#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief ZGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors f or GE matrices */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZGGES + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, */ /* SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, */ /* LWORK, RWORK, BWORK, INFO ) */ /* CHARACTER JOBVSL, JOBVSR, SORT */ /* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM */ /* LOGICAL BWORK( * ) */ /* DOUBLE PRECISION RWORK( * ) */ /* COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ), */ /* $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ), */ /* $ WORK( * ) */ /* LOGICAL SELCTG */ /* EXTERNAL SELCTG */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZGGES computes for a pair of N-by-N complex nonsymmetric matrices */ /* > (A,B), the generalized eigenvalues, the generalized complex Schur */ /* > form (S, T), and optionally left and/or right Schur vectors (VSL */ /* > and VSR). This gives the generalized Schur factorization */ /* > */ /* > (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H ) */ /* > */ /* > where (VSR)**H is the conjugate-transpose of VSR. */ /* > */ /* > Optionally, it also orders the eigenvalues so that a selected cluster */ /* > of eigenvalues appears in the leading diagonal blocks of the upper */ /* > triangular matrix S and the upper triangular matrix T. The leading */ /* > columns of VSL and VSR then form an unitary basis for the */ /* > corresponding left and right eigenspaces (deflating subspaces). */ /* > */ /* > (If only the generalized eigenvalues are needed, use the driver */ /* > ZGGEV instead, which is faster.) */ /* > */ /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */ /* > or a ratio alpha/beta = w, such that A - w*B is singular. It is */ /* > usually represented as the pair (alpha,beta), as there is a */ /* > reasonable interpretation for beta=0, and even for both being zero. */ /* > */ /* > A pair of matrices (S,T) is in generalized complex Schur form if S */ /* > and T are upper triangular and, in addition, the diagonal elements */ /* > of T are non-negative real numbers. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] JOBVSL */ /* > \verbatim */ /* > JOBVSL is CHARACTER*1 */ /* > = 'N': do not compute the left Schur vectors; */ /* > = 'V': compute the left Schur vectors. */ /* > \endverbatim */ /* > */ /* > \param[in] JOBVSR */ /* > \verbatim */ /* > JOBVSR is CHARACTER*1 */ /* > = 'N': do not compute the right Schur vectors; */ /* > = 'V': compute the right Schur vectors. */ /* > \endverbatim */ /* > */ /* > \param[in] SORT */ /* > \verbatim */ /* > SORT is CHARACTER*1 */ /* > Specifies whether or not to order the eigenvalues on the */ /* > diagonal of the generalized Schur form. */ /* > = 'N': Eigenvalues are not ordered; */ /* > = 'S': Eigenvalues are ordered (see SELCTG). */ /* > \endverbatim */ /* > */ /* > \param[in] SELCTG */ /* > \verbatim */ /* > SELCTG is a LOGICAL FUNCTION of two COMPLEX*16 arguments */ /* > SELCTG must be declared EXTERNAL in the calling subroutine. */ /* > If SORT = 'N', SELCTG is not referenced. */ /* > If SORT = 'S', SELCTG is used to select eigenvalues to sort */ /* > to the top left of the Schur form. */ /* > An eigenvalue ALPHA(j)/BETA(j) is selected if */ /* > SELCTG(ALPHA(j),BETA(j)) is true. */ /* > */ /* > Note that a selected complex eigenvalue may no longer satisfy */ /* > SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since */ /* > ordering may change the value of complex eigenvalues */ /* > (especially if the eigenvalue is ill-conditioned), in this */ /* > case INFO is set to N+2 (See INFO below). */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The order of the matrices A, B, VSL, and VSR. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX*16 array, dimension (LDA, N) */ /* > On entry, the first of the pair of matrices. */ /* > On exit, A has been overwritten by its generalized Schur */ /* > form S. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of A. LDA >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[in,out] B */ /* > \verbatim */ /* > B is COMPLEX*16 array, dimension (LDB, N) */ /* > On entry, the second of the pair of matrices. */ /* > On exit, B has been overwritten by its generalized Schur */ /* > form T. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > The leading dimension of B. LDB >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] SDIM */ /* > \verbatim */ /* > SDIM is INTEGER */ /* > If SORT = 'N', SDIM = 0. */ /* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */ /* > for which SELCTG is true. */ /* > \endverbatim */ /* > */ /* > \param[out] ALPHA */ /* > \verbatim */ /* > ALPHA is COMPLEX*16 array, dimension (N) */ /* > \endverbatim */ /* > */ /* > \param[out] BETA */ /* > \verbatim */ /* > BETA is COMPLEX*16 array, dimension (N) */ /* > On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the */ /* > generalized eigenvalues. ALPHA(j), j=1,...,N and BETA(j), */ /* > j=1,...,N are the diagonals of the complex Schur form (A,B) */ /* > output by ZGGES. The BETA(j) will be non-negative real. */ /* > */ /* > Note: the quotients ALPHA(j)/BETA(j) may easily over- or */ /* > underflow, and BETA(j) may even be zero. Thus, the user */ /* > should avoid naively computing the ratio alpha/beta. */ /* > However, ALPHA will be always less than and usually */ /* > comparable with norm(A) in magnitude, and BETA always less */ /* > than and usually comparable with norm(B). */ /* > \endverbatim */ /* > */ /* > \param[out] VSL */ /* > \verbatim */ /* > VSL is COMPLEX*16 array, dimension (LDVSL,N) */ /* > If JOBVSL = 'V', VSL will contain the left Schur vectors. */ /* > Not referenced if JOBVSL = 'N'. */ /* > \endverbatim */ /* > */ /* > \param[in] LDVSL */ /* > \verbatim */ /* > LDVSL is INTEGER */ /* > The leading dimension of the matrix VSL. LDVSL >= 1, and */ /* > if JOBVSL = 'V', LDVSL >= N. */ /* > \endverbatim */ /* > */ /* > \param[out] VSR */ /* > \verbatim */ /* > VSR is COMPLEX*16 array, dimension (LDVSR,N) */ /* > If JOBVSR = 'V', VSR will contain the right Schur vectors. */ /* > Not referenced if JOBVSR = 'N'. */ /* > \endverbatim */ /* > */ /* > \param[in] LDVSR */ /* > \verbatim */ /* > LDVSR is INTEGER */ /* > The leading dimension of the matrix VSR. LDVSR >= 1, and */ /* > if JOBVSR = 'V', LDVSR >= N. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */ /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* > \endverbatim */ /* > */ /* > \param[in] LWORK */ /* > \verbatim */ /* > LWORK is INTEGER */ /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */ /* > For good performance, LWORK must generally be larger. */ /* > */ /* > If LWORK = -1, then a workspace query is assumed; the routine */ /* > only calculates the optimal size of the WORK array, returns */ /* > this value as the first entry of the WORK array, and no error */ /* > message related to LWORK is issued by XERBLA. */ /* > \endverbatim */ /* > */ /* > \param[out] RWORK */ /* > \verbatim */ /* > RWORK is DOUBLE PRECISION array, dimension (8*N) */ /* > \endverbatim */ /* > */ /* > \param[out] BWORK */ /* > \verbatim */ /* > BWORK is LOGICAL array, dimension (N) */ /* > Not referenced if SORT = 'N'. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > =1,...,N: */ /* > The QZ iteration failed. (A,B) are not in Schur */ /* > form, but ALPHA(j) and BETA(j) should be correct for */ /* > j=INFO+1,...,N. */ /* > > N: =N+1: other than QZ iteration failed in ZHGEQZ */ /* > =N+2: after reordering, roundoff changed values of */ /* > some complex eigenvalues so that leading */ /* > eigenvalues in the Generalized Schur form no */ /* > longer satisfy SELCTG=.TRUE. This could also */ /* > be caused due to scaling. */ /* > =N+3: reordering failed in ZTGSEN. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup complex16GEeigen */ /* ===================================================================== */ /* Subroutine */ int zgges_(char *jobvsl, char *jobvsr, char *sort, L_fp selctg, integer *n, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, integer *sdim, doublecomplex *alpha, doublecomplex * beta, doublecomplex *vsl, integer *ldvsl, doublecomplex *vsr, integer *ldvsr, doublecomplex *work, integer *lwork, doublereal *rwork, logical *bwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, vsr_dim1, vsr_offset, i__1, i__2; /* Local variables */ doublereal anrm, bnrm; integer idum[1], ierr, itau, iwrk; doublereal pvsl, pvsr; integer i__; extern logical lsame_(char *, char *); integer ileft, icols; logical cursl, ilvsl, ilvsr; integer irwrk, irows; extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); extern doublereal dlamch_(char *); extern /* Subroutine */ int zggbak_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublecomplex *, integer *, integer *), zggbal_(char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer * , integer *, doublereal *, doublereal *, doublereal *, integer *); logical ilascl, ilbscl; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); doublereal bignum; integer ijobvl, iright; extern /* Subroutine */ int zgghrd_(char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer * ), zlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex *, integer *, integer *); integer ijobvr; extern /* Subroutine */ int zgeqrf_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer * ); doublereal anrmto; integer lwkmin; logical lastsl; doublereal bnrmto; extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zhgeqz_( char *, char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, integer *), ztgsen_(integer *, logical *, logical *, logical *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublecomplex *, integer *, integer *, integer *, integer *); doublereal smlnum; logical wantst, lquery; integer lwkopt; extern /* Subroutine */ int zungqr_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *), zunmqr_(char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); doublereal dif[2]; integer ihi, ilo; doublereal eps; /* -- LAPACK driver routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Decode the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --alpha; --beta; vsl_dim1 = *ldvsl; vsl_offset = 1 + vsl_dim1 * 1; vsl -= vsl_offset; vsr_dim1 = *ldvsr; vsr_offset = 1 + vsr_dim1 * 1; vsr -= vsr_offset; --work; --rwork; --bwork; /* Function Body */ if (lsame_(jobvsl, "N")) { ijobvl = 1; ilvsl = FALSE_; } else if (lsame_(jobvsl, "V")) { ijobvl = 2; ilvsl = TRUE_; } else { ijobvl = -1; ilvsl = FALSE_; } if (lsame_(jobvsr, "N")) { ijobvr = 1; ilvsr = FALSE_; } else if (lsame_(jobvsr, "V")) { ijobvr = 2; ilvsr = TRUE_; } else { ijobvr = -1; ilvsr = FALSE_; } wantst = lsame_(sort, "S"); /* Test the input arguments */ *info = 0; lquery = *lwork == -1; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (! wantst && ! lsame_(sort, "N")) { *info = -3; } else if (*n < 0) { *info = -5; } else if (*lda < f2cmax(1,*n)) { *info = -7; } else if (*ldb < f2cmax(1,*n)) { *info = -9; } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) { *info = -14; } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) { *info = -16; } /* Compute workspace */ /* (Note: Comments in the code beginning "Workspace:" describe the */ /* minimal amount of workspace needed at that point in the code, */ /* as well as the preferred amount for good performance. */ /* NB refers to the optimal block size for the immediately */ /* following subroutine, as returned by ILAENV.) */ if (*info == 0) { /* Computing MAX */ i__1 = 1, i__2 = *n << 1; lwkmin = f2cmax(i__1,i__2); /* Computing MAX */ i__1 = 1, i__2 = *n + *n * ilaenv_(&c__1, "ZGEQRF", " ", n, &c__1, n, &c__0, (ftnlen)6, (ftnlen)1); lwkopt = f2cmax(i__1,i__2); /* Computing MAX */ i__1 = lwkopt, i__2 = *n + *n * ilaenv_(&c__1, "ZUNMQR", " ", n, & c__1, n, &c_n1, (ftnlen)6, (ftnlen)1); lwkopt = f2cmax(i__1,i__2); if (ilvsl) { /* Computing MAX */ i__1 = lwkopt, i__2 = *n + *n * ilaenv_(&c__1, "ZUNGQR", " ", n, & c__1, n, &c_n1, (ftnlen)6, (ftnlen)1); lwkopt = f2cmax(i__1,i__2); } work[1].r = (doublereal) lwkopt, work[1].i = 0.; if (*lwork < lwkmin && ! lquery) { *info = -18; } } if (*info != 0) { i__1 = -(*info); xerbla_("ZGGES ", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { *sdim = 0; return 0; } /* Get machine constants */ eps = dlamch_("P"); smlnum = dlamch_("S"); bignum = 1. / smlnum; dlabad_(&smlnum, &bignum); smlnum = sqrt(smlnum) / eps; bignum = 1. / smlnum; /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */ anrm = zlange_("M", n, n, &a[a_offset], lda, &rwork[1]); ilascl = FALSE_; if (anrm > 0. && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE_; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE_; } if (ilascl) { zlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, & ierr); } /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */ bnrm = zlange_("M", n, n, &b[b_offset], ldb, &rwork[1]); ilbscl = FALSE_; if (bnrm > 0. && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE_; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE_; } if (ilbscl) { zlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & ierr); } /* Permute the matrix to make it more nearly triangular */ /* (Real Workspace: need 6*N) */ ileft = 1; iright = *n + 1; irwrk = iright + *n; zggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[ ileft], &rwork[iright], &rwork[irwrk], &ierr); /* Reduce B to triangular form (QR decomposition of B) */ /* (Complex Workspace: need N, prefer N*NB) */ irows = ihi + 1 - ilo; icols = *n + 1 - ilo; itau = 1; iwrk = itau + irows; i__1 = *lwork + 1 - iwrk; zgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[ iwrk], &i__1, &ierr); /* Apply the orthogonal transformation to matrix A */ /* (Complex Workspace: need N, prefer N*NB) */ i__1 = *lwork + 1 - iwrk; zunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, & work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, & ierr); /* Initialize VSL */ /* (Complex Workspace: need N, prefer N*NB) */ if (ilvsl) { zlaset_("Full", n, n, &c_b1, &c_b2, &vsl[vsl_offset], ldvsl); if (irows > 1) { i__1 = irows - 1; i__2 = irows - 1; zlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ ilo + 1 + ilo * vsl_dim1], ldvsl); } i__1 = *lwork + 1 - iwrk; zungqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, & work[itau], &work[iwrk], &i__1, &ierr); } /* Initialize VSR */ if (ilvsr) { zlaset_("Full", n, n, &c_b1, &c_b2, &vsr[vsr_offset], ldvsr); } /* Reduce to generalized Hessenberg form */ /* (Workspace: none needed) */ zgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr); *sdim = 0; /* Perform QZ algorithm, computing Schur vectors if desired */ /* (Complex Workspace: need N) */ /* (Real Workspace: need N) */ iwrk = itau; i__1 = *lwork + 1 - iwrk; zhgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, & vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &rwork[irwrk], &ierr); if (ierr != 0) { if (ierr > 0 && ierr <= *n) { *info = ierr; } else if (ierr > *n && ierr <= *n << 1) { *info = ierr - *n; } else { *info = *n + 1; } goto L30; } /* Sort eigenvalues ALPHA/BETA if desired */ /* (Workspace: none needed) */ if (wantst) { /* Undo scaling on eigenvalues before selecting */ if (ilascl) { zlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, &c__1, &alpha[1], n, &ierr); } if (ilbscl) { zlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, &c__1, &beta[1], n, &ierr); } /* Select eigenvalues */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { bwork[i__] = (*selctg)(&alpha[i__], &beta[i__]); /* L10: */ } i__1 = *lwork - iwrk + 1; ztgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[ b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl, &pvsr, dif, &work[iwrk], &i__1, idum, &c__1, &ierr); if (ierr == 1) { *info = *n + 3; } } /* Apply back-permutation to VSL and VSR */ /* (Workspace: none needed) */ if (ilvsl) { zggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, & vsl[vsl_offset], ldvsl, &ierr); } if (ilvsr) { zggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, & vsr[vsr_offset], ldvsr, &ierr); } /* Undo scaling */ if (ilascl) { zlascl_("U", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, & ierr); zlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, & ierr); } if (ilbscl) { zlascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, & ierr); zlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & ierr); } if (wantst) { /* Check if reordering is correct */ lastsl = TRUE_; *sdim = 0; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { cursl = (*selctg)(&alpha[i__], &beta[i__]); if (cursl) { ++(*sdim); } if (cursl && ! lastsl) { *info = *n + 2; } lastsl = cursl; /* L20: */ } } L30: work[1].r = (doublereal) lwkopt, work[1].i = 0.; return 0; /* End of ZGGES */ } /* zgges_ */