#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle_() continue; #define myceiling_(w) {ceil(w)} #define myhuge_(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b ZTPRFB applies a real or complex "triangular-pentagonal" blocked reflector to a real or complex matrix, which is composed of two blocks. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZTPRFB + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZTPRFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, */ /* V, LDV, T, LDT, A, LDA, B, LDB, WORK, LDWORK ) */ /* CHARACTER DIRECT, SIDE, STOREV, TRANS */ /* INTEGER K, L, LDA, LDB, LDT, LDV, LDWORK, M, N */ /* COMPLEX*16 A( LDA, * ), B( LDB, * ), T( LDT, * ), */ /* $ V( LDV, * ), WORK( LDWORK, * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZTPRFB applies a complex "triangular-pentagonal" block reflector H or its */ /* > conjugate transpose H**H to a complex matrix C, which is composed of two */ /* > blocks A and B, either from the left or right. */ /* > */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] SIDE */ /* > \verbatim */ /* > SIDE is CHARACTER*1 */ /* > = 'L': apply H or H**H from the Left */ /* > = 'R': apply H or H**H from the Right */ /* > \endverbatim */ /* > */ /* > \param[in] TRANS */ /* > \verbatim */ /* > TRANS is CHARACTER*1 */ /* > = 'N': apply H (No transpose) */ /* > = 'C': apply H**H (Conjugate transpose) */ /* > \endverbatim */ /* > */ /* > \param[in] DIRECT */ /* > \verbatim */ /* > DIRECT is CHARACTER*1 */ /* > Indicates how H is formed from a product of elementary */ /* > reflectors */ /* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */ /* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */ /* > \endverbatim */ /* > */ /* > \param[in] STOREV */ /* > \verbatim */ /* > STOREV is CHARACTER*1 */ /* > Indicates how the vectors which define the elementary */ /* > reflectors are stored: */ /* > = 'C': Columns */ /* > = 'R': Rows */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix B. */ /* > M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix B. */ /* > N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > The order of the matrix T, i.e. the number of elementary */ /* > reflectors whose product defines the block reflector. */ /* > K >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] L */ /* > \verbatim */ /* > L is INTEGER */ /* > The order of the trapezoidal part of V. */ /* > K >= L >= 0. See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[in] V */ /* > \verbatim */ /* > V is COMPLEX*16 array, dimension */ /* > (LDV,K) if STOREV = 'C' */ /* > (LDV,M) if STOREV = 'R' and SIDE = 'L' */ /* > (LDV,N) if STOREV = 'R' and SIDE = 'R' */ /* > The pentagonal matrix V, which contains the elementary reflectors */ /* > H(1), H(2), ..., H(K). See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDV */ /* > \verbatim */ /* > LDV is INTEGER */ /* > The leading dimension of the array V. */ /* > If STOREV = 'C' and SIDE = 'L', LDV >= f2cmax(1,M); */ /* > if STOREV = 'C' and SIDE = 'R', LDV >= f2cmax(1,N); */ /* > if STOREV = 'R', LDV >= K. */ /* > \endverbatim */ /* > */ /* > \param[in] T */ /* > \verbatim */ /* > T is COMPLEX*16 array, dimension (LDT,K) */ /* > The triangular K-by-K matrix T in the representation of the */ /* > block reflector. */ /* > \endverbatim */ /* > */ /* > \param[in] LDT */ /* > \verbatim */ /* > LDT is INTEGER */ /* > The leading dimension of the array T. */ /* > LDT >= K. