#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b CLATMS */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* SUBROUTINE CLATMS( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, */ /* KL, KU, PACK, A, LDA, WORK, INFO ) */ /* CHARACTER DIST, PACK, SYM */ /* INTEGER INFO, KL, KU, LDA, M, MODE, N */ /* REAL COND, DMAX */ /* INTEGER ISEED( 4 ) */ /* REAL D( * ) */ /* COMPLEX A( LDA, * ), WORK( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > CLATMS generates random matrices with specified singular values */ /* > (or hermitian with specified eigenvalues) */ /* > for testing LAPACK programs. */ /* > */ /* > CLATMS operates by applying the following sequence of */ /* > operations: */ /* > */ /* > Set the diagonal to D, where D may be input or */ /* > computed according to MODE, COND, DMAX, and SYM */ /* > as described below. */ /* > */ /* > Generate a matrix with the appropriate band structure, by one */ /* > of two methods: */ /* > */ /* > Method A: */ /* > Generate a dense M x N matrix by multiplying D on the left */ /* > and the right by random unitary matrices, then: */ /* > */ /* > Reduce the bandwidth according to KL and KU, using */ /* > Householder transformations. */ /* > */ /* > Method B: */ /* > Convert the bandwidth-0 (i.e., diagonal) matrix to a */ /* > bandwidth-1 matrix using Givens rotations, "chasing" */ /* > out-of-band elements back, much as in QR; then convert */ /* > the bandwidth-1 to a bandwidth-2 matrix, etc. Note */ /* > that for reasonably small bandwidths (relative to M and */ /* > N) this requires less storage, as a dense matrix is not */ /* > generated. Also, for hermitian or symmetric matrices, */ /* > only one triangle is generated. */ /* > */ /* > Method A is chosen if the bandwidth is a large fraction of the */ /* > order of the matrix, and LDA is at least M (so a dense */ /* > matrix can be stored.) Method B is chosen if the bandwidth */ /* > is small (< 1/2 N for hermitian or symmetric, < .3 N+M for */ /* > non-symmetric), or LDA is less than M and not less than the */ /* > bandwidth. */ /* > */ /* > Pack the matrix if desired. Options specified by PACK are: */ /* > no packing */ /* > zero out upper half (if hermitian) */ /* > zero out lower half (if hermitian) */ /* > store the upper half columnwise (if hermitian or upper */ /* > triangular) */ /* > store the lower half columnwise (if hermitian or lower */ /* > triangular) */ /* > store the lower triangle in banded format (if hermitian or */ /* > lower triangular) */ /* > store the upper triangle in banded format (if hermitian or */ /* > upper triangular) */ /* > store the entire matrix in banded format */ /* > If Method B is chosen, and band format is specified, then the */ /* > matrix will be generated in the band format, so no repacking */ /* > will be necessary. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of A. Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of A. N must equal M if the matrix */ /* > is symmetric or hermitian (i.e., if SYM is not 'N') */ /* > Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] DIST */ /* > \verbatim */ /* > DIST is CHARACTER*1 */ /* > On entry, DIST specifies the type of distribution to be used */ /* > to generate the random eigen-/singular values. */ /* > 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform ) */ /* > 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) */ /* > 'N' => NORMAL( 0, 1 ) ( 'N' for normal ) */ /* > Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in,out] ISEED */ /* > \verbatim */ /* > ISEED is INTEGER array, dimension ( 4 ) */ /* > On entry ISEED specifies the seed of the random number */ /* > generator. They should lie between 0 and 4095 inclusive, */ /* > and ISEED(4) should be odd. The random number generator */ /* > uses a linear congruential sequence limited to small */ /* > integers, and so should produce machine independent */ /* > random numbers. The values of ISEED are changed on */ /* > exit, and can be used in the next call to CLATMS */ /* > to continue the same random number sequence. */ /* > Changed on exit. */ /* > \endverbatim */ /* > */ /* > \param[in] SYM */ /* > \verbatim */ /* > SYM is CHARACTER*1 */ /* > If SYM='H', the generated matrix is hermitian, with */ /* > eigenvalues specified by D, COND, MODE, and DMAX; they */ /* > may be positive, negative, or zero. */ /* > If SYM='P', the generated matrix is hermitian, with */ /* > eigenvalues (= singular values) specified by D, COND, */ /* > MODE, and DMAX; they will not be negative. */ /* > If SYM='N', the generated matrix is nonsymmetric, with */ /* > singular values specified by D, COND, MODE, and DMAX; */ /* > they will not be negative. */ /* > If SYM='S', the generated matrix is (complex) symmetric, */ /* > with singular values specified by D, COND, MODE, and */ /* > DMAX; they will not be negative. */ /* > Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in,out] D */ /* > \verbatim */ /* > D is REAL array, dimension ( MIN( M, N ) ) */ /* > This array is used to specify the singular values or */ /* > eigenvalues of A (see SYM, above.) If MODE=0, then D is */ /* > assumed to contain the singular/eigenvalues, otherwise */ /* > they will be computed according to MODE, COND, and DMAX, */ /* > and placed in D. */ /* > Modified if MODE is nonzero. */ /* > \endverbatim */ /* > */ /* > \param[in] MODE */ /* > \verbatim */ /* > MODE is INTEGER */ /* > On entry this describes how the singular/eigenvalues are to */ /* > be specified: */ /* > MODE = 0 means use D as input */ /* > MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND */ /* > MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND */ /* > MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) */ /* > MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */ /* > MODE = 5 sets D to random numbers in the range */ /* > ( 1/COND , 1 ) such that their logarithms */ /* > are uniformly distributed. */ /* > MODE = 6 set D to random numbers from same distribution */ /* > as the rest of the matrix. */ /* > MODE < 0 has the same meaning as ABS(MODE), except that */ /* > the order of the elements of D is reversed. */ /* > Thus if MODE is positive, D has entries ranging from */ /* > 1 to 1/COND, if negative, from 1/COND to 1, */ /* > If SYM='H', and MODE is neither 0, 6, nor -6, then */ /* > the elements of D will also be multiplied by a random */ /* > sign (i.e., +1 or -1.) */ /* > Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] COND */ /* > \verbatim */ /* > COND is REAL */ /* > On entry, this is used as described under MODE above. */ /* > If used, it must be >= 1. Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] DMAX */ /* > \verbatim */ /* > DMAX is REAL */ /* > If MODE is neither -6, 0 nor 6, the contents of D, as */ /* > computed according to MODE and COND, will be scaled by */ /* > DMAX / f2cmax(abs(D(i))); thus, the maximum absolute eigen- or */ /* > singular value (which is to say the norm) will be abs(DMAX). */ /* > Note that DMAX need not be positive: if DMAX is negative */ /* > (or zero), D will be scaled by a negative number (or zero). */ /* > Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] KL */ /* > \verbatim */ /* > KL is INTEGER */ /* > This specifies the lower bandwidth of the matrix. For */ /* > example, KL=0 implies upper triangular, KL=1 implies upper */ /* > Hessenberg, and KL being at least M-1 means that the matrix */ /* > has full lower bandwidth. KL must equal KU if the matrix */ /* > is symmetric or hermitian. */ /* > Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] KU */ /* > \verbatim */ /* > KU is INTEGER */ /* > This specifies the upper bandwidth of the matrix. For */ /* > example, KU=0 implies lower triangular, KU=1 implies lower */ /* > Hessenberg, and KU being at least N-1 means that the matrix */ /* > has full upper bandwidth. KL must equal KU if the matrix */ /* > is symmetric or hermitian. */ /* > Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in] PACK */ /* > \verbatim */ /* > PACK is CHARACTER*1 */ /* > This specifies packing of matrix as follows: */ /* > 'N' => no packing */ /* > 'U' => zero out all subdiagonal entries (if symmetric */ /* > or hermitian) */ /* > 'L' => zero out all superdiagonal entries (if symmetric */ /* > or hermitian) */ /* > 'C' => store the upper triangle columnwise (only if the */ /* > matrix is symmetric, hermitian, or upper triangular) */ /* > 'R' => store the lower triangle columnwise (only if the */ /* > matrix is symmetric, hermitian, or lower triangular) */ /* > 'B' => store the lower triangle in band storage scheme */ /* > (only if the matrix is symmetric, hermitian, or */ /* > lower triangular) */ /* > 'Q' => store the upper triangle in band storage scheme */ /* > (only if the matrix is symmetric, hermitian, or */ /* > upper triangular) */ /* > 'Z' => store the entire matrix in band storage scheme */ /* > (pivoting can be provided for by using this */ /* > option to store A in the trailing rows of */ /* > the allocated storage) */ /* > */ /* > Using these options, the various LAPACK packed and banded */ /* > storage schemes can be obtained: */ /* > GB - use 'Z' */ /* > PB, SB, HB, or TB - use 'B' or 'Q' */ /* > PP, SP, HB, or TP - use 'C' or 'R' */ /* > */ /* > If two calls to CLATMS differ only in the PACK parameter, */ /* > they will generate mathematically equivalent matrices. */ /* > Not modified. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX array, dimension ( LDA, N ) */ /* > On exit A is the desired test matrix. A is first generated */ /* > in full (unpacked) form, and then packed, if so specified */ /* > by PACK. Thus, the first M elements of the first N */ /* > columns will always be modified. If PACK specifies a */ /* > packed or banded storage scheme, all LDA elements of the */ /* > first N columns will be modified; the elements of the */ /* > array which do not correspond to elements of the generated */ /* > matrix are set to zero. */ /* > Modified. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > LDA specifies the first dimension of A as declared in the */ /* > calling program. If PACK='N', 'U', 'L', 'C', or 'R', then */ /* > LDA must be at least M. If PACK='B' or 'Q', then LDA must */ /* > be at least MIN( KL, M-1) (which is equal to MIN(KU,N-1)). */ /* > If PACK='Z', LDA must be large enough to hold the packed */ /* > array: MIN( KU, N-1) + MIN( KL, M-1) + 1. */ /* > Not modified. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX array, dimension ( 3*MAX( N, M ) ) */ /* > Workspace. */ /* > Modified. