verbatim */ /* > W is REAL array, dimension (N) */ /* > If INFO = 0, the eigenvalues in ascending order. */ /* > \endverbatim */ /* > */ /* > \param[out] Z */ /* > \verbatim */ /* > Z is REAL array, dimension (LDZ, N) */ /* > If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ /* > eigenvectors, with the i-th column of Z holding the */ /* > eigenvector associated with W(i). The eigenvectors are */ /* > normalized so Z**T*B*Z = I. */ /* > If JOBZ = 'N', then Z is not referenced. */ /* > \endverbatim */ /* > */ /* > \param[in] LDZ */ /* > \verbatim */ /* > LDZ is INTEGER */ /* > The leading dimension of the array Z. LDZ >= 1, and if */ /* > JOBZ = 'V', LDZ >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is REAL array, dimension (7*N) */ /* > \endverbatim */ /* > */ /* > \param[out] IWORK */ /* > \verbatim */ /* > IWORK is INTEGER array, dimension (5*N) */ /* > \endverbatim */ /* > */ /* > \param[out] IFAIL */ /* > \verbatim */ /* > IFAIL is INTEGER array, dimension (M) */ /* > If JOBZ = 'V', then if INFO = 0, the first M elements of */ /* > IFAIL are zero. If INFO > 0, then IFAIL contains the */ /* > indices of the eigenvalues that failed to converge. */ /* > If JOBZ = 'N', then IFAIL is not referenced. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > <= N: if INFO = i, then i eigenvectors failed to converge. */ /* > Their indices are stored in IFAIL. */ /* > > N: SPBSTF returned an error code; i.e., */ /* > if INFO = N + i, for 1 <= i <= N, then the leading */ /* > minor of order i of B is not positive definite. */ /* > The factorization of B could not be completed and */ /* > no eigenvalues or eigenvectors were computed. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date June 2016 */ /* > \ingroup realOTHEReigen */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */ /* ===================================================================== */ /* Subroutine */ int ssbgvx_(char *jobz, char *range, char *uplo, integer *n, integer *ka, integer *kb, real *ab, integer *ldab, real *bb, integer * ldbb, real *q, integer *ldq, real *vl, real *vu, integer *il, integer *iu, real *abstol, integer *m, real *w, real *z__, integer *ldz, real *work, integer *iwork, integer *ifail, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, bb_dim1, bb_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, i__2; /* Local variables */ integer indd, inde; char vect[1]; logical test; integer itmp1, i__, j, indee; extern logical lsame_(char *, char *); integer iinfo; char order[1]; extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); logical upper; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *), sswap_(integer *, real *, integer *, real *, integer * ); logical wantz; integer jj; logical alleig, indeig; integer indibl; logical valeig; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); integer indisp, indiwo; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *); integer indwrk; extern /* Subroutine */ int spbstf_(char *, integer *, integer *, real *, integer *, integer *), ssbtrd_(char *, char *, integer *, integer *, real *, integer *, real *, real *, real *, integer *, real *, integer *), ssbgst_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer *, real *, integer *), sstein_(integer *, real *, real *, integer *, real *, integer *, integer *, real *, integer *, real *, integer *, integer *, integer *), ssterf_(integer *, real *, real *, integer *); integer nsplit; extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, real *, integer *, integer *, real *, real *, real *, integer *, integer *, real *, integer *, integer *, real *, integer *, integer *), ssteqr_(char *, integer *, real *, real *, real *, integer *, real *, integer *); real tmp1; /* -- LAPACK driver routine (version 3.7.