#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b STREXC */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download STREXC + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE STREXC( COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, WORK, */ /* INFO ) */ /* CHARACTER COMPQ */ /* INTEGER IFST, ILST, INFO, LDQ, LDT, N */ /* REAL Q( LDQ, * ), T( LDT, * ), WORK( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > STREXC reorders the real Schur factorization of a real matrix */ /* > A = Q*T*Q**T, so that the diagonal block of T with row index IFST is */ /* > moved to row ILST. */ /* > */ /* > The real Schur form T is reordered by an orthogonal similarity */ /* > transformation Z**T*T*Z, and optionally the matrix Q of Schur vectors */ /* > is updated by postmultiplying it with Z. */ /* > */ /* > T must be in Schur canonical form (as returned by SHSEQR), that is, */ /* > block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */ /* > 2-by-2 diagonal block has its diagonal elements equal and its */ /* > off-diagonal elements of opposite sign. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] COMPQ */ /* > \verbatim */ /* > COMPQ is CHARACTER*1 */ /* > = 'V': update the matrix Q of Schur vectors; */ /* > = 'N': do not update Q. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrix T. N >= 0. */ /* > If N == 0 arguments ILST and IFST may be any value. */ /* > \endverbatim */ /* > */ /* > \param[in,out] T */ /* > \verbatim */ /* > T is REAL array, dimension (LDT,N) */ /* > On entry, the upper quasi-triangular matrix T, in Schur */ /* > Schur canonical form. */ /* > On exit, the reordered upper quasi-triangular matrix, again */ /* > in Schur canonical form. */ /* > \endverbatim */ /* > */ /* > \param[in] LDT */ /* > \verbatim */ /* > LDT is INTEGER */ /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[in,out] Q */ /* > \verbatim */ /* > Q is REAL array, dimension (LDQ,N) */ /* > On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */ /* > On exit, if COMPQ = 'V', Q has been postmultiplied by the */ /* > orthogonal transformation matrix Z which reorders T. */ /* > If COMPQ = 'N', Q is not referenced. */ /* > \endverbatim */ /* > */ /* > \param[in] LDQ */ /* > \verbatim */ /* > LDQ is INTEGER */ /* > The leading dimension of the array Q. LDQ >= 1, and if */ /* > COMPQ = 'V', LDQ >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[in,out] IFST */ /* > \verbatim */ /* > IFST is INTEGER */ /* > \endverbatim */ /* > */ /* > \param[in,out] ILST */ /* > \verbatim */ /* > ILST is INTEGER */ /* > */ /* > Specify the reordering of the diagonal blocks of T. */ /* > The block with row index IFST is moved to row ILST, by a */ /* > sequence of transpositions between adjacent blocks. */ /* > On exit, if IFST pointed on entry to the second row of a */ /* > 2-by-2 block, it is changed to point to the first row; ILST */ /* > always points to the first row of the block in its final */ /* > position (which may differ from its input value by +1 or -1). */ /* > 1 <= IFST <= N; 1 <= ILST <= N. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is REAL array, dimension (N) */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value */ /* > = 1: two adjacent blocks were too close to swap (the problem */ /* > is very ill-conditioned); T may have been partially */ /* > reordered, and ILST points to the first row of the */ /* > current position of the block being moved. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup realOTHERcomputational */ /* ===================================================================== */ /* Subroutine */ int strexc_(char *compq, integer *n, real *t, integer *ldt, real *q, integer *ldq, integer *ifst, integer *ilst, real *work, integer *info) { /* System generated locals */ integer q_dim1, q_offset, t_dim1, t_offset, i__1; /* Local variables */ integer here; extern logical lsame_(char *, char *); logical wantq; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slaexc_( logical *, integer *, real *, integer *, real *, integer *, integer *, integer *, integer *, real *, integer *); integer nbnext, nbf, nbl; /* -- LAPACK computational routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Decode and test the input arguments. */ /* Parameter adjustments */ t_dim1 = *ldt; t_offset = 1 + t_dim1 * 1; t -= t_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1 * 1; q -= q_offset; --work; /* Function Body */ *info = 0; wantq = lsame_(compq, "V"); if (! wantq && ! lsame_(compq, "N")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*ldt < f2cmax(1,*n)) { *info = -4; } else if (*ldq < 1 || wantq && *ldq < f2cmax(1,*n)) { *info = -6; } else if ((*ifst < 1 || *ifst > *n) && *n > 0) { *info = -7; } else if ((*ilst < 1 || *ilst > *n) && *n > 0) { *info = -8; } if (*info != 0) { i__1 = -(*info); xerbla_("STREXC", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n <= 1) { return 0; } /* Determine the first row of specified block */ /* and find out it is 1 by 1 or 2 by 2. */ if (*ifst > 1) { if (t[*ifst + (*ifst - 1) * t_dim1] != 0.f) { --(*ifst); } } nbf = 1; if (*ifst < *n) { if (t[*ifst + 1 + *ifst * t_dim1] != 0.f) { nbf = 2; } } /* Determine the first row of the final block */ /* and find out it is 1 by 1 or 2 by 2. */ if (*ilst > 1) { if (t[*ilst + (*ilst - 1) * t_dim1] != 0.f) { --(*ilst); } } nbl = 1; if (*ilst < *n) { if (t[*ilst + 1 + *ilst * t_dim1] != 0.f) { nbl = 2; } } if (*ifst == *ilst) { return 0; } if (*ifst < *ilst) { /* Update ILST */ if (nbf == 2 && nbl == 1) { --(*ilst); } if (nbf == 1 && nbl == 2) { ++(*ilst); } here = *ifst; L10: /* Swap block with next one below */ if (nbf == 1 || nbf == 2) { /* Current block either 1 by 1 or 2 by 2 */ nbnext = 1; if (here + nbf + 1 <= *n) { if (t[here + nbf + 1 + (here + nbf) * t_dim1] != 0.f) { nbnext = 2; } } slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &here, & nbf, &nbnext, &work[1], info); if (*info != 0) { *ilst = here; return 0; } here += nbnext; /* Test if 2 by 2 block breaks into two 1 by 1 blocks */ if (nbf == 2) { if (t[here + 1 + here * t_dim1] == 0.f) { nbf = 3; } } } else { /* Current block consists of two 1 by 1 blocks each of which */ /* must be swapped individually */ nbnext = 1; if (here + 3 <= *n) { if (t[here + 3 + (here + 2) * t_dim1] != 0.f) { nbnext = 2; } } i__1 = here + 1; slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &i__1, & c__1, &nbnext, &work[1], info); if (*info != 0) { *ilst = here; return 0; } if (nbnext == 1) { /* Swap two 1 by 1 blocks, no problems possible */ slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & here, &c__1, &nbnext, &work[1], info); ++here; } else { /* Recompute NBNEXT in case 2 by 2 split */ if (t[here + 2 + (here + 1) * t_dim1] == 0.f) { nbnext = 1; } if (nbnext == 2) { /* 2 by 2 Block did not split */ slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & here, &c__1, &nbnext, &work[1], info); if (*info != 0) { *ilst = here; return 0; } here += 2; } else { /* 2 by 2 Block did split */ slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & here, &c__1, &c__1, &work[1], info); i__1 = here + 1; slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & i__1, &c__1, &c__1, &work[1], info); here += 2; } } } if (here < *ilst) { goto L10; } } else { here = *ifst; L20: /* Swap block with next one above */ if (nbf == 1 || nbf == 2) { /* Current block either 1 by 1 or 2 by 2 */ nbnext = 1; if (here >= 3) { if (t[here - 1 + (here - 2) * t_dim1] != 0.f) { nbnext = 2; } } i__1 = here - nbnext; slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &i__1, & nbnext, &nbf, &work[1], info); if (*info != 0) { *ilst = here; return 0; } here -= nbnext; /* Test if 2 by 2 block breaks into two 1 by 1 blocks */ if (nbf == 2) { if (t[here + 1 + here * t_dim1] == 0.f) { nbf = 3; } } } else { /* Current block consists of two 1 by 1 blocks each of which */ /* must be swapped individually */ nbnext = 1; if (here >= 3) { if (t[here - 1 + (here - 2) * t_dim1] != 0.f) { nbnext = 2; } } i__1 = here - nbnext; slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &i__1, & nbnext, &c__1, &work[1], info); if (*info != 0) { *ilst = here; return 0; } if (nbnext == 1) { /* Swap two 1 by 1 blocks, no problems possible */ slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & here, &nbnext, &c__1, &work[1], info); --here; } else { /* Recompute NBNEXT in case 2 by 2 split */ if (t[here + (here - 1) * t_dim1] == 0.f) { nbnext = 1; } if (nbnext == 2) { /* 2 by 2 Block did not split */ i__1 = here - 1; slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & i__1, &c__2, &c__1, &work[1], info); if (*info != 0) { *ilst = here; return 0; } here += -2; } else { /* 2 by 2 Block did split */ slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & here, &c__1, &c__1, &work[1], info); i__1 = here - 1; slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & i__1, &c__1, &c__1, &work[1], info); here += -2; } } } if (here > *ilst) { goto L20; } } *ilst = here; return 0; /* End of STREXC */ } /* strexc_ */