#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b CLATM3 */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* COMPLEX FUNCTION CLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST, */ /* ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK, */ /* SPARSE ) */ /* INTEGER I, IDIST, IGRADE, IPVTNG, ISUB, J, JSUB, KL, */ /* $ KU, M, N */ /* REAL SPARSE */ /* INTEGER ISEED( 4 ), IWORK( * ) */ /* COMPLEX D( * ), DL( * ), DR( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > CLATM3 returns the (ISUB,JSUB) entry of a random matrix of */ /* > dimension (M, N) described by the other parameters. (ISUB,JSUB) */ /* > is the final position of the (I,J) entry after pivoting */ /* > according to IPVTNG and IWORK. CLATM3 is called by the */ /* > CLATMR routine in order to build random test matrices. No error */ /* > checking on parameters is done, because this routine is called in */ /* > a tight loop by CLATMR which has already checked the parameters. */ /* > */ /* > Use of CLATM3 differs from CLATM2 in the order in which the random */ /* > number generator is called to fill in random matrix entries. */ /* > With CLATM2, the generator is called to fill in the pivoted matrix */ /* > columnwise. With CLATM3, the generator is called to fill in the */ /* > matrix columnwise, after which it is pivoted. Thus, CLATM3 can */ /* > be used to construct random matrices which differ only in their */ /* > order of rows and/or columns. CLATM2 is used to construct band */ /* > matrices while avoiding calling the random number generator for */ /* > entries outside the band (and therefore generating random numbers */ /* > in different orders for different pivot orders). */ /* > */ /* > The matrix whose (ISUB,JSUB) entry is returned is constructed as */ /* > follows (this routine only computes one entry): */ /* > */ /* > If ISUB is outside (1..M) or JSUB is outside (1..N), return zero */ /* > (this is convenient for generating matrices in band format). */ /* > */ /* > Generate a matrix A with random entries of distribution IDIST. */ /* > */ /* > Set the diagonal to D. */ /* > */ /* > Grade the matrix, if desired, from the left (by DL) and/or */ /* > from the right (by DR or DL) as specified by IGRADE. */ /* > */ /* > Permute, if desired, the rows and/or columns as specified by */ /* > IPVTNG and IWORK. */ /* > */ /* > Band the matrix to have lower bandwidth KL and upper */ /* > bandwidth KU. */ /* > */ /* > Set random entries to zero as specified by SPARSE. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > Number of rows of matrix. Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > Number of columns of matrix. Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] I */ /* > \verbatim */ /* > I is INTEGER */ /* > Row of unpivoted entry to be returned. Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] J */ /* > \verbatim */ /* > J is INTEGER */ /* > Column of unpivoted entry to be returned. Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in,out] ISUB */ /* > \verbatim */ /* > ISUB is INTEGER */ /* > Row of pivoted entry to be returned. Changed on exit. */ /* > \endverbatim */ /* > */ /* > \param[in,out] JSUB */ /* > \verbatim */ /* > JSUB is INTEGER */ /* > Column of pivoted entry to be returned. Changed on exit. */ /* > \endverbatim */ /* > */ /* > \param[in] KL */ /* > \verbatim */ /* > KL is INTEGER */ /* > Lower bandwidth. Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] KU */ /* > \verbatim */ /* > KU is INTEGER */ /* > Upper bandwidth. Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] IDIST */ /* > \verbatim */ /* > IDIST is INTEGER */ /* > On entry, IDIST specifies the type of distribution to be */ /* > used to generate a random matrix . */ /* > 1 => real and imaginary parts each UNIFORM( 0, 1 ) */ /* > 2 => real and imaginary parts each UNIFORM( -1, 1 ) */ /* > 3 => real and imaginary parts each NORMAL( 0, 1 ) */ /* > 4 => complex number uniform in DISK( 0 , 1 ) */ /* > Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in,out] ISEED */ /* > \verbatim */ /* > ISEED is INTEGER array of dimension ( 4 ) */ /* > Seed for random number generator. */ /* > Changed on exit. */ /* > \endverbatim */ /* > */ /* > \param[in] D */ /* > \verbatim */ /* > D is COMPLEX array of dimension ( MIN( I , J ) ) */ /* > Diagonal entries of matrix. Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] IGRADE */ /* > \verbatim */ /* > IGRADE is INTEGER */ /* > Specifies grading of matrix as follows: */ /* > 0 => no grading */ /* > 1 => matrix premultiplied by diag( DL ) */ /* > 2 => matrix postmultiplied by diag( DR ) */ /* > 3 => matrix premultiplied by diag( DL ) and */ /* > postmultiplied by diag( DR ) */ /* > 4 => matrix premultiplied by diag( DL ) and */ /* > postmultiplied by inv( diag( DL ) ) */ /* > 5 => matrix premultiplied by diag( DL ) and */ /* > postmultiplied by diag( CONJG(DL) ) */ /* > 6 => matrix premultiplied by diag( DL ) and */ /* > postmultiplied by diag( DL ) */ /* > Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] DL */ /* > \verbatim */ /* > DL is COMPLEX array ( I or J, as appropriate ) */ /* > Left scale factors for grading matrix. Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] DR */ /* > \verbatim */ /* > DR is COMPLEX array ( I or J, as appropriate ) */ /* > Right scale factors for grading matrix. Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] IPVTNG */ /* > \verbatim */ /* > IPVTNG is INTEGER */ /* > On entry specifies pivoting permutations as follows: */ /* > 0 => none. */ /* > 1 => row pivoting. */ /* > 2 => column pivoting. */ /* > 3 => full pivoting, i.e., on both sides. */ /* > Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] IWORK */ /* > \verbatim */ /* > IWORK is INTEGER array ( I or J, as appropriate ) */ /* > This array specifies the permutation used. The */ /* > row (or column) originally in position K is in */ /* > position IWORK( K ) after pivoting. */ /* > This differs from IWORK for CLATM2. Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] SPARSE */ /* > \verbatim */ /* > SPARSE is REAL between 0. and 1. */ /* > On entry specifies the sparsity of the matrix */ /* > if sparse matrix is to be generated. */ /* > SPARSE should lie between 0 and 1. */ /* > A uniform ( 0, 1 ) random number x is generated and */ /* > compared to SPARSE; if x is larger the matrix entry */ /* > is unchanged and if x is smaller the entry is set */ /* > to zero. Thus on the average a fraction SPARSE of the */ /* > entries will be set to zero. */ /* > Not modified. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date June 2016 */ /* > \ingroup complex_matgen */ /* ===================================================================== */ /* Complex */ VOID clatm3_(complex * ret_val, integer *m, integer *n, integer *i__, integer *j, integer *isub, integer *jsub, integer *kl, integer * ku, integer *idist, integer *iseed, complex *d__, integer *igrade, complex *dl, complex *dr, integer *ipvtng, integer *iwork, real * sparse) { /* System generated locals */ integer i__1, i__2; complex q__1, q__2, q__3; /* Local variables */ complex ctemp; //extern /* Complex */ VOID clarnd_(complex *, integer *, integer *); extern complex clarnd_(integer *, integer *); extern real slaran_(integer *); /* -- LAPACK auxiliary routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* June 2016 */ /* ===================================================================== */ /* ----------------------------------------------------------------------- */ /* Check for I and J in range */ /* Parameter adjustments */ --iwork; --dr; --dl; --d__; --iseed; /* Function Body */ if (*i__ < 1 || *i__ > *m || *j < 1 || *j > *n) { *isub = *i__; *jsub = *j; ret_val->r = 0.f, ret_val->i = 0.f; return ; } /* Compute subscripts depending on IPVTNG */ if (*ipvtng == 0) { *isub = *i__; *jsub = *j; } else if (*ipvtng == 1) { *isub = iwork[*i__]; *jsub = *j; } else if (*ipvtng == 2) { *isub = *i__; *jsub = iwork[*j]; } else if (*ipvtng == 3) { *isub = iwork[*i__]; *jsub = iwork[*j]; } /* Check for banding */ if (*jsub > *isub + *ku || *jsub < *isub - *kl) { ret_val->r = 0.f, ret_val->i = 0.f; return ; } /* Check for sparsity */ if (*sparse > 0.f) { if (slaran_(&iseed[1]) < *sparse) { ret_val->r = 0.f, ret_val->i = 0.f; return ; } } /* Compute entry and grade it according to IGRADE */ if (*i__ == *j) { i__1 = *i__; ctemp.r = d__[i__1].r, ctemp.i = d__[i__1].i; } else { //clarnd_(&q__1, idist, &iseed[1]); q__1=clarnd_(idist, &iseed[1]); ctemp.r = q__1.r, ctemp.i = q__1.i; } if (*igrade == 1) { i__1 = *i__; q__1.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, q__1.i = ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r; ctemp.r = q__1.r, ctemp.i = q__1.i; } else if (*igrade == 2) { i__1 = *j; q__1.r = ctemp.r * dr[i__1].r - ctemp.i * dr[i__1].i, q__1.i = ctemp.r * dr[i__1].i + ctemp.i * dr[i__1].r; ctemp.r = q__1.r, ctemp.i = q__1.i; } else if (*igrade == 3) { i__1 = *i__; q__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, q__2.i = ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r; i__2 = *j; q__1.r = q__2.r * dr[i__2].r - q__2.i * dr[i__2].i, q__1.i = q__2.r * dr[i__2].i + q__2.i * dr[i__2].r; ctemp.r = q__1.r, ctemp.i = q__1.i; } else if (*igrade == 4 && *i__ != *j) { i__1 = *i__; q__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, q__2.i = ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r; c_div(&q__1, &q__2, &dl[*j]); ctemp.r = q__1.r, ctemp.i = q__1.i; } else if (*igrade == 5) { i__1 = *i__; q__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, q__2.i = ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r; r_cnjg(&q__3, &dl[*j]); q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i = q__2.r * q__3.i + q__2.i * q__3.r; ctemp.r = q__1.r, ctemp.i = q__1.i; } else if (*igrade == 6) { i__1 = *i__; q__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, q__2.i = ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r; i__2 = *j; q__1.r = q__2.r * dl[i__2].r - q__2.i * dl[i__2].i, q__1.i = q__2.r * dl[i__2].i + q__2.i * dl[i__2].r; ctemp.r = q__1.r, ctemp.i = q__1.i; } ret_val->r = ctemp.r, ret_val->i = ctemp.i; return ; /* End of CLATM3 */ } /* clatm3_ */