#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b ZLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZLALSA + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, */ /* LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, */ /* GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK, */ /* IWORK, INFO ) */ /* INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS, */ /* $ SMLSIZ */ /* INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), */ /* $ K( * ), PERM( LDGCOL, * ) */ /* DOUBLE PRECISION C( * ), DIFL( LDU, * ), DIFR( LDU, * ), */ /* $ GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ), */ /* $ S( * ), U( LDU, * ), VT( LDU, * ), Z( LDU, * ) */ /* COMPLEX*16 B( LDB, * ), BX( LDBX, * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZLALSA is an itermediate step in solving the least squares problem */ /* > by computing the SVD of the coefficient matrix in compact form (The */ /* > singular vectors are computed as products of simple orthorgonal */ /* > matrices.). */ /* > */ /* > If ICOMPQ = 0, ZLALSA applies the inverse of the left singular vector */ /* > matrix of an upper bidiagonal matrix to the right hand side; and if */ /* > ICOMPQ = 1, ZLALSA applies the right singular vector matrix to the */ /* > right hand side. The singular vector matrices were generated in */ /* > compact form by ZLALSA. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] ICOMPQ */ /* > \verbatim */ /* > ICOMPQ is INTEGER */ /* > Specifies whether the left or the right singular vector */ /* > matrix is involved. */ /* > = 0: Left singular vector matrix */ /* > = 1: Right singular vector matrix */ /* > \endverbatim */ /* > */ /* > \param[in] SMLSIZ */ /* > \verbatim */ /* > SMLSIZ is INTEGER */ /* > The maximum size of the subproblems at the bottom of the */ /* > computation tree. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The row and column dimensions of the upper bidiagonal matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] NRHS */ /* > \verbatim */ /* > NRHS is INTEGER */ /* > The number of columns of B and BX. NRHS must be at least 1. */ /* > \endverbatim */ /* > */ /* > \param[in,out] B */ /* > \verbatim */ /* > B is COMPLEX*16 array, dimension ( LDB, NRHS ) */ /* > On input, B contains the right hand sides of the least */ /* > squares problem in rows 1 through M. */ /* > On output, B contains the solution X in rows 1 through N. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > The leading dimension of B in the calling subprogram. */ /* > LDB must be at least f2cmax(1,MAX( M, N ) ). */ /* > \endverbatim */ /* > */ /* > \param[out] BX */ /* > \verbatim */ /* > BX is COMPLEX*16 array, dimension ( LDBX, NRHS ) */ /* > On exit, the result of applying the left or right singular */ /* > vector matrix to B. */ /* > \endverbatim */ /* > */ /* > \param[in] LDBX */ /* > \verbatim */ /* > LDBX is INTEGER */ /* > The leading dimension of BX. */ /* > \endverbatim */ /* > */ /* > \param[in] U */ /* > \verbatim */ /* > U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ). */ /* > On entry, U contains the left singular vector matrices of all */ /* > subproblems at the bottom level. */ /* > \endverbatim */ /* > */ /* > \param[in] LDU */ /* > \verbatim */ /* > LDU is INTEGER, LDU = > N. */ /* > The leading dimension of arrays U, VT, DIFL, DIFR, */ /* > POLES, GIVNUM, and Z. */ /* > \endverbatim */ /* > */ /* > \param[in] VT */ /* > \verbatim */ /* > VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ). */ /* > On entry, VT**H contains the right singular vector matrices of */ /* > all subproblems at the bottom level. */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER array, dimension ( N ). */ /* > \endverbatim */ /* > */ /* > \param[in] DIFL */ /* > \verbatim */ /* > DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ). */ /* > where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. */ /* > \endverbatim */ /* > */ /* > \param[in] DIFR */ /* > \verbatim */ /* > DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */ /* > On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record */ /* > distances between singular values on the I-th level and */ /* > singular values on the (I -1)-th level, and DIFR(*, 2 * I) */ /* > record the normalizing factors of the right singular vectors */ /* > matrices of subproblems on I-th level. */ /* > \endverbatim */ /* > */ /* > \param[in] Z */ /* > \verbatim */ /* > Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ). */ /* > On entry, Z(1, I) contains the components of the deflation- */ /* > adjusted updating row vector for subproblems on the