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > Error code. On exit, INFO will be set to one of the */ /* > following values: */ /* > 0 => normal return */ /* > -1 => M negative or unequal to N and SYM='S', 'H', or 'P' */ /* > -2 => N negative */ /* > -3 => DIST illegal string */ /* > -5 => SYM illegal string */ /* > -7 => MODE not in range -6 to 6 */ /* > -8 => COND less than 1.0, and MODE neither -6, 0 nor 6 */ /* > -10 => KL negative */ /* > -11 => KU negative, or SYM is not 'N' and KU is not equal to */ /* > KL */ /* > -12 => PACK illegal string, or PACK='U' or 'L', and SYM='N'; */ /* > or PACK='C' or 'Q' and SYM='N' and KL is not zero; */ /* > or PACK='R' or 'B' and SYM='N' and KU is not zero; */ /* > or PACK='U', 'L', 'C', 'R', 'B', or 'Q', and M is not */ /* > N. */ /* > -14 => LDA is less than M, or PACK='Z' and LDA is less than */ /* > MIN(KU,N-1) + MIN(KL,M-1) + 1. */ /* > 1 => Error return from SLATM1 */ /* > 2 => Cannot scale to DMAX (f2cmax. sing. value is 0) */ /* > 3 => Error return from CLAGGE, CLAGHE or CLAGSY */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup complex_matgen */ /* ===================================================================== */ /* Subroutine */ int clatms_(integer *m, integer *n, char *dist, integer * iseed, char *sym, real *d__, integer *mode, real *cond, real *dmax__, integer *kl, integer *ku, char *pack, complex *a, integer *lda, complex *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6; real r__1, r__2, r__3; complex q__1, q__2, q__3; logical L__1; /* Local variables */ integer ilda, icol; real temp; logical csym; integer irow, isym; complex c__; integer i__, j, k; complex s; real alpha, angle; integer ipack; real realc; integer ioffg; extern logical lsame_(char *, char *); integer iinfo; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); complex ctemp; integer idist, mnmin, iskew; complex extra, dummy; extern /* Subroutine */ int slatm1_(integer *, real *, integer *, integer *, integer *, real *, integer *, integer *); integer ic, jc, nc; extern /* Subroutine */ int clagge_(integer *, integer *, integer *, integer *, real *, complex *, integer *, integer *, complex *, integer *), claghe_(integer *, integer *, real *, complex *, integer *, integer *, complex *, integer *); integer il; complex ct; integer iendch, ir, jr, ipackg, mr; //extern /* Complex */ VOID clarnd_(complex *, integer *, integer *); extern complex clarnd_(integer *, integer *); integer minlda; complex st; extern /* Subroutine */ int claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), clartg_(complex *, complex *, real *, complex *, complex *), xerbla_(char *, integer *), clagsy_(integer *, integer *, real *, complex *, integer *, integer *, complex *, integer *); extern real slarnd_(integer *, integer *); extern /* Subroutine */ int clarot_(logical *, logical *, logical *, integer *, complex *, complex *, complex *, integer *, complex *, complex *); logical iltemp, givens; integer ioffst, irsign; logical ilextr, topdwn; integer ir1, ir2, isympk, jch, llb, jkl, jku, uub; /* -- LAPACK computational routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* 1) Decode and Test the input parameters. */ /* Initialize flags & seed. */ /* Parameter adjustments */ --iseed; --d__; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --work; /* Function Body */ *info = 0; /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } /* Decode DIST */ if (lsame_(dist, "U")) { idist = 1; } else if (lsame_(dist, "S")) { idist = 2; } else if (lsame_(dist, "N")) { idist = 3; } else { idist = -1; } /* Decode SYM */ if (lsame_(sym, "N")) { isym = 1; irsign = 0; csym = FALSE_; } else if (lsame_(sym, "P")) { isym = 2; irsign = 0; csym = FALSE_; } else if (lsame_(sym, "S")) { isym = 2; irsign = 0; csym = TRUE_; } else if (lsame_(sym, "H")) { isym = 2; irsign = 1; csym = FALSE_; } else { isym = -1; } /* Decode PACK */ isympk = 0; if (lsame_(pack, "N")) { ipack = 0; } else if (lsame_(pack, "U")) { ipack = 1; isympk = 1; } else if (lsame_(pack, "L")) { ipack = 2; isympk = 1; } else if (lsame_(pack, "C")) { ipack = 3; isympk = 2; } else if (lsame_(pack, "R")) { ipack = 4; isympk = 3; } else if (lsame_(pack, "B")) { ipack = 5; isympk = 3; } else if (lsame_(pack, "Q")) { ipack = 6; isympk = 2; } else if (lsame_(pack, "Z")) { ipack = 7; } else { ipack = -1; } /* Set certain internal parameters */ mnmin = f2cmin(*m,*n); /* Computing MIN */ i__1 = *kl, i__2 = *m - 1; llb = f2cmin(i__1,i__2); /* Computing MIN */ i__1 = *ku, i__2 = *n - 1; uub = f2cmin(i__1,i__2); /* Computing MIN */ i__1 = *m, i__2 = *n + llb; mr = f2cmin(i__1,i__2); /* Computing MIN */ i__1 = *n, i__2 = *m + uub; nc = f2cmin(i__1,i__2); if (ipack == 5 || ipack == 6) { minlda = uub + 1; } else if (ipack == 7) { minlda = llb + uub + 1; } else { minlda = *m; } /* Use Givens rotation method if bandwidth small enough, */ /* or if LDA is too small to store the matrix unpacked. */ givens = FALSE_; if (isym == 1) { /* Computing MAX */ i__1 = 1, i__2 = mr + nc; if ((real) (llb + uub) < (real) f2cmax(i__1,i__2) * .3f) { givens = TRUE_; } } else { if (llb << 1 < *m) { givens = TRUE_; } } if (*lda < *m && *lda >= minlda) { givens = TRUE_; } /* Set INFO if an error */ if (*m < 0) { *info = -1; } else if (*m != *n && isym != 1) { *info = -1; } else if (*n < 0) { *info = -2; } else if (idist == -1) { *info = -3; } else if (isym == -1) { *info = -5; } else if (abs(*mode) > 6) { *info = -7; } else if (*mode != 0 && abs(*mode) != 6 && *cond < 1.f) { *info = -8; } else if (*kl < 0) { *info = -10; } else if (*ku < 0 || isym != 1 && *kl != *ku) { *info = -11; } else if (ipack == -1 || isympk == 1 && isym == 1 || isympk == 2 && isym == 1 && *kl > 0 || isympk == 3 && isym == 1 && *ku > 0 || isympk != 0 && *m != *n) { *info = -12; } else if (*lda < f2cmax(1,minlda)) { *info = -14; } if (*info != 0) { i__1 = -(*info); xerbla_("CLATMS", &i__1); return 0; } /* Initialize random number generator */ for (i__ = 1; i__ <= 4; ++i__) { iseed[i__] = (i__1 = iseed[i__], abs(i__1)) % 4096; /* L10: */ } if (iseed[4] % 2 != 1) { ++iseed[4]; } /* 2) Set up D if indicated. */ /* Compute D according to COND and MODE */ slatm1_(mode, cond, &irsign, &idist, &iseed[1], &d__[1], &mnmin, &iinfo); if (iinfo != 0) { *info = 1; return 0; } /* Choose Top-Down if D is (apparently) increasing, */ /* Bottom-Up if D is (apparently) decreasing. */ if (abs(d__[1]) <= (r__1 = d__[mnmin], abs(r__1))) { topdwn = TRUE_; } else { topdwn = FALSE_; } if (*mode != 0 && abs(*mode) != 6) { /* Scale by DMAX */ temp = abs(d__[1]); i__1 = mnmin; for (i__ = 2; i__ <= i__1; ++i__) { /* Computing MAX */ r__2 = temp, r__3 = (r__1 = d__[i__], abs(r__1)); temp = f2cmax(r__2,r__3); /* L20: */ } if (temp > 0.f) { alpha = *dmax__ / temp; } else { *info = 2; return 0; } sscal_(&mnmin, &alpha, &d__[1], &c__1); } claset_("Full", lda, n, &c_b1, &c_b1, &a[a_offset], lda); /* 3) Generate Banded Matrix using Givens rotations. */ /* Also the special case of UUB=LLB=0 */ /* Compute Addressing constants to cover all */ /* storage