#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b CLATM5 */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* SUBROUTINE CLATM5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD, */ /* E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA, */ /* QBLCKB ) */ /* INTEGER LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N, */ /* $ PRTYPE, QBLCKA, QBLCKB */ /* REAL ALPHA */ /* COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ), */ /* $ D( LDD, * ), E( LDE, * ), F( LDF, * ), */ /* $ L( LDL, * ), R( LDR, * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > CLATM5 generates matrices involved in the Generalized Sylvester */ /* > equation: */ /* > */ /* > A * R - L * B = C */ /* > D * R - L * E = F */ /* > */ /* > They also satisfy (the diagonalization condition) */ /* > */ /* > [ I -L ] ( [ A -C ], [ D -F ] ) [ I R ] = ( [ A ], [ D ] ) */ /* > [ I ] ( [ B ] [ E ] ) [ I ] ( [ B ] [ E ] ) */ /* > */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] PRTYPE */ /* > \verbatim */ /* > PRTYPE is INTEGER */ /* > "Points" to a certain type of the matrices to generate */ /* > (see further details). */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > Specifies the order of A and D and the number of rows in */ /* > C, F, R and L. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > Specifies the order of B and E and the number of columns in */ /* > C, F, R and L. */ /* > \endverbatim */ /* > */ /* > \param[out] A */ /* > \verbatim */ /* > A is COMPLEX array, dimension (LDA, M). */ /* > On exit A M-by-M is initialized according to PRTYPE. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of A. */ /* > \endverbatim */ /* > */ /* > \param[out] B */ /* > \verbatim */ /* > B is COMPLEX array, dimension (LDB, N). */ /* > On exit B N-by-N is initialized according to PRTYPE. */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > The leading dimension of B. */ /* > \endverbatim */ /* > */ /* > \param[out] C */ /* > \verbatim */ /* > C is COMPLEX array, dimension (LDC, N). */ /* > On exit C M-by-N is initialized according to PRTYPE. */ /* > \endverbatim */ /* > */ /* > \param[in] LDC */ /* > \verbatim */ /* > LDC is INTEGER */ /* > The leading dimension of C. */ /* > \endverbatim */ /* > */ /* > \param[out] D */ /* > \verbatim */ /* > D is COMPLEX array, dimension (LDD, M). */ /* > On exit D M-by-M is initialized according to PRTYPE. */ /* > \endverbatim */ /* > */ /* > \param[in] LDD */ /* > \verbatim */ /* > LDD is INTEGER */ /* > The leading dimension of D. */ /* > \endverbatim */ /* > */ /* > \param[out] E */ /* > \verbatim */ /* > E is COMPLEX array, dimension (LDE, N). */ /* > On exit E N-by-N is initialized according to PRTYPE. */ /* > \endverbatim */ /* > */ /* > \param[in] LDE */ /* > \verbatim */ /* > LDE is INTEGER */ /* > The leading dimension of E. */ /* > \endverbatim */ /* > */ /* > \param[out] F */ /* > \verbatim */ /* > F is COMPLEX array, dimension (LDF, N). */ /* > On exit F M-by-N is initialized according to PRTYPE. */ /* > \endverbatim */ /* > */ /* > \param[in] LDF */ /* > \verbatim */ /* > LDF is INTEGER */ /* > The leading dimension of F. */ /* > \endverbatim */ /* > */ /* > \param[out] R */ /* > \verbatim */ /* > R is COMPLEX array, dimension (LDR, N). */ /* > On exit R M-by-N is initialized according to PRTYPE. */ /* > \endverbatim */ /* > */ /* > \param[in] LDR */ /* > \verbatim */ /* > LDR is INTEGER */ /* > The leading dimension of R. */ /* > \endverbatim */ /* > */ /* > \param[out] L */ /* > \verbatim */ /* > L is COMPLEX array, dimension (LDL, N). */ /* > On exit L M-by-N is initialized according to PRTYPE. */ /* > \endverbatim */ /* > */ /* > \param[in] LDL */ /* > \verbatim */ /* > LDL is INTEGER */ /* > The leading dimension of L. */ /* > \endverbatim */ /* > */ /* > \param[in] ALPHA */ /* > \verbatim */ /* > ALPHA is REAL */ /* > Parameter used in generating PRTYPE = 1 and 5 matrices. */ /* > \endverbatim */ /* > */ /* > \param[in] QBLCKA */ /* > \verbatim */ /* > QBLCKA is INTEGER */ /* > When PRTYPE = 3, specifies the distance between 2-by-2 */ /* > blocks on the diagonal in A. Otherwise, QBLCKA is not */ /* > referenced. QBLCKA > 1. */ /* > \endverbatim */ /* > */ /* > \param[in] QBLCKB */ /* > \verbatim */ /* > QBLCKB is INTEGER */ /* > When PRTYPE = 3, specifies the distance between 2-by-2 */ /* > blocks on the diagonal in B. Otherwise, QBLCKB is not */ /* > referenced. QBLCKB > 1. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date June 2016 */ /* > \ingroup complex_matgen */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > PRTYPE = 1: A and B are Jordan blocks, D and E are identity matrices */ /* > */ /* > A : if (i == j) then A(i, j) = 1.0 */ /* > if (j == i + 1) then A(i, j) = -1.0 */ /* > else A(i, j) = 0.0, i, j = 1...M */ /* > */ /* > B : if (i == j) then B(i, j) = 1.0 - ALPHA */ /* > if (j == i + 1) then B(i, j) = 1.0 */ /* > else B(i, j) = 0.0, i, j = 1...N */ /* > */ /* > D : if (i == j) then D(i, j) = 1.0 */ /* > else D(i, j) = 0.0, i, j = 1...M */ /* > */ /* > E : if (i == j) then E(i, j) = 1.0 */ /* > else E(i, j) = 0.0, i, j = 1...N */ /* > */ /* > L = R are chosen from [-10...10], */ /* > which specifies the right hand sides (C, F). */ /* > */ /* > PRTYPE = 2 or 3: Triangular and/or quasi- triangular. */ /* > */ /* > A : if (i <= j) then A(i, j) = [-1...1] */ /* > else A(i, j) = 0.0, i, j = 1...M */ /* > */ /* > if (PRTYPE = 3) then */ /* > A(k + 1, k + 1) = A(k, k) */ /* > A(k + 1, k) = [-1...1] */ /* > sign(A(k, k + 1) = -(sin(A(k + 1, k)) */ /* > k = 1, M - 1, QBLCKA */ /* > */ /* > B : if (i <= j) then B(i, j) = [-1...1] */ /* > else B(i, j) = 0.0, i, j = 1...N */ /* > */ /* > if (PRTYPE = 3) then */ /* > B(k + 1, k + 1) = B(k, k) */ /* > B(k + 1, k) = [-1...1] */ /* > sign(B(k, k + 1) = -(sign(B(k + 1, k)) */ /* > k = 1, N - 1, QBLCKB */ /* > */ /* > D : if (i <= j) then D(i, j) = [-1...1]. */ /* > else D(i, j) = 0.0, i, j = 1...M */ /* > */ /* > */ /* > E : if (i <= j) then D(i, j) = [-1...1] */ /* > else E(i, j) = 0.0, i, j = 1...N */ /* > */ /* > L, R are chosen from [-10...10], */ /* > which specifies the right hand sides (C, F). */ /* > */ /* > PRTYPE = 4 Full */ /* > A(i, j) = [-10...10] */ /* > D(i, j) = [-1...1] i,j = 1...M */ /* > B(i, j) = [-10...10] */ /* > E(i, j) = [-1...1] i,j = 1...N */ /* > R(i, j) = [-10...10] */ /* > L(i, j) = [-1...1] i = 1..M ,j = 1...N */ /* > */ /* > L, R specifies the right hand sides (C, F). */ /* > */ /* > PRTYPE = 5 special case common and/or close eigs. