#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b ZLALSD uses the singular value decomposition of A to solve the least squares problem. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZLALSD + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND, */ /* RANK, WORK, RWORK, IWORK, INFO ) */ /* CHARACTER UPLO */ /* INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ */ /* DOUBLE PRECISION RCOND */ /* INTEGER IWORK( * ) */ /* DOUBLE PRECISION D( * ), E( * ), RWORK( * ) */ /* COMPLEX*16 B( LDB, * ), WORK( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZLALSD uses the singular value decomposition of A to solve the least */ /* > squares problem of finding X to minimize the Euclidean norm of each */ /* > column of A*X-B, where A is N-by-N upper bidiagonal, and X and B */ /* > are N-by-NRHS. The solution X overwrites B. */ /* > */ /* > The singular values of A smaller than RCOND times the largest */ /* > singular value are treated as zero in solving the least squares */ /* > problem; in this case a minimum norm solution is returned. */ /* > The actual singular values are returned in D in ascending order. */ /* > */ /* > This code makes very mild assumptions about floating point */ /* > arithmetic. It will work on machines with a guard digit in */ /* > add/subtract, or on those binary machines without guard digits */ /* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */ /* > It could conceivably fail on hexadecimal or decimal machines */ /* > without guard digits, but we know of none. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] UPLO */ /* > \verbatim */ /* > UPLO is CHARACTER*1 */ /* > = 'U': D and E define an upper bidiagonal matrix. */ /* > = 'L': D and E define a lower bidiagonal matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] SMLSIZ */ /* > \verbatim */ /* > SMLSIZ is INTEGER */ /* > The maximum size of the subproblems at the bottom of the */ /* > computation tree. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The dimension of the bidiagonal matrix. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] NRHS */ /* > \verbatim */ /* > NRHS is INTEGER */ /* > The number of columns of B. NRHS must be at least 1. */ /* > \endverbatim */ /* > */ /* > \param[in,out] D */ /* > \verbatim */ /* > D is DOUBLE PRECISION array, dimension (N) */ /* > On entry D contains the main diagonal of the bidiagonal */ /* > matrix. On exit, if INFO = 0, D contains its singular values. */ /* > \endverbatim */ /* > */ /* > \param[in,out] E */ /* > \verbatim */ /* > E is DOUBLE PRECISION array, dimension (N-1) */ /* > Contains the super-diagonal entries of the bidiagonal matrix. */ /* > On exit, E has been destroyed. */ /* > \endverbatim */ /* > */ /* > \param[in,out] B */ /* > \verbatim */ /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */ /* > On input, B contains the right hand sides of the least */ /* > squares problem. On output, B contains the solution X. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > The leading dimension of B in the calling subprogram. */ /* > LDB must be at least f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[in] RCOND */ /* > \verbatim */ /* > RCOND is DOUBLE PRECISION */ /* > The singular values of A less than or equal to RCOND times */ /* > the largest singular value are treated as zero in solving */ /* > the least squares problem. If RCOND is negative, */ /* > machine precision is used instead. */ /* > For example, if diag(S)*X=B were the least squares problem, */ /* > where diag(S) is a diagonal matrix of singular values, the */ /* > solution would be X(i) = B(i) / S(i) if S(i) is greater than */ /* > RCOND*f2cmax(S), and X(i) = 0 if S(i) is less than or equal to */ /* > RCOND*f2cmax(S). */ /* > \endverbatim */ /* > */ /* > \param[out] RANK */ /* > \verbatim */ /* > RANK is INTEGER */ /* > The number of singular values of A greater than RCOND times */ /* > the largest singular value. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX*16 array, dimension (N * NRHS) */ /* > \endverbatim */ /* > */ /* > \param[out] RWORK */ /* > \verbatim */ /* > RWORK is DOUBLE PRECISION array, dimension at least */ /* > (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + */ /* > MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ), */ /* > where */ /* > NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */ /* > \endverbatim */ /* > */ /* > \param[out] IWORK */ /* > \verbatim */ /* > IWORK is INTEGER array, dimension at least */ /* > (3*N*NLVL + 11*N). */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit. */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > > 0: The algorithm failed to compute a singular value while */ /* > working on the submatrix lying in rows and columns */ /* > INFO/(N+1) through MOD(INFO,N+1). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date June 2017 */ /* > \ingroup complex16OTHERcomputational */ /* > \par Contributors: */ /* ================== */ /* > */ /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */ /* > California at Berkeley, USA \n */ /* > Osni Marques, LBNL/NERSC, USA \n */ /* ===================================================================== */ /* Subroutine */ int zlalsd_(char *uplo, integer *smlsiz, integer *n, integer *nrhs, doublereal *d__, doublereal *e, doublecomplex *b, integer *ldb, doublereal *rcond, integer *rank, doublecomplex *work, doublereal * rwork, integer *iwork, integer *info) { /* System generated locals */ integer b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublereal d__1; doublecomplex z__1; /* Local variables */ integer difl, difr; doublereal rcnd; integer jcol, irwb, perm, nsub, nlvl, sqre, bxst, jrow, irwu, c__, i__, j, k; doublereal r__; integer s, u, jimag; extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); integer z__, jreal, irwib, poles, sizei, irwrb, nsize; extern /* Subroutine */ int zdrot_(integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zcopy_( integer *, doublecomplex *, integer *, doublecomplex *, integer *) ; integer irwvt, icmpq1, icmpq2; doublereal cs; extern doublereal dlamch_(char *); extern /* Subroutine */ int dlasda_(integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *); integer bx; doublereal sn; extern /* Subroutine */ int dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); extern integer idamax_(integer *, doublereal *, integer *); integer st; extern /* Subroutine */ int dlasdq_(char *, integer *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); integer vt; extern /* Subroutine */ int dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), dlartg_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), xerbla_(char *, integer *, ftnlen); integer givcol; extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *); extern /* Subroutine */ int zlalsa_(integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *), zlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex *, integer *, integer *), dlasrt_(char *, integer *, doublereal *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *); doublereal orgnrm; integer givnum, givptr, nm1, nrwork, irwwrk, smlszp, st1; doublereal eps; integer iwk; doublereal tol; /* -- LAPACK computational routine (version 3.7.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* June 2017 */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; --e; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --work; --rwork; --iwork; /* Function Body */ *info = 0; if (*n < 0) { *info = -3; } else if (*nrhs < 1) { *info = -4; } else if (*ldb < 1 || *ldb < *n) { *info = -8; } if (*info != 0) { i__1 = -(*info); xerbla_("ZLALSD", &i__1, (ftnlen)6); return 0; } eps = dlamch_("Epsilon"); /* Set up the tolerance. */ if (*rcond <= 0. || *rcond >= 1.) { rcnd = eps; } else { rcnd = *rcond; } *rank = 0; /* Quick return if possible. */ if (*n == 0) { return 0; } else if (*n == 1) { if (d__[1] == 