I-th */ /* > level. */ /* > \endverbatim */ /* > */ /* > \param[in] POLES */ /* > \verbatim */ /* > POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */ /* > On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old */ /* > singular values involved in the secular equations on the I-th */ /* > level. */ /* > \endverbatim */ /* > */ /* > \param[in] GIVPTR */ /* > \verbatim */ /* > GIVPTR is INTEGER array, dimension ( N ). */ /* > On entry, GIVPTR( I ) records the number of Givens */ /* > rotations performed on the I-th problem on the computation */ /* > tree. */ /* > \endverbatim */ /* > */ /* > \param[in] GIVCOL */ /* > \verbatim */ /* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ). */ /* > On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the */ /* > locations of Givens rotations performed on the I-th level on */ /* > the computation tree. */ /* > \endverbatim */ /* > */ /* > \param[in] LDGCOL */ /* > \verbatim */ /* > LDGCOL is INTEGER, LDGCOL = > N. */ /* > The leading dimension of arrays GIVCOL and PERM. */ /* > \endverbatim */ /* > */ /* > \param[in] PERM */ /* > \verbatim */ /* > PERM is INTEGER array, dimension ( LDGCOL, NLVL ). */ /* > On entry, PERM(*, I) records permutations done on the I-th */ /* > level of the computation tree. */ /* > \endverbatim */ /* > */ /* > \param[in] GIVNUM */ /* > \verbatim */ /* > GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */ /* > On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- */ /* > values of Givens rotations performed on the I-th level on the */ /* > computation tree. */ /* > \endverbatim */ /* > */ /* > \param[in] C */ /* > \verbatim */ /* > C is DOUBLE PRECISION array, dimension ( N ). */ /* > On entry, if the I-th subproblem is not square, */ /* > C( I ) contains the C-value of a Givens rotation related to */ /* > the right null space of the I-th subproblem. */ /* > \endverbatim */ /* > */ /* > \param[in] S */ /* > \verbatim */ /* > S is DOUBLE PRECISION array, dimension ( N ). */ /* > On entry, if the I-th subproblem is not square, */ /* > S( I ) contains the S-value of a Givens rotation related to */ /* > the right null space of the I-th subproblem. */ /* > \endverbatim */ /* > */ /* > \param[out] RWORK */ /* > \verbatim */ /* > RWORK is DOUBLE PRECISION array, dimension at least */ /* > MAX( (SMLSZ+1)*NRHS*3, N*(1+NRHS) + 2*NRHS ). */ /* > \endverbatim */ /* > */ /* > \param[out] IWORK */ /* > \verbatim */ /* > IWORK is INTEGER array, dimension (3*N) */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit. */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date June 2017 */ /* > \ingroup complex16OTHERcomputational */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */ /* > California at Berkeley, USA \n */ /* > Osni Marques, LBNL/NERSC, USA \n */ /* ===================================================================== */ /* Subroutine */ int zlalsa_(integer *icompq, integer *smlsiz, integer *n, integer *nrhs, doublecomplex *b, integer *ldb, doublecomplex *bx, integer *ldbx, doublereal *u, integer *ldu, doublereal *vt, integer * k, doublereal *difl, doublereal *difr, doublereal *z__, doublereal * poles, integer *givptr, integer *givcol, integer *ldgcol, integer * perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal * rwork, integer *iwork, integer *info) { /* System generated locals */ integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1, difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, b_dim1, b_offset, bx_dim1, bx_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublecomplex z__1; /* Local variables */ integer jcol, nlvl, sqre, jrow, i__, j, jimag; extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); integer jreal, inode, ndiml, ndimr, i1; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlals0_(integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *); integer ic, lf, nd, ll, nl, nr; extern /* Subroutine */ int dlasdt_(integer *, integer *, integer *, integer *, integer *, integer *, integer *), xerbla_(char *, integer *, ftnlen); integer im1, nlf, nrf, lvl, ndb1, nlp1, lvl2, nrp1; /* -- LAPACK computational routine (version 3.7.