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX*16 array, dimension */ /* > (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R' */ /* > On entry, the K-by-N or M-by-K matrix A. */ /* > On exit, A is overwritten by the corresponding block of */ /* > H*C or H**H*C or C*H or C*H**H. See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. */ /* > If SIDE = 'L', LDA >= f2cmax(1,K); */ /* > If SIDE = 'R', LDA >= f2cmax(1,M). */ /* > \endverbatim */ /* > */ /* > \param[in,out] B */ /* > \verbatim */ /* > B is COMPLEX*16 array, dimension (LDB,N) */ /* > On entry, the M-by-N matrix B. */ /* > On exit, B is overwritten by the corresponding block of */ /* > H*C or H**H*C or C*H or C*H**H. See Further Details. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > The leading dimension of the array B. */ /* > LDB >= f2cmax(1,M). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX*16 array, dimension */ /* > (LDWORK,N) if SIDE = 'L', */ /* > (LDWORK,K) if SIDE = 'R'. */ /* > \endverbatim */ /* > */ /* > \param[in] LDWORK */ /* > \verbatim */ /* > LDWORK is INTEGER */ /* > The leading dimension of the array WORK. */ /* > If SIDE = 'L', LDWORK >= K; */ /* > if SIDE = 'R', LDWORK >= M. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup complex16OTHERauxiliary */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The matrix C is a composite matrix formed from blocks A and B. */ /* > The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K, */ /* > and if SIDE = 'L', A is of size K-by-N. */ /* > */ /* > If SIDE = 'R' and DIRECT = 'F', C = [A B]. */ /* > */ /* > If SIDE = 'L' and DIRECT = 'F', C = [A] */ /* > [B]. */ /* > */ /* > If SIDE = 'R' and DIRECT = 'B', C = [B A]. */ /* > */ /* > If SIDE = 'L' and DIRECT = 'B', C = [B] */ /* > [A]. */ /* > */ /* > The pentagonal matrix V is composed of a rectangular block V1 and a */ /* > trapezoidal block V2. The size of the trapezoidal block is determined by */ /* > the parameter L, where 0<=L<=K. If L=K, the V2 block of V is triangular; */ /* > if L=0, there is no trapezoidal block, thus V = V1 is rectangular. */ /* > */ /* > If DIRECT = 'F' and STOREV = 'C': V = [V1] */ /* > [V2] */ /* > - V2 is upper trapezoidal (first L rows of K-by-K upper triangular) */ /* > */ /* > If DIRECT = 'F' and STOREV = 'R': V = [V1 V2] */ /* > */ /* > - V2 is lower trapezoidal (first L columns of K-by-K lower triangular) */ /* > */ /* > If DIRECT = 'B' and STOREV = 'C': V = [V2] */ /* > [V1] */ /* > - V2 is lower trapezoidal (last L rows of K-by-K lower triangular) */ /* > */ /* > If DIRECT = 'B' and STOREV = 'R': V = [V2 V1] */ /* > */ /* > - V2 is upper trapezoidal (last L columns of K-by-K upper triangular) */ /* > */ /* > If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K. */ /* > */ /* > If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K. */ /* > */ /* > If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L. */ /* > */ /* > If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int ztprfb_(char *side, char *trans, char *direct, char * storev, integer *m, integer *n, integer *k, integer *l, doublecomplex *v, integer *ldv, doublecomplex *t, integer *ldt, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, doublecomplex *work, integer *ldwork) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1, work_offset, i__1, i__2, i__3, i__4, i__5; doublecomplex z__1; /* Local variables */ logical left, backward; integer i__, j; extern logical lsame_(char *, char *); logical right; extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), ztrmm_(char *, char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer * , doublecomplex *, integer *); integer kp, mp, np; logical column, row, forward; /* -- LAPACK auxiliary routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ========================================================================== */ /* Quick return if possible */ /* Parameter adjustments */ v_dim1 = *ldv; v_offset = 1 + v_dim1 * 1; v -= v_offset; t_dim1 = *ldt; t_offset = 1 + t_dim1 * 1; t -= t_offset; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; work_dim1 = *ldwork; work_offset = 1 + work_dim1 * 1; work -= work_offset; /* Function Body */ if (*m <= 0 || *n <= 0 || *k <= 0 || *l < 0) { return 0; } if (lsame_(storev, "C")) { column = TRUE_; row = FALSE_; } else if (lsame_(storev, "R")) { column = FALSE_; row = TRUE_; } else { column = FALSE_; row = FALSE_; } if (lsame_(side, "L")) { left = TRUE_; right = FALSE_; } else if (lsame_(side, "R")) { left = FALSE_; right = TRUE_; } else { left = FALSE_; right = FALSE_; } if (lsame_(direct, "F")) { forward = TRUE_; backward = FALSE_; } else if (lsame_(direct, "B")) { forward = FALSE_; backward = TRUE_; } else { forward = FALSE_; backward = FALSE_; } /* --------------------------------------------------------------------------- */ if (column && forward && left) { /* --------------------------------------------------------------------------- */ /* Let W = [ I ] (K-by-K) */ /* [ V ] (M-by-K) */ /* Form H C or H**H C where C = [ A ] (K-by-N) */ /* [ B ] (M-by-N) */ /* H = I - W T W**H or H**H = I - W T**H W**H */ /* A = A - T (A + V**H B) or A = A - T**H (A + V**H B) */ /* B = B - V T (A + V**H B) or B = B - V T**H (A + V**H B) */ /* --------------------------------------------------------------------------- */ /* Computing MIN */ i__1 = *m - *l + 1; mp = f2cmin(i__1,*m); /* Computing MIN */ i__1 = *l + 1; kp = f2cmin(i__1,*k); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *l; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * work_dim1; i__4 = *m - *l + i__ + j * b_dim1; work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i; } } ztrmm_("L", "U", "C", "N", l, n, &c_b14, &v[mp + v_dim1], ldv, &work[ work_offset], ldwork); i__1 = *m - *l; zgemm_("C", "N", l, n, &i__1, &c_b14, &v[v_offset], ldv, &b[b_offset], ldb, &c_b14, &work[work_offset], ldwork); i__1 = *k - *l; zgemm_("C", "N", &i__1, n, m, &c_b14, &v[kp * v_dim1 + 1], ldv, &b[ b_offset], ldb, &c_b22, &work[kp + work_dim1], ldwork); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *k; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * work_dim1; i__4 = i__ + j * work_dim1; i__5 = i__ + j * a_dim1; z__1.r = work[i__4].r + a[i__5].r, z__1.i = work[i__4].i + a[ i__5].i; work[i__3].r = z__1.r, work[i__3].i = z__1.i; } } ztrmm_("L", "U", trans, "N", k, n, &c_b14, &t[t_offset], ldt, &work[ work_offset], ldwork); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *k; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__ + j * work_dim1; z__1.r = a[i__4].r - work[i__5].r, z__1.i = a[i__4].i - work[ i__5].i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; } } i__1 = *m - *l; zgemm_("N", "N", &i__1, n, k, &c_b29, &v[v_offset], ldv, &work[ work_offset], ldwork, &c_b14, &b[b_offset], ldb); i__1 = *k - *l; zgemm_("N", "N", l, n, &i__1, &c_b29, &v[mp + kp * v_dim1], ldv, & work[kp + work_dim1], ldwork, &c_b14, &b[mp + b_dim1], ldb); ztrmm_("L", "U", "N", "N", l, n, &c_b14, &v[mp + v_dim1], ldv, &work[ work_offset], ldwork); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *l; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = *m - *l + i__ + j * b_dim1; i__4 = *m - *l + i__ + j * b_dim1; i__5 = i__ + j * work_dim1; z__1.r = b[i__4].r - work[i__5].r, z__1.i = b[i__4].i - work[ i__5].i; b[i__3].r = z__1.r, b[i__3].i = z__1.i; } } /* --------------------------------------------------------------------------- */ } else if (column && forward && right) { /* --------------------------------------------------------------------------- */ /* Let W = [ I ] (K-by-K) */ /* [ V ] (N-by-K) */ /* Form C H or C H**H where C = [ A B ] (A is M-by-K, B is M-by-N) */ /* H = I - W T W**H or H**H = I - W T**H W**H */ /* A = A - (A + B V) T or A = A - (A + B V) T**H */ /* B = B - (A + B V) T V**H or B = B - (A + B V) T**H V**H */ /* --------------------------------------------------------------------------- */ /* Computing MIN */ i__1 = *n - *l + 1; np = f2cmin(i__1,*n); /* Computing MIN */ i__1 = *l + 1; kp = f2cmin(i__1,*k); i__1 = *l; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * work_dim1; i__4 = i__ + (*n - *l + j) * b_dim1; work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i; } } ztrmm_("R", "U", "N", "N", m, l, &c_b14, &v[np + v_dim1], ldv, &work[ work_offset], ldwork); i__1 = *n - *l; zgemm_("N", "N", m, l, &i__1, &c_b14, &b[b_offset], ldb, &v[v_offset], ldv, &c_b14, &work[work_offset], ldwork); i__1 = *k - *l; zgemm_("N", "N", m, &i__1, n, &c_b14, &b[b_offset], ldb, &v[kp * v_dim1 + 1], ldv, &c_b22, &work[kp * work_dim1 + 1], ldwork); i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * work_dim1; i__4 = i__ + j * work_dim1; i__5 = i__ + j * a_dim1; z__1.r = work[i__4].r + a[i__5].r, z__1.i = work[i__4].i + a[ i__5].i; work[i__3].r = z__1.r, work[i__3].i = z__1.i; } } ztrmm_("R", "U", trans, "N", m, k, &c_b14, &t[t_offset], ldt, &work[ work_offset], ldwork); i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__ + j * work_dim1; z__1.r = a[i__4].r - work[i__5].r, z__1.i = a[i__4].i - work[ i__5].i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; } } i__1 = *n - *l; zgemm_("N", "C", m, &i__1, k, &c_b29, &work[work_offset], ldwork, &v[ v_offset], ldv, &c_b14, &b[b_offset], ldb); i__1 = *k - *l; zgemm_("N", "C", m, l, &i__1, &c_b29, &work[kp * work_dim1 + 1], ldwork, &v[np + kp * v_dim1], ldv, &c_b14, &b[np * b_dim1 + 1] , ldb); ztrmm_("R", "U", "C", "N", m, l, &c_b14, &v[np + v_dim1], ldv, &work[ work_offset], ldwork); i__1 = *l; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + (*n - *l + j) * b_dim1; i__4 = i__ + (*n - *l + j) * b_dim1; i__5 = i__ + j * work_dim1; z__1.r = b[i__4].r - work[i__5].r, z__1.i = b[i__4].i - work[ i__5].i; b[i__3].r = z__1.r, b[i__3].i = z__1.i; } } /* --------------------------------------------------------------------------- */ } else if (column && backward && left) { /* --------------------------------------------------------------------------- */ /* Let W = [ V ] (M-by-K) */ /* [ I ] (K-by-K) */ /* Form H C or H**H C where C = [ B ] (M-by-N) */ /* [ A ] (K-by-N) */ /* H = I - W T W**H or H**H = I - W T**H W**H */ /* A = A - T (A + V**H B) or A = A - T**H (A + V**H B) */ /* B = B - V T (A + V**H B) or B = B - V T**H (A + V**H B) */ /* --------------------------------------------------------------------------- */ /* Computing MIN */ i__1 = *l + 1; mp = f2cmin(i__1,*m); /* Computing MIN */ i__1 = *k - *l + 1; kp = f2cmin(i__1,*k); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *l; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = *k - *l + i__ + j * work_dim1; i__4 = i__ + j * b_dim1; work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i; } } ztrmm_("L", "L", "C", "N", l, n, &c_b14, &v[kp * v_dim1 + 1], ldv, & work[kp + work_dim1], ldwork); i__1 = *m - *l; zgemm_("C", "N", l, n, &i__1, &c_b14, &v[mp + kp * v_dim1], ldv, &b[ mp + b_dim1], ldb, &c_b14, &work[kp + work_dim1], ldwork); i__1 = *k - *l; zgemm_("C", "N", &i__1, n, m, &c_b14, &v[v_offset], ldv, &b[b_offset], ldb, &c_b22, &work[work_offset], ldwork); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *k; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * work_dim1; i__4 = i__ + j * work_dim1; i__5 = i__ + j * a_dim1; z__1.r = work[i__4].r + a[i__5].r, z__1.i = work[i__4].i + a[ i__5].i; work[i__3].r = z__1.r, work[i__3].i = z__1.i; } } ztrmm_("L", "L", trans, "N", k, n, &c_b14, &t[t_offset], ldt, &work[ work_offset], ldwork); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *k; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__ + j * work_dim1; z__1.r = a[i__4].r - work[i__5].r, z__1.i = a[i__4].i - work[ i__5].i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; } } i__1 = *m - *l; zgemm_("N", "N", &i__1, n, k, &c_b29, &v[mp + v_dim1], ldv, &work[ work_offset], ldwork, &c_b14, &b[mp + b_dim1], ldb); i__1 = *k - *l; zgemm_("N", "N", l, n, &i__1, &c_b29, &v[v_offset], ldv, &work[ work_offset], ldwork, &c_b14, &b[b_offset], ldb); ztrmm_("L", "L", "N", "N", l, n, &c_b14, &v[kp * v_dim1 + 1], ldv, & work[kp + work_dim1], ldwork); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *l; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; i__4 = i__ + j * b_dim1; i__5 = *k - *l + i__ + j * work_dim1; z__1.r = b[i__4].r - work[i__5].r, z__1.i = b[i__4].i - work[ i__5].i; b[i__3].r = z__1.r, b[i__3].i = z__1.i; } } /* --------------------------------------------------------------------------- */ } else if (column && backward && right) { /* --------------------------------------------------------------------------- */ /* Let W = [ V ] (N-by-K) */ /* [ I ] (K-by-K) */ /* Form C H or C H**H where C = [ B A ] (B is M-by-N, A is M-by-K) */ /* H = I - W T W**H or H**H = I - W T**H W**H */ /* A = A - (A + B V) T or A = A - (A + B V) T**H */ /* B = B - (A + B V) T V**H or B = B - (A + B V) T**H V**H */ /* --------------------------------------------------------------------------- */ /* Computing MIN */ i__1 = *l + 1; np = f2cmin(i__1,*n); /* Computing MIN */ i__1 = *k - *l + 1; kp = f2cmin(i__1,*k); i__1 = *l; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + (*k - *l + j) * work_dim1; i__4 = i__ + j * b_dim1; work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i; } } ztrmm_("R", "L", "N", "N", m, l, &c_b14, &v[kp * v_dim1 + 1], ldv, & work[kp * work_dim1 + 1], ldwork); i__1 = *n - *l; zgemm_("N", "N", m, l, &i__1, &c_b14, &b[np * b_dim1 + 1], ldb, &v[np + kp * v_dim1], ldv, &c_b14, &work[kp * work_dim1 + 1], ldwork); i__1 = *k - *l; zgemm_("N", "N", m, &i__1, n, &c_b14, &b[b_offset], ldb, &v[v_offset], ldv, &c_b22, &work[work_offset], ldwork); i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * work_dim1; i__4 = i__ + j * work_dim1; i__5 = i__ + j * a_dim1; z__1.r = work[i__4].r + a[i__5].r, z__1.i = work[i__4].i + a[ i__5].i; work[i__3].r = z__1.r, work[i__3].i = z__1.i; } } ztrmm_("R", "L", trans, "N", m, k, &c_b14, &t[t_offset], ldt, &work[ work_offset], ldwork); i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__ + j * work_dim1; z__1.r = a[i__4].r - work[i__5].r, z__1.i = a[i__4].i - work[ i__5].i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; } } i__1 = *n - *l; zgemm_("N", "C", m, &i__1, k, &c_b29, &work[work_offset], ldwork, &v[ np + v_dim1], ldv, &c_b14, &b[np * b_dim1 + 1], ldb); i__1 = *k - *l; zgemm_("N", "C", m, l, &i__1, &c_b29, &work[work_offset], ldwork, &v[ v_offset], ldv, &c_b14, &b[b_offset], ldb); ztrmm_("R", "L", "C", "N", m, l, &c_b14, &v[kp * v_dim1 + 1], ldv, & work[kp * work_dim1 + 1], ldwork); i__1 = *l; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; i__4 = i__ + j * b_dim1; i__5 = i__ + (*k - *l + j) * work_dim1; z__1.r = b[i__4].r - work[i__5].r, z__1.i = b[i__4].i - work[ i__5].i; b[i__3].r = z__1.r, b[i__3].i = z__1.i; } } /* --------------------------------------------------------------------------- */ } else if (row && forward && left) { /* --------------------------------------------------------------------------- */ /* Let W = [ I V ] ( I is K-by-K, V is K-by-M ) */ /* Form H C or H**H C where C = [ A ] (K-by-N) */ /* [ B ] (M-by-N) */ /* H = I - W**H T W or H**H = I - W**H T**H W */ /* A = A - T (A + V B) or A = A - T**H (A + V B) */ /* B = B - V**H T (A + V B) or B = B - V**H T**H (A + V B) */ /* --------------------------------------------------------------------------- */ /* Computing MIN */ i__1 = *m - *l + 1; mp = f2cmin(i__1,*m); /* Computing MIN */ i__1 = *l + 1; kp = f2cmin(i__1,*k); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *l; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * work_dim1; i__4 = *m - *l + i__ + j * b_dim1; work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i; } } ztrmm_("L", "L", "N", "N", l, n, &c_b14, &v[mp * v_dim1 + 1], ldv, & work[work_offset], ldb); i__1 = *m - *l; zgemm_("N", "N", l, n, &i__1, &c_b14, &v[v_offset], ldv, &b[b_offset], ldb, &c_b14, &work[work_offset], ldwork); i__1 = *k - *l; zgemm_("N", "N", &i__1, n, m, &c_b14, &v[kp + v_dim1], ldv, &b[ b_offset], ldb, &c_b22, &work[kp + work_dim1], ldwork); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *k; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * work_dim1; i__4 = i__ + j * work_dim1; i__5 = i__ + j * a_dim1; z__1.r = work[i__4].r + a[i__5].r, z__1.i = work[i__4].i + a[ i__5].i; work[i__3].r = z__1.r, work[i__3].i = z__1.i; } } ztrmm_("L", "U", trans, "N", k, n, &c_b14, &t[t_offset], ldt, &work[ work_offset], ldwork); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *k; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__ + j * work_dim1; z__1.r = a[i__4].r - work[i__5].r, z__1.i = a[i__4].i - work[ i__5].i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; } } i__1 = *m - *l; zgemm_("C", "N", &i__1, n, k, &c_b29, &v[v_offset], ldv, &work[ work_offset], ldwork, &c_b14, &b[b_offset], ldb); i__1 = *k - *l; zgemm_("C", "N", l, n, &i__1, &c_b29, &v[kp + mp * v_dim1], ldv, & work[kp + work_dim1], ldwork, &c_b14, &b[mp + b_dim1], ldb); ztrmm_("L", "L", "C", "N", l, n, &c_b14, &v[mp * v_dim1 + 1], ldv, & work[work_offset], ldwork); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *l; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = *m - *l + i__ + j * b_dim1; i__4 = *m - *l + i__ + j * b_dim1; i__5 = i__ + j * work_dim1; z__1.r = b[i__4].r - work[i__5].r, z__1.i = b[i__4].i - work[ i__5].i; b[i__3].r = z__1.r, b[i__3].i = z__1.i; } } /* --------------------------------------------------------------------------- */ } else if (row && forward && right) { /* --------------------------------------------------------------------------- */ /* Let W = [ I V ] ( I is K-by-K, V is K-by-N ) */ /* Form C H or C H**H where C = [ A B ] (A is M-by-K, B is M-by-N) */ /* H = I - W**H T W or H**H = I - W**H T**H W */ /* A = A - (A + B V**H) T or