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* June 2016 */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1 * 1; ab -= ab_offset; bb_dim1 = *ldbb; bb_offset = 1 + bb_dim1 * 1; bb -= bb_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1 * 1; q -= q_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; --work; --iwork; --ifail; /* Function Body */ wantz = lsame_(jobz, "V"); upper = lsame_(uplo, "U"); alleig = lsame_(range, "A"); valeig = lsame_(range, "V"); indeig = lsame_(range, "I"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (upper || lsame_(uplo, "L"))) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*ka < 0) { *info = -5; } else if (*kb < 0 || *kb > *ka) { *info = -6; } else if (*ldab < *ka + 1) { *info = -8; } else if (*ldbb < *kb + 1) { *info = -10; } else if (*ldq < 1 || wantz && *ldq < *n) { *info = -12; } else { if (valeig) { if (*n > 0 && *vu <= *vl) { *info = -14; } } else if (indeig) { if (*il < 1 || *il > f2cmax(1,*n)) { *info = -15; } else if (*iu < f2cmin(*n,*il) || *iu > *n) { *info = -16; } } } if (*info == 0) { if (*ldz < 1 || wantz && *ldz < *n) { *info = -21; } } if (*info != 0) { i__1 = -(*info); xerbla_("SSBGVX", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ *m = 0; if (*n == 0) { return 0; } /* Form a split Cholesky factorization of B. */ spbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem. */ ssbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, &q[q_offset], ldq, &work[1], &iinfo); /* Reduce symmetric band matrix to tridiagonal form. */ indd = 1; inde = indd + *n; indwrk = inde + *n; if (wantz) { *(unsigned char *)vect = 'U'; } else { *(unsigned char *)vect = 'N'; } ssbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &work[indd], &work[inde], &q[q_offset], ldq, &work[indwrk], &iinfo); /* If all eigenvalues are desired and ABSTOL is less than or equal */ /* to zero, then call SSTERF or SSTEQR. If this fails for some */ /* eigenvalue, then try SSTEBZ. */ test = FALSE_; if (indeig) { if (*il == 1 && *iu == *n) { test = TRUE_; } } if ((alleig || test) && *abstol <= 0.f) { scopy_(n, &work[indd], &c__1, &w[1], &c__1); indee = indwrk + (*n << 1); i__1 = *n - 1; scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1); if (! wantz) { ssterf_(n, &w[1], &work[indee], info); } else { slacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz); ssteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[ indwrk], info); if (*info == 0) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { ifail[i__] = 0; /* L10: */ } } } if (*info == 0) { *m = *n; goto L30; } *info = 0; } /* Otherwise, call SSTEBZ and, if eigenvectors are desired, */ /* call SSTEIN. */ if (wantz) { *(unsigned char *)order = 'B'; } else { *(unsigned char *)order = 'E'; } indibl = 1; indisp = indibl + *n; indiwo = indisp + *n; sstebz_(range, order, n, vl, vu, il, iu, abstol, &work[indd], &work[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[indwrk], &iwork[indiwo], info); if (wantz) { sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[ indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], & ifail[1], info); /* Apply transformation matrix used in reduction to tridiagonal */ /* form to eigenvectors returned by SSTEIN. */ i__1 = *m; for (j = 1; j <= i__1; ++j) { scopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1); sgemv_("N", n, n, &c_b25, &q[q_offset], ldq, &work[1], &c__1, & c_b27, &z__[j * z_dim1 + 1], &c__1); /* L20: */ } } L30: /* If eigenvalues are not in order, then sort them, along with */ /* eigenvectors. */ if (wantz) { i__1 = *m - 1; for (j = 1; j <= i__1; ++j) { i__ = 0; tmp1 = w[j]; i__2 = *m; for (jj = j + 1; jj <= i__2; ++jj) { if (w[jj] < tmp1) { i__ = jj; tmp1 = w[jj]; } /* L40: */ } if (i__ != 0) { itmp1 = iwork[indibl + i__ - 1]; w[i__] = w[j]; iwork[indibl + i__ - 1] = iwork[indibl + j - 1]; w[j] = tmp1; iwork[indibl + j - 1] = itmp1; sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], &c__1); if (*info != 0) { itmp1 = ifail[i__]; ifail[i__] = ifail[j]; ifail[j] = itmp1; } } /* L50: */ } } return 0; /* End of SSBGVX */ } /* ssbgvx_ */