0.) { zlaset_("A", &c__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); } else { *rank = 1; zlascl_("G", &c__0, &c__0, &d__[1], &c_b10, &c__1, nrhs, &b[ b_offset], ldb, info); d__[1] = abs(d__[1]); } return 0; } /* Rotate the matrix if it is lower bidiagonal. */ if (*(unsigned char *)uplo == 'L') { i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__); d__[i__] = r__; e[i__] = sn * d__[i__ + 1]; d__[i__ + 1] = cs * d__[i__ + 1]; if (*nrhs == 1) { zdrot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], & c__1, &cs, &sn); } else { rwork[(i__ << 1) - 1] = cs; rwork[i__ * 2] = sn; } /* L10: */ } if (*nrhs > 1) { i__1 = *nrhs; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n - 1; for (j = 1; j <= i__2; ++j) { cs = rwork[(j << 1) - 1]; sn = rwork[j * 2]; zdrot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__ * b_dim1], &c__1, &cs, &sn); /* L20: */ } /* L30: */ } } } /* Scale. */ nm1 = *n - 1; orgnrm = dlanst_("M", n, &d__[1], &e[1]); if (orgnrm == 0.) { zlaset_("A", n, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); return 0; } dlascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, &c__1, &d__[1], n, info); dlascl_("G", &c__0, &c__0, &orgnrm, &c_b10, &nm1, &c__1, &e[1], &nm1, info); /* If N is smaller than the minimum divide size SMLSIZ, then solve */ /* the problem with another solver. */ if (*n <= *smlsiz) { irwu = 1; irwvt = irwu + *n * *n; irwwrk = irwvt + *n * *n; irwrb = irwwrk; irwib = irwrb + *n * *nrhs; irwb = irwib + *n * *nrhs; dlaset_("A", n, n, &c_b35, &c_b10, &rwork[irwu], n); dlaset_("A", n, n, &c_b35, &c_b10, &rwork[irwvt], n); dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &rwork[irwvt], n, &rwork[irwu], n, &rwork[irwwrk], &c__1, &rwork[irwwrk], info); if (*info != 0) { return 0; } /* In the real version, B is passed to DLASDQ and multiplied */ /* internally by Q**H. Here B is complex and that product is */ /* computed below in two steps (real and imaginary parts). */ j = irwb - 1; i__1 = *nrhs; for (jcol = 1; jcol <= i__1; ++jcol) { i__2 = *n; for (jrow = 1; jrow <= i__2; ++jrow) { ++j; i__3 = jrow + jcol * b_dim1; rwork[j] = b[i__3].r; /* L40: */ } /* L50: */ } dgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwu], n, &rwork[irwb], n, &c_b35, &rwork[irwrb], n); j = irwb - 1; i__1 = *nrhs; for (jcol = 1; jcol <= i__1; ++jcol) { i__2 = *n; for (jrow = 1; jrow <= i__2; ++jrow) { ++j; rwork[j] = d_imag(&b[jrow + jcol * b_dim1]); /* L60: */ } /* L70: */ } dgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwu], n, &rwork[irwb], n, &c_b35, &rwork[irwib], n); jreal = irwrb - 1; jimag = irwib - 1; i__1 = *nrhs; for (jcol = 1; jcol <= i__1; ++jcol) { i__2 = *n; for (jrow = 1; jrow <= i__2; ++jrow) { ++jreal; ++jimag; i__3 = jrow + jcol * b_dim1; i__4 = jreal; i__5 = jimag; z__1.r = rwork[i__4], z__1.i = rwork[i__5]; b[i__3].r = z__1.r, b[i__3].i = z__1.i; /* L80: */ } /* L90: */ } tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1)); i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (d__[i__] <= tol) { zlaset_("A", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb); } else { zlascl_("G", &c__0, &c__0, &d__[i__], &c_b10, &c__1, nrhs, &b[ i__ + b_dim1], ldb, info); ++(*rank); } /* L100: */ } /* Since B is complex, the following call to DGEMM is performed */ /* in two steps (real and imaginary parts). That is for V * B */ /* (in the real version of the code V**H is stored in WORK). */ /* CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO, */ /* $ WORK( NWORK ), N ) */ j = irwb - 1; i__1 = *nrhs; for (jcol = 1; jcol <= i__1; ++jcol) { i__2 = *n; for (jrow = 1; jrow <= i__2; ++jrow) { ++j; i__3 = jrow + jcol * b_dim1; rwork[j] = b[i__3].r; /* L110: */ } /* L120: */ } dgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwvt], n, &rwork[irwb], n, &c_b35, &rwork[irwrb], n); j = irwb - 1; i__1 = *nrhs; for (jcol = 1; jcol <= i__1; ++jcol) { i__2 = *n; for (jrow = 1; jrow <= i__2; ++jrow) { ++j; rwork[j] = d_imag(&b[jrow + jcol * b_dim1]); /* L130: */ } /* L140: */ } dgemm_("T", "N", n, nrhs, n, &c_b10, &rwork[irwvt], n, &rwork[irwb], n, &c_b35, &rwork[irwib], n); jreal = irwrb - 1; jimag = irwib - 1; i__1 = *nrhs; for (jcol = 1; jcol <= i__1; ++jcol) { i__2 = *n; for (jrow = 1; jrow <= i__2; ++jrow) { ++jreal; ++jimag; i__3 = jrow + jcol * b_dim1; i__4 = jreal; i__5 = jimag; z__1.r = rwork[i__4], z__1.i = rwork[i__5]; b[i__3].r = z__1.r, b[i__3].i = z__1.i; /* L150: */ } /* L160: */ } /* Unscale. */ dlascl_("G", &c__0, &c__0, &c_b10, &orgnrm, n, &c__1, &d__[1], n, info); dlasrt_("D", n, &d__[1], info); zlascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, nrhs, &b[b_offset], ldb, info); return 0; } /* Book-keeping and setting up some constants. */ nlvl = (integer) (log((doublereal) (*n) / (doublereal) (*smlsiz + 1)) / log(2.)) + 1; smlszp = *smlsiz + 1; u = 1; vt = *smlsiz * *n + 1; difl = vt + smlszp * *n; difr = difl + nlvl * *n; z__ = difr + (nlvl * *n << 1); c__ = z__ + nlvl * *n; s = c__ + *n; poles = s + *n; givnum = poles + (nlvl << 1) * *n; nrwork = givnum + (nlvl << 1) * *n; bx = 1; irwrb = nrwork; irwib = irwrb + *smlsiz * *nrhs; irwb = irwib + *smlsiz * *nrhs; sizei = *n + 1; k = sizei + *n; givptr = k + *n; perm = givptr + *n; givcol = perm + nlvl * *n; iwk = givcol + (nlvl * *n << 1); st = 1; sqre = 0; icmpq1 = 1; icmpq2 = 0; nsub = 0; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if ((d__1 = d__[i__], abs(d__1)) < eps) { d__[i__] = d_sign(&eps, &d__[i__]); } /* L170: */ } i__1 = nm1; for (i__ = 1; i__ <= i__1; ++i__) { if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) { ++nsub; iwork[nsub] = st; /* Subproblem found. First determine its size and then */ /* apply divide and conquer on it. */ if (i__ < nm1) { /* A subproblem with E(I) small for I < NM1. */ nsize = i__ - st + 1; iwork[sizei + nsub - 1] = nsize; } else if ((d__1 = e[i__], abs(d__1)) >= eps) { /* A subproblem with E(NM1) not too small but I = NM1. */ nsize = *n - st + 1; iwork[sizei + nsub - 1] = nsize; } else { /* A subproblem with E(NM1) small. This implies an */ /* 1-by-1 subproblem at D(N), which is not solved */ /* explicitly. */ nsize = i__ - st + 1; iwork[sizei + nsub - 1] = nsize; ++nsub; iwork[nsub] = *n; iwork[sizei + nsub - 1] = 1; zcopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n); } st1 = st - 1; if (nsize == 1) { /* This is a 1-by-1 subproblem and is not solved */ /* explicitly. */ zcopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n); } else if (nsize <= *smlsiz) { /* This is a small subproblem and is solved by DLASDQ. */ dlaset_("A", &nsize, &nsize, &c_b35, &c_b10, &rwork[vt + st1], n); dlaset_("A", &nsize, &nsize, &c_b35, &c_b10, &rwork[u + st1], n); dlasdq_("U", &c__0, &nsize, &nsize, &nsize, &c__0, &d__[st], & e[st], &rwork[vt + st1], n, &rwork[u + st1], n, & rwork[nrwork], &c__1, &rwork[nrwork], info) ; if (*info != 0) { return 0; } /* In the real version, B is passed to DLASDQ and multiplied */ /* internally by Q**H. Here B is complex and that product is */ /* computed below in two steps (real and imaginary parts). */ j = irwb - 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = st + nsize - 1; for (jrow = st; jrow <= i__3; ++jrow) { ++j; i__4 = jrow + jcol * b_dim1; rwork[j] = b[i__4].r; /* L180: */ } /* L190: */ } dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[u + st1] , n, &rwork[irwb], &nsize, &c_b35, &rwork[irwrb], & nsize); j = irwb - 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = st + nsize - 1; for (jrow = st; jrow <= i__3; ++jrow) { ++j; rwork[j] = d_imag(&b[jrow + jcol * b_dim1]); /* L200: */ } /* L210: */ } dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[u + st1] , n, &rwork[irwb], &nsize, &c_b35, &rwork[irwib], & nsize); jreal = irwrb - 1; jimag = irwib - 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = st + nsize - 1; for (jrow = st; jrow <= i__3; ++jrow) { ++jreal; ++jimag; i__4 = jrow + jcol * b_dim1; i__5 = jreal; i__6 = jimag; z__1.r = rwork[i__5], z__1.i = rwork[i__6]; b[i__4].r = z__1.r, b[i__4].i = z__1.i; /* L220: */ } /* L230: */ } zlacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n); } else { /* A large problem. Solve it using divide and conquer. */ dlasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], & rwork[u + st1], n, &rwork[vt + st1], &iwork[k + st1], &rwork[difl + st1], &rwork[difr + st1], &rwork[z__ + st1], &rwork[poles + st1], &iwork[givptr + st1], & iwork[givcol + st1], n, &iwork[perm + st1], &rwork[ givnum + st1], &rwork[c__ + st1], &rwork[s + st1], & rwork[nrwork], &iwork[iwk], info); if (*info != 0) { return 0; } bxst = bx + st1; zlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, & work[bxst], n, &rwork[u + st1], n, &rwork[vt + st1], & iwork[k + st1], &rwork[difl + st1], &rwork[difr + st1] , &rwork[z__ + st1], &rwork[poles + st1], &iwork[ givptr + st1], &iwork[givcol + st1], n, &iwork[perm + st1], &rwork[givnum + st1], &rwork[c__ + st1], &rwork[ s + st1], &rwork[nrwork], &iwork[iwk], info); if (*info != 0) { return 0; } } st = i__ + 1; } /* L240: */ } /* Apply the singular values and treat the tiny ones as zero. */ tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1)); i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Some of the elements in D can be negative because 1-by-1 */ /* subproblems were not solved explicitly. */ if ((d__1 = d__[i__], abs(d__1)) <= tol) { zlaset_("A", &c__1, nrhs, &c_b1, &c_b1, &work[bx + i__ - 1], n); } else { ++(*rank); zlascl_("G", &c__0, &c__0, &d__[i__], &c_b10, &c__1, nrhs, &work[ bx + i__ - 1], n, info); } d__[i__] = (d__1 = d__[i__], abs(d__1)); /* L250: */ } /* Now apply back the right singular vectors. */ icmpq2 = 1; i__1 = nsub; for (i__ = 1; i__ <= i__1; ++i__) { st = iwork[i__]; st1 = st - 1; nsize = iwork[sizei + i__ - 1]; bxst = bx + st1; if (nsize == 1) { zcopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb); } else if (nsize <= *smlsiz) { /* Since B and BX are complex, the following call to DGEMM */ /* is performed in two steps (real and imaginary parts). */ /* CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE, */ /* $ RWORK( VT+ST1 ), N, RWORK( BXST ), N, ZERO, */ /* $ B( ST, 1 ), LDB ) */ j = bxst - *n - 1; jreal = irwb - 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { j += *n; i__3 = nsize; for (jrow = 1; jrow <= i__3; ++jrow) { ++jreal; i__4 = j + jrow; rwork[jreal] = work[i__4].r; /* L260: */ } /* L270: */ } dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[vt + st1], n, &rwork[irwb], &nsize, &c_b35, &rwork[irwrb], &nsize); j = bxst - *n - 1; jimag = irwb - 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { j += *n; i__3 = nsize; for (jrow = 1; jrow <= i__3; ++jrow) { ++jimag; rwork[jimag] = d_imag(&work[j + jrow]); /* L280: */ } /* L290: */ } dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b10, &rwork[vt + st1], n, &rwork[irwb], &nsize, &c_b35, &rwork[irwib], &nsize); jreal = irwrb - 1; jimag = irwib - 1; i__2 = *nrhs; for (jcol = 1; jcol <= i__2; ++jcol) { i__3 = st + nsize - 1; for (jrow = st; jrow <= i__3; ++jrow) { ++jreal; ++jimag; i__4 = jrow + jcol * b_dim1; i__5 = jreal; i__6 = jimag; z__1.r = rwork[i__5], z__1.i = rwork[i__6]; b[i__4].r = z__1.r, b[i__4].i = z__1.i; /* L300: */ } /* L310: */ } } else { zlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st + b_dim1], ldb, &rwork[u + st1], n, &rwork[vt + st1], & iwork[k + st1], &rwork[difl + st1], &rwork[difr + st1], & rwork[z__ + st1], &rwork[poles + st1], &iwork[givptr + st1], &iwork[givcol + st1], n, &iwork[perm + st1], &rwork[ givnum + st1], &rwork[c__ + st1], &rwork[s + st1], &rwork[ nrwork], &iwork[iwk], info); if (*info != 0) { return 0; } } /* L320: */ } /* Unscale and sort the singular values. */ dlascl_("G", &c__0, &c__0, &c_b10, &orgnrm, n, &c__1, &d__[1], n, info); dlasrt_("D", n, &d__[1], info); zlascl_("G", &c__0, &c__0, &orgnrm, &c_b10, n, nrhs, &b[b_offset], ldb, info); return 0; /* End of ZLALSD */ } /* zlalsd_ */