A = A - (A + B V**H) T**H */ /* B = B - (A + B V**H) T V or B = B - (A + B V**H) T**H V */ /* --------------------------------------------------------------------------- */ /* Computing MIN */ i__1 = *n - *l + 1; np = f2cmin(i__1,*n); /* Computing MIN */ i__1 = *l + 1; kp = f2cmin(i__1,*k); i__1 = *l; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * work_dim1; i__4 = i__ + (*n - *l + j) * b_dim1; work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i; } } ztrmm_("R", "L", "C", "N", m, l, &c_b14, &v[np * v_dim1 + 1], ldv, & work[work_offset], ldwork); i__1 = *n - *l; zgemm_("N", "C", m, l, &i__1, &c_b14, &b[b_offset], ldb, &v[v_offset], ldv, &c_b14, &work[work_offset], ldwork); i__1 = *k - *l; zgemm_("N", "C", m, &i__1, n, &c_b14, &b[b_offset], ldb, &v[kp + v_dim1], ldv, &c_b22, &work[kp * work_dim1 + 1], ldwork); i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * work_dim1; i__4 = i__ + j * work_dim1; i__5 = i__ + j * a_dim1; z__1.r = work[i__4].r + a[i__5].r, z__1.i = work[i__4].i + a[ i__5].i; work[i__3].r = z__1.r, work[i__3].i = z__1.i; } } ztrmm_("R", "U", trans, "N", m, k, &c_b14, &t[t_offset], ldt, &work[ work_offset], ldwork); i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__ + j * work_dim1; z__1.r = a[i__4].r - work[i__5].r, z__1.i = a[i__4].i - work[ i__5].i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; } } i__1 = *n - *l; zgemm_("N", "N", m, &i__1, k, &c_b29, &work[work_offset], ldwork, &v[ v_offset], ldv, &c_b14, &b[b_offset], ldb); i__1 = *k - *l; zgemm_("N", "N", m, l, &i__1, &c_b29, &work[kp * work_dim1 + 1], ldwork, &v[kp + np * v_dim1], ldv, &c_b14, &b[np * b_dim1 + 1] , ldb); ztrmm_("R", "L", "N", "N", m, l, &c_b14, &v[np * v_dim1 + 1], ldv, & work[work_offset], ldwork); i__1 = *l; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + (*n - *l + j) * b_dim1; i__4 = i__ + (*n - *l + j) * b_dim1; i__5 = i__ + j * work_dim1; z__1.r = b[i__4].r - work[i__5].r, z__1.i = b[i__4].i - work[ i__5].i; b[i__3].r = z__1.r, b[i__3].i = z__1.i; } } /* --------------------------------------------------------------------------- */ } else if (row && backward && left) { /* --------------------------------------------------------------------------- */ /* Let W = [ V I ] ( I is K-by-K, V is K-by-M ) */ /* Form H C or H**H C where C = [ B ] (M-by-N) */ /* [ A ] (K-by-N) */ /* H = I - W**H T W or H**H = I - W**H T**H W */ /* A = A - T (A + V B) or A = A - T**H (A + V B) */ /* B = B - V**H T (A + V B) or B = B - V**H T**H (A + V B) */ /* --------------------------------------------------------------------------- */ /* Computing MIN */ i__1 = *l + 1; mp = f2cmin(i__1,*m); /* Computing MIN */ i__1 = *k - *l + 1; kp = f2cmin(i__1,*k); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *l; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = *k - *l + i__ + j * work_dim1; i__4 = i__ + j * b_dim1; work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i; } } ztrmm_("L", "U", "N", "N", l, n, &c_b14, &v[kp + v_dim1], ldv, &work[ kp + work_dim1], ldwork); i__1 = *m - *l; zgemm_("N", "N", l, n, &i__1, &c_b14, &v[kp + mp * v_dim1], ldv, &b[ mp + b_dim1], ldb, &c_b14, &work[kp + work_dim1], ldwork); i__1 = *k - *l; zgemm_("N", "N", &i__1, n, m, &c_b14, &v[v_offset], ldv, &b[b_offset], ldb, &c_b22, &work[work_offset], ldwork); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *k; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * work_dim1; i__4 = i__ + j * work_dim1; i__5 = i__ + j * a_dim1; z__1.r = work[i__4].r + a[i__5].r, z__1.i = work[i__4].i + a[ i__5].i; work[i__3].r = z__1.r, work[i__3].i = z__1.i; } } ztrmm_("L", "L ", trans, "N", k, n, &c_b14, &t[t_offset], ldt, &work[ work_offset], ldwork); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *k; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__ + j * work_dim1; z__1.r = a[i__4].r - work[i__5].r, z__1.i = a[i__4].i - work[ i__5].i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; } } i__1 = *m - *l; zgemm_("C", "N", &i__1, n, k, &c_b29, &v[mp * v_dim1 + 1], ldv, &work[ work_offset], ldwork, &c_b14, &b[mp + b_dim1], ldb); i__1 = *k - *l; zgemm_("C", "N", l, n, &i__1, &c_b29, &v[v_offset], ldv, &work[ work_offset], ldwork, &c_b14, &b[b_offset], ldb); ztrmm_("L", "U", "C", "N", l, n, &c_b14, &v[kp + v_dim1], ldv, &work[ kp + work_dim1], ldwork); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *l; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; i__4 = i__ + j * b_dim1; i__5 = *k - *l + i__ + j * work_dim1; z__1.r = b[i__4].r - work[i__5].r, z__1.i = b[i__4].i - work[ i__5].i; b[i__3].r = z__1.r, b[i__3].i = z__1.i; } } /* --------------------------------------------------------------------------- */ } else if (row && backward && right) { /* --------------------------------------------------------------------------- */ /* Let W = [ V I ] ( I is K-by-K, V is K-by-N ) */ /* Form C H or C H**H where C = [ B A ] (A is M-by-K, B is M-by-N) */ /* H = I - W**H T W or H**H = I - W**H T**H W */ /* A = A - (A + B V**H) T or A = A - (A + B V**H) T**H */ /* B = B - (A + B V**H) T V or B = B - (A + B V**H) T**H V */ /* --------------------------------------------------------------------------- */ /* Computing MIN */ i__1 = *l + 1; np = f2cmin(i__1,*n); /* Computing MIN */ i__1 = *k - *l + 1; kp = f2cmin(i__1,*k); i__1 = *l; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + (*k - *l + j) * work_dim1; i__4 = i__ + j * b_dim1; work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i; } } ztrmm_("R", "U", "C", "N", m, l, &c_b14, &v[kp + v_dim1], ldv, &work[ kp * work_dim1 + 1], ldwork); i__1 = *n - *l; zgemm_("N", "C", m, l, &i__1, &c_b14, &b[np * b_dim1 + 1], ldb, &v[kp + np * v_dim1], ldv, &c_b14, &work[kp * work_dim1 + 1], ldwork); i__1 = *k - *l; zgemm_("N", "C", m, &i__1, n, &c_b14, &b[b_offset], ldb, &v[v_offset], ldv, &c_b22, &work[work_offset], ldwork); i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * work_dim1; i__4 = i__ + j * work_dim1; i__5 = i__ + j * a_dim1; z__1.r = work[i__4].r + a[i__5].r, z__1.i = work[i__4].i + a[ i__5].i; work[i__3].r = z__1.r, work[i__3].i = z__1.i; } } ztrmm_("R", "L", trans, "N", m, k, &c_b14, &t[t_offset], ldt, &work[ work_offset], ldwork); i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__ + j * work_dim1; z__1.r = a[i__4].r - work[i__5].r, z__1.i = a[i__4].i - work[ i__5].i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; } } i__1 = *n - *l; zgemm_("N", "N", m, &i__1, k, &c_b29, &work[work_offset], ldwork, &v[ np * v_dim1 + 1], ldv, &c_b14, &b[np * b_dim1 + 1], ldb); i__1 = *k - *l; zgemm_("N", "N", m, l, &i__1, &c_b29, &work[work_offset], ldwork, &v[ v_offset], ldv, &c_b14, &b[b_offset], ldb); ztrmm_("R", "U", "N", "N", m, l, &c_b14, &v[kp + v_dim1], ldv, &work[ kp * work_dim1 + 1], ldwork); i__1 = *l; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; i__4 = i__ + j * b_dim1; i__5 = i__ + (*k - *l + j) * work_dim1; z__1.r = b[i__4].r - work[i__5].r, z__1.i = b[i__4].i - work[ i__5].i; b[i__3].r = z__1.r, b[i__3].i = z__1.i; } } } return 0; /* End of ZTPRFB */ } /* ztprfb_ */