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* June 2017 */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; bx_dim1 = *ldbx; bx_offset = 1 + bx_dim1 * 1; bx -= bx_offset; givnum_dim1 = *ldu; givnum_offset = 1 + givnum_dim1 * 1; givnum -= givnum_offset; poles_dim1 = *ldu; poles_offset = 1 + poles_dim1 * 1; poles -= poles_offset; z_dim1 = *ldu; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; difr_dim1 = *ldu; difr_offset = 1 + difr_dim1 * 1; difr -= difr_offset; difl_dim1 = *ldu; difl_offset = 1 + difl_dim1 * 1; difl -= difl_offset; vt_dim1 = *ldu; vt_offset = 1 + vt_dim1 * 1; vt -= vt_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; --k; --givptr; perm_dim1 = *ldgcol; perm_offset = 1 + perm_dim1 * 1; perm -= perm_offset; givcol_dim1 = *ldgcol; givcol_offset = 1 + givcol_dim1 * 1; givcol -= givcol_offset; --c__; --s; --rwork; --iwork; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*smlsiz < 3) { *info = -2; } else if (*n < *smlsiz) { *info = -3; } else if (*nrhs < 1) { *info = -4; } else if (*ldb < *n) { *info = -6; } else if (*ldbx < *n) { *info = -8; } else if (*ldu < *n) { *info = -10; } else if (*ldgcol < *n) { *info = -19; } if (*info != 0) { i__1 = -(*info); xerbla_("ZLALSA", &i__1, (ftnlen)6); return 0; } /* Book-keeping and setting up the computation tree. */ inode = 1; ndiml = inode + *n; ndimr = ndiml + *n; dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], smlsiz); /* The following code applies back the left singular vector factors. */ /* For applying back the right singular vector factors, go to 170. */ if (*icompq == 1) { goto L170; } /* The nodes on the bottom level of the tree were solved */ /* by DLASDQ. The corresponding left and right singular vector */ /* matrices are in explicit form. First apply back the left */ /* singular vector matrices. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { /* IC : center row of each node */ /* NL : number of rows of left subproblem */ /* NR : number of rows of right subproblem */ /* NLF: starting row of the left subproblem */ /* NRF: starting row of the right subproblem */ i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nr = iwork[ndimr + i1]; nlf = ic - nl; nrf = ic + 1; /* Since B and BX are complex, the following call to DGEMM */ /* is performed in two steps (real and imaginary parts). */ /* CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU, */ /* $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) */ j = nl * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nl - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++j; i__4 = jrow + jcol * b_dim1; rwork[j] = b[i__4].r; /* L10: */ } /* L20: */ } dgemm_("T", "N", &nl, nrhs, &nl, &c_b9, &u[nlf + u_dim1], ldu, &rwork[ (nl * *nrhs << 1) + 1], &nl, &c_b10, &rwork[1], &nl); j = nl * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nl - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++j; rwork[j] = d_imag(&b[jrow + jcol * b_dim1]); /* L30: */ } /* L40: */ } dgemm_("T", "N", &nl, nrhs, &nl, &c_b9, &u[nlf + u_dim1], ldu, &rwork[ (nl * *nrhs << 1) + 1], &nl, &c_b10, &rwork[nl * *nrhs + 1], & nl); jreal = 0; jimag = nl * *nrhs; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nl - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++jreal; ++jimag; i__4 = jrow + jcol * bx_dim1; i__5 = jreal; i__6 = jimag; z__1.r = rwork[i__5], z__1.i = rwork[i__6]; bx[i__4].r = z__1.r, bx[i__4].i = z__1.i; /* L50: */ } /* L60: */ } /* Since B and BX are complex, the following call to DGEMM */ /* is performed in two steps (real and imaginary parts). */ /* CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU, */ /* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) */ j = nr * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nr - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++j; i__4 = jrow + jcol * b_dim1; rwork[j] = b[i__4].r; /* L70: */ } /* L80: */ } dgemm_("T", "N", &nr, nrhs, &nr, &c_b9, &u[nrf + u_dim1], ldu, &rwork[ (nr * *nrhs << 1) + 1], &nr, &c_b10, &rwork[1], &nr); j = nr * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nr - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++j; rwork[j] = d_imag(&b[jrow + jcol * b_dim1]); /* L90: */ } /* L100: */ } dgemm_("T", "N", &nr, nrhs, &nr, &c_b9, &u[nrf + u_dim1], ldu, &rwork[ (nr * *nrhs << 1) + 1], &nr, &c_b10, &rwork[nr * *nrhs + 1], & nr); jreal = 0; jimag = nr * *nrhs; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nr - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++jreal; ++jimag; i__4 = jrow + jcol * bx_dim1; i__5 = jreal; i__6 = jimag; z__1.r = rwork[i__5], z__1.i = rwork[i__6]; bx[i__4].r = z__1.r, bx[i__4].i = z__1.i; /* L110: */ } /* L120: */ } /* L130: */ } /* Next copy the rows of B that correspond to unchanged rows */ /* in the bidiagonal matrix to BX. */ i__1 = nd; for (i__ = 1; i__ <= i__1; ++i__) { ic = iwork[inode + i__ - 1]; zcopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx); /* L140: */ } /* Finally go through the left singular vector matrices of all */ /* the other subproblems bottom-up on the tree. */ j = pow_ii(&c__2, &nlvl); sqre = 0; for (lvl = nlvl; lvl >= 1; --lvl) { lvl2 = (lvl << 1) - 1; /* find the first node LF and last node LL on */ /* the current level LVL */ if (lvl == 1) { lf = 1; ll = 1; } else { i__1 = lvl - 1; lf = pow_ii(&c__2, &i__1); ll = (lf << 1) - 1; } i__1 = ll; for (i__ = lf; i__ <= i__1; ++i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; --j; zlals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, & b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], & givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, & givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[ j], &s[j], &rwork[1], info); /* L150: */ } /* L160: */ } goto L330; /* ICOMPQ = 1: applying back the right singular vector factors. */ L170: /* First now go through the right singular vector matrices of all */ /* the tree nodes top-down. */ j = 0; i__1 = nlvl; for (lvl = 1; lvl <= i__1; ++lvl) { lvl2 = (lvl << 1) - 1; /* Find the first node LF and last node LL on */ /* the current level LVL. */ if (lvl == 1) { lf = 1; ll = 1; } else { i__2 = lvl - 1; lf = pow_ii(&c__2, &i__2); ll = (lf << 1) - 1; } i__2 = lf; for (i__ = ll; i__ >= i__2; --i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; if (i__ == ll) { sqre = 0; } else { sqre = 1; } ++j; zlals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[ nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], & givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, & givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[ j], &s[j], &rwork[1], info); /* L180: */ } /* L190: */ } /* The nodes on the bottom level of the tree were solved */ /* by DLASDQ. The corresponding right singular vector */ /* matrices are in explicit form. Apply them back. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nr = iwork[ndimr + i1]; nlp1 = nl + 1; if (i__ == nd) { nrp1 = nr; } else { nrp1 = nr + 1; } nlf = ic - nl; nrf = ic + 1; /* Since B and BX are complex, the following call to DGEMM is */ /* performed in two steps (real and imaginary parts). */ /* CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU, */ /* $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX ) */ j = nlp1 * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nlp1 - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++j; i__4 = jrow + jcol * b_dim1; rwork[j] = b[i__4].r; /* L200: */ } /* L210: */ } dgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b9, &vt[nlf + vt_dim1], ldu, & rwork[(nlp1 * *nrhs << 1) + 1], &nlp1, &c_b10, &rwork[1], & nlp1); j = nlp1 * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nlp1 - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++j; rwork[j] = d_imag(&b[jrow + jcol * b_dim1]); /* L220: */ } /* L230: */ } dgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b9, &vt[nlf + vt_dim1], ldu, & rwork[(nlp1 * *nrhs << 1) + 1], &nlp1, &c_b10, &rwork[nlp1 * * nrhs + 1], &nlp1); jreal = 0; jimag = nlp1 * *nrhs; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nlf + nlp1 - 1; for (jrow = nlf; jrow <= i__3; ++jrow) { ++jreal; ++jimag; i__4 = jrow + jcol * bx_dim1; i__5 = jreal; i__6 = jimag; z__1.r = rwork[i__5], z__1.i = rwork[i__6]; bx[i__4].r = z__1.r, bx[i__4].i = z__1.i; /* L240: */ } /* L250: */ } /* Since B and BX are complex, the following call to DGEMM is */ /* performed in two steps (real and imaginary parts). */ /* CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU, */ /* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX ) */ j = nrp1 * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nrp1 - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++j; i__4 = jrow + jcol * b_dim1; rwork[j] = b[i__4].r; /* L260: */ } /* L270: */ } dgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b9, &vt[nrf + vt_dim1], ldu, & rwork[(nrp1 * *nrhs << 1) + 1], &nrp1, &c_b10, &rwork[1], & nrp1); j = nrp1 * *nrhs << 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nrp1 - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++j; rwork[j] = d_imag(&b[jrow + jcol * b_dim1]); /* L280: */ } /* L290: */ } dgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b9, &vt[nrf + vt_dim1], ldu, & rwork[(nrp1 * *nrhs << 1) + 1], &nrp1, &c_b10, &rwork[nrp1 * * nrhs + 1], &nrp1); jreal = 0; jimag = nrp1 * *nrhs; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = nrf + nrp1 - 1; for (jrow = nrf; jrow <= i__3; ++jrow) { ++jreal; ++jimag; i__4 = jrow + jcol * bx_dim1; i__5 = jreal; i__6 = jimag; z__1.r = rwork[i__5], z__1.i = rwork[i__6]; bx[i__4].r = z__1.r, bx[i__4].i = z__1.i; /* L300: */ } /* L310: */ } /* L320: */ } L330: return 0; /* End of ZLALSA */ } /* zlalsa_ */