#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b STPQRT2 computes a QR factorization of a real or complex "triangular-pentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download STPQRT2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE STPQRT2( M, N, L, A, LDA, B, LDB, T, LDT, INFO ) */ /* INTEGER INFO, LDA, LDB, LDT, N, M, L */ /* REAL A( LDA, * ), B( LDB, * ), T( LDT, * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > STPQRT2 computes a QR factorization of a real "triangular-pentagonal" */ /* > matrix C, which is composed of a triangular block A and pentagonal block B, */ /* > using the compact WY representation for Q. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The total number of rows of the matrix B. */ /* > M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix B, and the order of */ /* > the triangular matrix A. */ /* > N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] L */ /* > \verbatim */ /* > L is INTEGER */ /* > The number of rows of the upper trapezoidal part of B. */ /* > MIN(M,N) >= L >= 0. See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is REAL array, dimension (LDA,N) */ /* > On entry, the upper triangular N-by-N matrix A. */ /* > On exit, the elements on and above the diagonal of the array */ /* > contain the upper triangular matrix R. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[in,out] B */ /* > \verbatim */ /* > B is REAL array, dimension (LDB,N) */ /* > On entry, the pentagonal M-by-N matrix B. The first M-L rows */ /* > are rectangular, and the last L rows are upper trapezoidal. */ /* > On exit, B contains the pentagonal matrix V. See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > The leading dimension of the array B. LDB >= f2cmax(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] T */ /* > \verbatim */ /* > T is REAL array, dimension (LDT,N) */ /* > The N-by-N upper triangular factor T of the block reflector. */ /* > See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDT */ /* > \verbatim */ /* > LDT is INTEGER */ /* > The leading dimension of the array T. LDT >= f2cmax(1,N) */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup realOTHERcomputational */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The input matrix C is a (N+M)-by-N matrix */ /* > */ /* > C = [ A ] */ /* > [ B ] */ /* > */ /* > where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal */ /* > matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N */ /* > upper trapezoidal matrix B2: */ /* > */ /* > B = [ B1 ] <- (M-L)-by-N rectangular */ /* > [ B2 ] <- L-by-N upper trapezoidal. */ /* > */ /* > The upper trapezoidal matrix B2 consists of the first L rows of a */ /* > N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0, */ /* > B is rectangular M-by-N; if M=L=N, B is upper triangular. */ /* > */ /* > The matrix W stores the elementary reflectors H(i) in the i-th column */ /* > below the diagonal (of A) in the (N+M)-by-N input matrix C */ /* > */ /* > C = [ A ] <- upper triangular N-by-N */ /* > [ B ] <- M-by-N pentagonal */ /* > */ /* > so that W can be represented as */ /* > */ /* > W = [ I ] <- identity, N-by-N */ /* > [ V ] <- M-by-N, same form as B. */ /* > */ /* > Thus, all of information needed for W is contained on exit in B, which */ /* > we call V above. Note that V has the same form as B; that is, */ /* > */ /* > V = [ V1 ] <- (M-L)-by-N rectangular */ /* > [ V2 ] <- L-by-N upper trapezoidal. */ /* > */ /* > The columns of V represent the vectors which define the H(i)'s. */ /* > The (M+N)-by-(M+N) block reflector H is then given by */ /* > */ /* > H = I - W * T * W^H */ /* > */ /* > where W^H is the conjugate transpose of W and T is the upper triangular */ /* > factor of the block reflector. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int stpqrt2_(integer *m, integer *n, integer *l, real *a, integer *lda, real *b, integer *ldb, real *t, integer *ldt, integer * info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, t_dim1, t_offset, i__1, i__2, i__3; /* Local variables */ extern /* Subroutine */ int sger_(integer *, integer *, real *, real *, integer *, real *, integer *, real *, integer *); integer i__, j, p; real alpha; extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *), strmv_(char *, char *, char *, integer *, real *, integer *, real *, integer *); integer mp, np; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slarfg_( integer *, real *, real *, integer *, real *); /* -- LAPACK computational routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; t_dim1 = *ldt; t_offset = 1 + t_dim1 * 1; t -= t_offset; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*l < 0 || *l > f2cmin(*m,*n)) { *info = -3; } else if (*lda < f2cmax(1,*n)) { *info = -5; } else if (*ldb < f2cmax(1,*m)) { *info = -7; } else if (*ldt < f2cmax(1,*n)) { *info = -9; } if (*info != 0) { i__1 = -(*info); xerbla_("STPQRT2", &i__1, (ftnlen)7); return 0; } /* Quick return if possible */ if (*n == 0 || *m == 0) { return 0; } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Generate elementary reflector H(I) to annihilate B(:,I) */ p = *m - *l + f2cmin(*l,i__); i__2 = p + 1; slarfg_(&i__2, &a[i__ + i__ * a_dim1], &b[i__ * b_dim1 + 1], &c__1, & t[i__ + t_dim1]); if (i__ < *n) { /* W(1:N-I) := C(I:M,I+1:N)^H * C(I:M,I) [use W = T(:,N)] */ i__2 = *n - i__; for (j = 1; j <= i__2; ++j) { t[j + *n * t_dim1] = a[i__ + (i__ + j) * a_dim1]; } i__2 = *n - i__; sgemv_("T", &p, &i__2, &c_b5, &b[(i__ + 1) * b_dim1 + 1], ldb, &b[ i__ * b_dim1 + 1], &c__1, &c_b5, &t[*n * t_dim1 + 1], & c__1); /* C(I:M,I+1:N) = C(I:m,I+1:N) + alpha*C(I:M,I)*W(1:N-1)^H */ alpha = -t[i__ + t_dim1]; i__2 = *n - i__; for (j = 1; j <= i__2; ++j) { a[i__ + (i__ + j) * a_dim1] += alpha * t[j + *n * t_dim1]; } i__2 = *n - i__; sger_(&p, &i__2, &alpha, &b[i__ * b_dim1 + 1], &c__1, &t[*n * t_dim1 + 1], &c__1, &b[(i__ + 1) * b_dim1 + 1], ldb); } } i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { /* T(1:I-1,I) := C(I:M,1:I-1)^H * (alpha * C(I:M,I)) */ alpha = -t[i__ + t_dim1]; i__2 = i__ - 1; for (j = 1; j <= i__2; ++j) { t[j + i__ * t_dim1] = 0.f; } /* Computing MIN */ i__2 = i__ - 1; p = f2cmin(i__2,*l); /* Computing MIN */ i__2 = *m - *l + 1; mp = f2cmin(i__2,*m); /* Computing MIN */ i__2 = p + 1; np = f2cmin(i__2,*n); /* Triangular part of B2 */ i__2 = p; for (j = 1; j <= i__2; ++j) { t[j + i__ * t_dim1] = alpha * b[*m - *l + j + i__ * b_dim1]; } strmv_("U", "T", "N", &p, &b[mp + b_dim1], ldb, &t[i__ * t_dim1 + 1], &c__1); /* Rectangular part of B2 */ i__2 = i__ - 1 - p; sgemv_("T", l, &i__2, &alpha, &b[mp + np * b_dim1], ldb, &b[mp + i__ * b_dim1], &c__1, &c_b17, &t[np + i__ * t_dim1], &c__1); /* B1 */ i__2 = *m - *l; i__3 = i__ - 1; sgemv_("T", &i__2, &i__3, &alpha, &b[b_offset], ldb, &b[i__ * b_dim1 + 1], &c__1, &c_b5, &t[i__ * t_dim1 + 1], &c__1); /* T(1:I-1,I) := T(1:I-1,1:I-1) * T(1:I-1,I) */ i__2 = i__ - 1; strmv_("U", "N", "N", &i__2, &t[t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1); /* T(I,I) = tau(I) */ t[i__ + i__ * t_dim1] = t[i__ + t_dim1]; t[i__ + t_dim1] = 0.f; } /* End of STPQRT2 */ return 0; } /* stpqrt2_ */