#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b ZLARGV generates a vector of plane rotations with real cosines and complex sines. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZLARGV + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZLARGV( N, X, INCX, Y, INCY, C, INCC ) */ /* INTEGER INCC, INCX, INCY, N */ /* DOUBLE PRECISION C( * ) */ /* COMPLEX*16 X( * ), Y( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZLARGV generates a vector of complex plane rotations with real */ /* > cosines, determined by elements of the complex vectors x and y. */ /* > For i = 1,2,...,n */ /* > */ /* > ( c(i) s(i) ) ( x(i) ) = ( r(i) ) */ /* > ( -conjg(s(i)) c(i) ) ( y(i) ) = ( 0 ) */ /* > */ /* > where c(i)**2 + ABS(s(i))**2 = 1 */ /* > */ /* > The following conventions are used (these are the same as in ZLARTG, */ /* > but differ from the BLAS1 routine ZROTG): */ /* > If y(i)=0, then c(i)=1 and s(i)=0. */ /* > If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of plane rotations to be generated. */ /* > \endverbatim */ /* > */ /* > \param[in,out] X */ /* > \verbatim */ /* > X is COMPLEX*16 array, dimension (1+(N-1)*INCX) */ /* > On entry, the vector x. */ /* > On exit, x(i) is overwritten by r(i), for i = 1,...,n. */ /* > \endverbatim */ /* > */ /* > \param[in] INCX */ /* > \verbatim */ /* > INCX is INTEGER */ /* > The increment between elements of X. INCX > 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] Y */ /* > \verbatim */ /* > Y is COMPLEX*16 array, dimension (1+(N-1)*INCY) */ /* > On entry, the vector y. */ /* > On exit, the sines of the plane rotations. */ /* > \endverbatim */ /* > */ /* > \param[in] INCY */ /* > \verbatim */ /* > INCY is INTEGER */ /* > The increment between elements of Y. INCY > 0. */ /* > \endverbatim */ /* > */ /* > \param[out] C */ /* > \verbatim */ /* > C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC) */ /* > The cosines of the plane rotations. */ /* > \endverbatim */ /* > */ /* > \param[in] INCC */ /* > \verbatim */ /* > INCC is INTEGER */ /* > The increment between elements of C. INCC > 0. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup complex16OTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > 6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel */ /* > */ /* > This version has a few statements commented out for thread safety */ /* > (machine parameters are computed on each entry). 10 feb 03, SJH. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int zlargv_(integer *n, doublecomplex *x, integer *incx, doublecomplex *y, integer *incy, doublereal *c__, integer *incc) { /* System generated locals */ integer i__1, i__2; doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8, d__9, d__10; doublecomplex z__1, z__2, z__3; /* Local variables */ doublereal d__; doublecomplex f, g; integer i__, j; doublecomplex r__; doublereal scale; integer count; doublereal f2, g2, safmn2; extern doublereal dlapy2_(doublereal *, doublereal *); doublereal safmx2; integer ic; doublereal di; doublecomplex ff; doublereal cs, dr; extern doublereal dlamch_(char *); doublecomplex fs, gs; integer ix, iy; doublecomplex sn; doublereal safmin, f2s, g2s, eps; /* -- LAPACK auxiliary routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* LOGICAL FIRST */ /* SAVE FIRST, SAFMX2, SAFMIN, SAFMN2 */ /* DATA FIRST / .TRUE. / */ /* IF( FIRST ) THEN */ /* FIRST = .FALSE. */ /* Parameter adjustments */ --c__; --y; --x; /* Function Body */ safmin = dlamch_("S"); eps = dlamch_("E"); d__1 = dlamch_("B"); i__1 = (integer) (log(safmin / eps) / log(dlamch_("B")) / 2.); safmn2 = pow_di(&d__1, &i__1); safmx2 = 1. / safmn2; /* END IF */ ix = 1; iy = 1; ic = 1; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = ix; f.r = x[i__2].r, f.i = x[i__2].i; i__2 = iy; g.r = y[i__2].r, g.i = y[i__2].i; /* Use identical algorithm as in ZLARTG */ /* Computing MAX */ /* Computing MAX */ d__7 = (d__1 = f.r, abs(d__1)), d__8 = (d__2 = d_imag(&f), abs(d__2)); /* Computing MAX */ d__9 = (d__3 = g.r, abs(d__3)), d__10 = (d__4 = d_imag(&g), abs(d__4)) ; d__5 = f2cmax(d__7,d__8), d__6 = f2cmax(d__9,d__10); scale = f2cmax(d__5,d__6); fs.r = f.r, fs.i = f.i; gs.r = g.r, gs.i = g.i; count = 0; if (scale >= safmx2) { L10: ++count; z__1.r = safmn2 * fs.r, z__1.i = safmn2 * fs.i; fs.r = z__1.r, fs.i = z__1.i; z__1.r = safmn2 * gs.r, z__1.i = safmn2 * gs.i; gs.r = z__1.r, gs.i = z__1.i; scale *= safmn2; if (scale >= safmx2 && count < 20) { goto L10; } } else if (scale <= safmn2) { if (g.r == 0. && g.i == 0.) { cs = 1.; sn.r = 0., sn.i = 0.; r__.r = f.r, r__.i = f.i; goto L50; } L20: --count; z__1.r = safmx2 * fs.r, z__1.i = safmx2 * fs.i; fs.r = z__1.r, fs.i = z__1.i; z__1.r = safmx2 * gs.r, z__1.i = safmx2 * gs.i; gs.r = z__1.r, gs.i = z__1.i; scale *= safmx2; if (scale <= safmn2) { goto L20; } } /* Computing 2nd power */ d__1 = fs.r; /* Computing 2nd power */ d__2 = d_imag(&fs); f2 = d__1 * d__1 + d__2 * d__2; /* Computing 2nd power */ d__1 = gs.r; /* Computing 2nd power */ d__2 = d_imag(&gs); g2 = d__1 * d__1 + d__2 * d__2; if (f2 <= f2cmax(g2,1.) * safmin) { /* This is a rare case: F is very small. */ if (f.r == 0. && f.i == 0.) { cs = 0.; d__2 = g.r; d__3 = d_imag(&g); d__1 = dlapy2_(&d__2, &d__3); r__.r = d__1, r__.i = 0.; /* Do complex/real division explicitly with two real */ /* divisions */ d__1 = gs.r; d__2 = d_imag(&gs); d__ = dlapy2_(&d__1, &d__2); d__1 = gs.r / d__; d__2 = -d_imag(&gs) / d__; z__1.r = d__1, z__1.i = d__2; sn.r = z__1.r, sn.i = z__1.i; goto L50; } d__1 = fs.r; d__2 = d_imag(&fs); f2s = dlapy2_(&d__1, &d__2); /* G2 and G2S are accurate */ /* G2 is at least SAFMIN, and G2S is at least SAFMN2 */ g2s = sqrt(g2); /* Error in CS from underflow in F2S is at most */ /* UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS */ /* If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN, */ /* and so CS .lt. sqrt(SAFMIN) */ /* If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN */ /* and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS) */ /* Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S */ cs = f2s / g2s; /* Make sure abs(FF) = 1 */ /* Do complex/real division explicitly with 2 real divisions */ /* Computing MAX */ d__3 = (d__1 = f.r, abs(d__1)), d__4 = (d__2 = d_imag(&f), abs( d__2)); if (f2cmax(d__3,d__4) > 1.) { d__1 = f.r; d__2 = d_imag(&f); d__ = dlapy2_(&d__1, &d__2); d__1 = f.r / d__; d__2 = d_imag(&f) / d__; z__1.r = d__1, z__1.i = d__2; ff.r = z__1.r, ff.i = z__1.i; } else { dr = safmx2 * f.r; di = safmx2 * d_imag(&f); d__ = dlapy2_(&dr, &di); d__1 = dr / d__; d__2 = di / d__; z__1.r = d__1, z__1.i = d__2; ff.r = z__1.r, ff.i = z__1.i; } d__1 = gs.r / g2s; d__2 = -d_imag(&gs) / g2s; z__2.r = d__1, z__2.i = d__2; z__1.r = ff.r * z__2.r - ff.i * z__2.i, z__1.i = ff.r * z__2.i + ff.i * z__2.r; sn.r = z__1.r, sn.i = z__1.i; z__2.r = cs * f.r, z__2.i = cs * f.i; z__3.r = sn.r * g.r - sn.i * g.i, z__3.i = sn.r * g.i + sn.i * g.r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; r__.r = z__1.r, r__.i = z__1.i; } else { /* This is the most common case. */ /* Neither F2 nor F2/G2 are less than SAFMIN */ /* F2S cannot overflow, and it is accurate */ f2s = sqrt(g2 / f2 + 1.); /* Do the F2S(real)*FS(complex) multiply with two real */ /* multiplies */ d__1 = f2s * fs.r; d__2 = f2s * d_imag(&fs); z__1.r = d__1, z__1.i = d__2; r__.r = z__1.r, r__.i = z__1.i; cs = 1. / f2s; d__ = f2 + g2; /* Do complex/real division explicitly with two real divisions */ d__1 = r__.r / d__; d__2 = d_imag(&r__) / d__; z__1.r = d__1, z__1.i = d__2; sn.r = z__1.r, sn.i = z__1.i; d_cnjg(&z__2, &gs); z__1.r = sn.r * z__2.r - sn.i * z__2.i, z__1.i = sn.r * z__2.i + sn.i * z__2.r; sn.r = z__1.r, sn.i = z__1.i; if (count != 0) { if (count > 0) { i__2 = count; for (j = 1; j <= i__2; ++j) { z__1.r = safmx2 * r__.r, z__1.i = safmx2 * r__.i; r__.r = z__1.r, r__.i = z__1.i; /* L30: */ } } else { i__2 = -count; for (j = 1; j <= i__2; ++j) { z__1.r = safmn2 * r__.r, z__1.i = safmn2 * r__.i; r__.r = z__1.r, r__.i = z__1.i; /* L40: */ } } } } L50: c__[ic] = cs; i__2 = iy; y[i__2].r = sn.r, y[i__2].i = sn.i; i__2 = ix; x[i__2].r = r__.r, x[i__2].i = r__.i; ic += *incc; iy += *incy; ix += *incx; /* L60: */ } return 0; /* End of ZLARGV */ } /* zlargv_ */