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int clatm5_(integer *prtype, integer *m, integer *n, complex *a, integer *lda, complex *b, integer *ldb, complex *c__, integer * ldc, complex *d__, integer *ldd, complex *e, integer *lde, complex *f, integer *ldf, complex *r__, integer *ldr, complex *l, integer *ldl, real *alpha, integer *qblcka, integer *qblckb) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1, d_offset, e_dim1, e_offset, f_dim1, f_offset, l_dim1, l_offset, r_dim1, r_offset, i__1, i__2, i__3, i__4; doublereal d__1; complex q__1, q__2, q__3, q__4, q__5; /* Local variables */ integer i__, j, k; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); complex imeps, reeps; /* -- LAPACK computational routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* June 2016 */ /* ===================================================================== */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1 * 1; c__ -= c_offset; d_dim1 = *ldd; d_offset = 1 + d_dim1 * 1; d__ -= d_offset; e_dim1 = *lde; e_offset = 1 + e_dim1 * 1; e -= e_offset; f_dim1 = *ldf; f_offset = 1 + f_dim1 * 1; f -= f_offset; r_dim1 = *ldr; r_offset = 1 + r_dim1 * 1; r__ -= r_offset; l_dim1 = *ldl; l_offset = 1 + l_dim1 * 1; l -= l_offset; /* Function Body */ if (*prtype == 1) { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *m; for (j = 1; j <= i__2; ++j) { if (i__ == j) { i__3 = i__ + j * a_dim1; a[i__3].r = 1.f, a[i__3].i = 0.f; i__3 = i__ + j * d_dim1; d__[i__3].r = 1.f, d__[i__3].i = 0.f; } else if (i__ == j - 1) { i__3 = i__ + j * a_dim1; q__1.r = -1.f, q__1.i = 0.f; a[i__3].r = q__1.r, a[i__3].i = q__1.i; i__3 = i__ + j * d_dim1; d__[i__3].r = 0.f, d__[i__3].i = 0.f; } else { i__3 = i__ + j * a_dim1; a[i__3].r = 0.f, a[i__3].i = 0.f; i__3 = i__ + j * d_dim1; d__[i__3].r = 0.f, d__[i__3].i = 0.f; } /* L10: */ } /* L20: */ } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n; for (j = 1; j <= i__2; ++j) { if (i__ == j) { i__3 = i__ + j * b_dim1; q__1.r = 1.f - *alpha, q__1.i = 0.f; b[i__3].r = q__1.r, b[i__3].i = q__1.i; i__3 = i__ + j * e_dim1; e[i__3].r = 1.f, e[i__3].i = 0.f; } else if (i__ == j - 1) { i__3 = i__ + j * b_dim1; b[i__3].r = 1.f, b[i__3].i = 0.f; i__3 = i__ + j * e_dim1; e[i__3].r = 0.f, e[i__3].i = 0.f; } else { i__3 = i__ + j * b_dim1; b[i__3].r = 0.f, b[i__3].i = 0.f; i__3 = i__ + j * e_dim1; e[i__3].r = 0.f, e[i__3].i = 0.f; } /* L30: */ } /* L40: */ } i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n; for (j = 1; j <= i__2; ++j) { i__3 = i__ + j * r_dim1; i__4 = i__ / j; q__4.r = (real) i__4, q__4.i = 0.f; c_sin(&q__3, &q__4); q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i; q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f + q__2.i * 20.f; r__[i__3].r = q__1.r, r__[i__3].i = q__1.i; i__3 = i__ + j * l_dim1; i__4 = i__ + j * r_dim1; l[i__3].r = r__[i__4].r, l[i__3].i = r__[i__4].i; /* L50: */ } /* L60: */ } } else if (*prtype == 2 || *prtype == 3) { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *m; for (j = 1; j <= i__2; ++j) { if (i__ <= j) { i__3 = i__ + j * a_dim1; q__4.r = (real) i__, q__4.i = 0.f; c_sin(&q__3, &q__4); q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i; q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f + q__2.i * 2.f; a[i__3].r = q__1.r, a[i__3].i = q__1.i; i__3 = i__ + j * d_dim1; i__4 = i__ * j; q__4.r = (real) i__4, q__4.i = 0.f; c_sin(&q__3, &q__4); q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i; q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f + q__2.i * 2.f; d__[i__3].r = q__1.r, d__[i__3].i = q__1.i; } else { i__3 = i__ + j * a_dim1; a[i__3].r = 0.f, a[i__3].i = 0.f; i__3 = i__ + j * d_dim1; d__[i__3].r = 0.f, d__[i__3].i = 0.f; } /* L70: */ } /* L80: */ } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n; for (j = 1; j <= i__2; ++j) { if (i__ <= j) { i__3 = i__ + j * b_dim1; i__4 = i__ + j; q__4.r = (real) i__4, q__4.i = 0.f; c_sin(&q__3, &q__4); q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i; q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f + q__2.i * 2.f; b[i__3].r = q__1.r, b[i__3].i = q__1.i; i__3 = i__ + j * e_dim1; q__4.r = (real) j, q__4.i = 0.f; c_sin(&q__3, &q__4); q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i; q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f + q__2.i * 2.f; e[i__3].r = q__1.r, e[i__3].i = q__1.i; } else { i__3 = i__ + j * b_dim1; b[i__3].r = 0.f, b[i__3].i = 0.f; i__3 = i__ + j * e_dim1; e[i__3].r = 0.f, e[i__3].i = 0.f; } /* L90: */ } /* L100: */ } i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n; for (j = 1; j <= i__2; ++j) { i__3 = i__ + j * r_dim1; i__4 = i__ * j; q__4.r = (real) i__4, q__4.i = 0.f; c_sin(&q__3, &q__4); q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i; q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f + q__2.i * 20.f; r__[i__3].r = q__1.r, r__[i__3].i = q__1.i; i__3 = i__ + j * l_dim1; i__4 = i__ + j; q__4.r = (real) i__4, q__4.i = 0.f; c_sin(&q__3, &q__4); q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i; q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f + q__2.i * 20.f; l[i__3].r = q__1.r, l[i__3].i = q__1.i; /* L110: */ } /* L120: */ } if (*prtype == 3) { if (*qblcka <= 1) { *qblcka = 2; } i__1 = *m - 1; i__2 = *qblcka; for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) { i__3 = k + 1 + (k + 1) * a_dim1; i__4 = k + k * a_dim1; a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i; i__3 = k + 1 + k * a_dim1; c_sin(&q__2, &a[k + (k + 1) * a_dim1]); q__1.r = -q__2.r, q__1.i = -q__2.i; a[i__3].r = q__1.r, a[i__3].i = q__1.i; /* L130: */ } if (*qblckb <= 1) { *qblckb = 2; } i__2 = *n - 1; i__1 = *qblckb; for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) { i__3 = k + 1 + (k + 1) * b_dim1; i__4 = k + k * b_dim1; b[i__3].r = b[i__4].r, b[i__3].i = b[i__4].i; i__3 = k + 1 + k * b_dim1; c_sin(&q__2, &b[k + (k + 1) * b_dim1]); q__1.r = -q__2.r, q__1.i = -q__2.i; b[i__3].r = q__1.r, b[i__3].i = q__1.i; /* L140: */ } } } else if (*prtype == 4) { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *m; for (j = 1; j <= i__2; ++j) { i__3 = i__ + j * a_dim1; i__4 = i__ * j; q__4.r = (real) i__4, q__4.i = 0.f; c_sin(&q__3, &q__4); q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i; q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f + q__2.i * 20.f; a[i__3].r = q__1.r, a[i__3].i = q__1.i; i__3 = i__ + j * d_dim1; i__4 = i__ + j; q__4.r = (real) i__4, q__4.i = 0.f; c_sin(&q__3, &q__4); q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i; q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f + q__2.i * 2.f; d__[i__3].r = q__1.r, d__[i__3].i = q__1.i; /* L150: */ } /* L160: */ } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n; for (j = 1; j <= i__2; ++j) { i__3 = i__ + j * b_dim1; i__4 = i__ + j; q__4.r = (real) i__4, q__4.i = 0.f; c_sin(&q__3, &q__4); q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i; q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f + q__2.i * 20.f; b[i__3].r = q__1.r, b[i__3].i = q__1.i; i__3 = i__ + j * e_dim1; i__4 = i__ * j; q__4.r = (real) i__4, q__4.i = 0.f; c_sin(&q__3, &q__4); q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i; q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f + q__2.i * 2.f; e[i__3].r = q__1.r, e[i__3].i = q__1.i; /* L170: */ } /* L180: */ } i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n; for (j = 1; j <= i__2; ++j) { i__3 = i__ + j * r_dim1; i__4 = j / i__; q__4.r = (real) i__4, q__4.i = 0.f; c_sin(&q__3, &q__4); q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i; q__1.r = q__2.r * 20.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f + q__2.i * 20.f; r__[i__3].r = q__1.r, r__[i__3].i = q__1.i; i__3 = i__ + j * l_dim1; i__4 = i__ * j; q__4.r = (real) i__4, q__4.i = 0.f; c_sin(&q__3, &q__4); q__2.r = .5f - q__3.r, q__2.i = 0.f - q__3.i; q__1.r = q__2.r * 2.f - q__2.i * 0.f, q__1.i = q__2.r * 0.f + q__2.i * 2.f; l[i__3].r = q__1.r, l[i__3].i = q__1.i; /* L190: */ } /* L200: */ } } else if (*prtype >= 5) { q__3.r = 1.f, q__3.i = 0.f; q__2.r = q__3.r * 20.f - q__3.i * 0.f, q__2.i = q__3.r * 0.f + q__3.i * 20.f; q__1.r = q__2.r / *alpha, q__1.i = q__2.i / *alpha; reeps.r = q__1.r, reeps.i = q__1.i; q__2.r = -1.5f, q__2.i = 0.f; q__1.r = q__2.r / *alpha, q__1.i = q__2.i / *alpha; imeps.r = q__1.r, imeps.i = q__1.i; i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n; for (j = 1; j <= i__2; ++j) { i__3 = i__ + j * r_dim1; i__4 = i__ * j; q__5.r = (real) i__4, q__5.i = 0.f; c_sin(&q__4, &q__5); q__3.r = .5f - q__4.r, q__3.i = 0.f - q__4.i; q__2.r = *alpha * q__3.r, q__2.i = *alpha * q__3.i; c_div(&q__1, &q__2, &c_b5); r__[i__3].r = q__1.r, r__[i__3].i = q__1.i; i__3 = i__ + j * l_dim1; i__4 = i__ + j; q__5.r = (real) i__4, q__5.i = 0.f; c_sin(&q__4, &q__5); q__3.r = .5f - q__4.r, q__3.i = 0.f - q__4.i; q__2.r = *alpha * q__3.r, q__2.i = *alpha * q__3.i; c_div(&q__1, &q__2, &c_b5); l[i__3].r = q__1.r, l[i__3].i = q__1.i; /* L210: */ } /* L220: */ } i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + i__ * d_dim1; d__[i__2].r = 1.f, d__[i__2].i = 0.f; /* L230: */ } i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { if (i__ <= 4) { i__2 = i__ + i__ * a_dim1; a[i__2].r = 1.f, a[i__2].i = 0.f; if (i__ > 2) { i__2 = i__ + i__ * a_dim1; q__1.r = reeps.r + 1.f, q__1.i = reeps.i + 0.f; a[i__2].r = q__1.r, a[i__2].i = q__1.i; } if (i__ % 2 != 0 && i__ < *m) { i__2 = i__ + (i__ + 1) * a_dim1; a[i__2].r = imeps.r, a[i__2].i = imeps.i; } else if (i__ > 1) { i__2 = i__ + (i__ - 1) * a_dim1; q__1.r = -imeps.r, q__1.i = -imeps.i; a[i__2].r = q__1.r, a[i__2].i = q__1.i; } } else if (i__ <= 8) { if (i__ <= 6) { i__2 = i__ + i__ * a_dim1; a[i__2].r = reeps.r, a[i__2].i = reeps.i; } else { i__2 = i__ + i__ * a_dim1; q__1.r = -reeps.r, q__1.i = -reeps.i; a[i__2].r = q__1.r, a[i__2].i = q__1.i; } if (i__ % 2 != 0 && i__ < *m) { i__2 = i__ + (i__ + 1) * a_dim1; a[i__2].r = 1.f, a[i__2].i = 0.f; } else if (i__ > 1) { i__2 = i__ + (i__ - 1) * a_dim1; q__1.r = -1.f, q__1.i = 0.f; a[i__2].r = q__1.r, a[i__2].i = q__1.i; } } else { i__2 = i__ + i__ * a_dim1; a[i__2].r = 1.f, a[i__2].i = 0.f; if (i__ % 2 != 0 && i__ < *m) { i__2 = i__ + (i__ + 1) * a_dim1; d__1 = 2.; q__1.r = d__1 * imeps.r, q__1.i = d__1 * imeps.i; a[i__2].r = q__1.r, a[i__2].i = q__1.i; } else if (i__ > 1) { i__2 = i__ + (i__ - 1) * a_dim1; q__2.r = -imeps.r, q__2.i = -imeps.i; d__1 = 2.; q__1.r = d__1 * q__2.r, q__1.i = d__1 * q__2.i; a[i__2].r = q__1.r, a[i__2].i = q__1.i; } } /* L240: */ } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + i__ * e_dim1; e[i__2].r = 1.f, e[i__2].i = 0.f; if (i__ <= 4) { i__2 = i__ + i__ * b_dim1; q__1.r = -1.f, q__1.i = 0.f; b[i__2].r = q__1.r, b[i__2].i = q__1.i; if (i__ > 2) { i__2 = i__ + i__ * b_dim1; q__1.r = 1.f - reeps.r, q__1.i = 0.f - reeps.i; b[i__2].r = q__1.r, b[i__2].i = q__1.i; } if (i__ % 2 != 0 && i__ < *n) { i__2 = i__ + (i__ + 1) * b_dim1; b[i__2].r = imeps.r, b[i__2].i = imeps.i; } else if (i__ > 1) { i__2 = i__ + (i__ - 1) * b_dim1; q__1.r = -imeps.r, q__1.i = -imeps.i; b[i__2].r = q__1.r, b[i__2].i = q__1.i; } } else if (i__ <= 8) { if (i__ <= 6) { i__2 = i__ + i__ * b_dim1; b[i__2].r = reeps.r, b[i__2].i = reeps.i; } else { i__2 = i__ + i__ * b_dim1; q__1.r = -reeps.r, q__1.i = -reeps.i; b[i__2].r = q__1.r, b[i__2].i = q__1.i; } if (i__ % 2 != 0 && i__ < *n) { i__2 = i__ + (i__ + 1) * b_dim1; q__1.r = imeps.r + 1.f, q__1.i = imeps.i + 0.f; b[i__2].r = q__1.r, b[i__2].i = q__1.i; } else if (i__ > 1) { i__2 = i__ + (i__ - 1) * b_dim1; q__2.r = -1.f, q__2.i = 0.f; q__1.r = q__2.r - imeps.r, q__1.i = q__2.i - imeps.i; b[i__2].r = q__1.r, b[i__2].i = q__1.i; } } else { i__2 = i__ + i__ * b_dim1; q__1.r = 1.f - reeps.r, q__1.i = 0.f - reeps.i; b[i__2].r = q__1.r, b[i__2].i = q__1.i; if (i__ % 2 != 0 && i__ < *n) { i__2 = i__ + (i__ + 1) * b_dim1; d__1 = 2.; q__1.r = d__1 * imeps.r, q__1.i = d__1 * imeps.i; b[i__2].r = q__1.r, b[i__2].i = q__1.i; } else if (i__ > 1) { i__2 = i__ + (i__ - 1) * b_dim1; q__2.r = -imeps.r, q__2.i = -imeps.i; d__1 = 2.; q__1.r = d__1 * q__2.r, q__1.i = d__1 * q__2.i; b[i__2].r = q__1.r, b[i__2].i = q__1.i; } } /* L250: */ } } /* Compute rhs (C, F) */ cgemm_("N", "N", m, n, m, &c_b1, &a[a_offset], lda, &r__[r_offset], ldr, & c_b3, &c__[c_offset], ldc); q__1.r = -1.f, q__1.i = 0.f; cgemm_("N", "N", m, n, n, &q__1, &l[l_offset], ldl, &b[b_offset], ldb, & c_b1, &c__[c_offset], ldc); cgemm_("N", "N", m, n, m, &c_b1, &d__[d_offset], ldd, &r__[r_offset], ldr, &c_b3, &f[f_offset], ldf); q__1.r = -1.f, q__1.i = 0.f; cgemm_("N", "N", m, n, n, &q__1, &l[l_offset], ldl, &e[e_offset], lde, & c_b1, &f[f_offset], ldf); /* End of CLATM5 */ return 0; } /* clatm5_ */