formats. Whether GE, HE, SY, GB, HB, or SB, */ /* upper or lower triangle or both, */ /* the (i,j)-th element is in */ /* A( i - ISKEW*j + IOFFST, j ) */ if (ipack > 4) { ilda = *lda - 1; iskew = 1; if (ipack > 5) { ioffst = uub + 1; } else { ioffst = 1; } } else { ilda = *lda; iskew = 0; ioffst = 0; } /* IPACKG is the format that the matrix is generated in. If this is */ /* different from IPACK, then the matrix must be repacked at the */ /* end. It also signals how to compute the norm, for scaling. */ ipackg = 0; /* Diagonal Matrix -- We are done, unless it */ /* is to be stored HP/SP/PP/TP (PACK='R' or 'C') */ if (llb == 0 && uub == 0) { i__1 = mnmin; for (j = 1; j <= i__1; ++j) { i__2 = (1 - iskew) * j + ioffst + j * a_dim1; i__3 = j; q__1.r = d__[i__3], q__1.i = 0.f; a[i__2].r = q__1.r, a[i__2].i = q__1.i; /* L30: */ } if (ipack <= 2 || ipack >= 5) { ipackg = ipack; } } else if (givens) { /* Check whether to use Givens rotations, */ /* Householder transformations, or nothing. */ if (isym == 1) { /* Non-symmetric -- A = U D V */ if (ipack > 4) { ipackg = ipack; } else { ipackg = 0; } i__1 = mnmin; for (j = 1; j <= i__1; ++j) { i__2 = (1 - iskew) * j + ioffst + j * a_dim1; i__3 = j; q__1.r = d__[i__3], q__1.i = 0.f; a[i__2].r = q__1.r, a[i__2].i = q__1.i; /* L40: */ } if (topdwn) { jkl = 0; i__1 = uub; for (jku = 1; jku <= i__1; ++jku) { /* Transform from bandwidth JKL, JKU-1 to JKL, JKU */ /* Last row actually rotated is M */ /* Last column actually rotated is MIN( M+JKU, N ) */ /* Computing MIN */ i__3 = *m + jku; i__2 = f2cmin(i__3,*n) + jkl - 1; for (jr = 1; jr <= i__2; ++jr) { extra.r = 0.f, extra.i = 0.f; angle = slarnd_(&c__1, &iseed[1]) * 6.2831853071795864769252867663f; r__1 = cos(angle); //clarnd_(&q__2, &c__5, &iseed[1]); q__2=clarnd_(&c__5, &iseed[1]); q__1.r = r__1 * q__2.r, q__1.i = r__1 * q__2.i; c__.r = q__1.r, c__.i = q__1.i; r__1 = sin(angle); //clarnd_(&q__2, &c__5, &iseed[1]); q__2=clarnd_(&c__5, &iseed[1]); q__1.r = r__1 * q__2.r, q__1.i = r__1 * q__2.i; s.r = q__1.r, s.i = q__1.i; /* Computing MAX */ i__3 = 1, i__4 = jr - jkl; icol = f2cmax(i__3,i__4); if (jr < *m) { /* Computing MIN */ i__3 = *n, i__4 = jr + jku; il = f2cmin(i__3,i__4) + 1 - icol; L__1 = jr > jkl; clarot_(&c_true, &L__1, &c_false, &il, &c__, &s, & a[jr - iskew * icol + ioffst + icol * a_dim1], &ilda, &extra, &dummy); } /* Chase "EXTRA" back up */ ir = jr; ic = icol; i__3 = -jkl - jku; for (jch = jr - jkl; i__3 < 0 ? jch >= 1 : jch <= 1; jch += i__3) { if (ir < *m) { clartg_(&a[ir + 1 - iskew * (ic + 1) + ioffst + (ic + 1) * a_dim1], &extra, &realc, &s, &dummy); //clarnd_(&q__1, &c__5, &iseed[1]); q__1=clarnd_(&c__5, &iseed[1]); dummy.r = q__1.r, dummy.i = q__1.i; q__2.r = realc * dummy.r, q__2.i = realc * dummy.i; r_cnjg(&q__1, &q__2); c__.r = q__1.r, c__.i = q__1.i; q__3.r = -s.r, q__3.i = -s.i; q__2.r = q__3.r * dummy.r - q__3.i * dummy.i, q__2.i = q__3.r * dummy.i + q__3.i * dummy.r; r_cnjg(&q__1, &q__2); s.r = q__1.r, s.i = q__1.i; } /* Computing MAX */ i__4 = 1, i__5 = jch - jku; irow = f2cmax(i__4,i__5); il = ir + 2 - irow; ctemp.r = 0.f, ctemp.i = 0.f; iltemp = jch > jku; clarot_(&c_false, &iltemp, &c_true, &il, &c__, &s, &a[irow - iskew * ic + ioffst + ic * a_dim1], &ilda, &ctemp, &extra); if (iltemp) { clartg_(&a[irow + 1 - iskew * (ic + 1) + ioffst + (ic + 1) * a_dim1], &ctemp, & realc, &s, &dummy); //clarnd_(&q__1, &c__5, &iseed[1]); q__1=clarnd_(&c__5, &iseed[1]); dummy.r = q__1.r, dummy.i = q__1.i; q__2.r = realc * dummy.r, q__2.i = realc * dummy.i; r_cnjg(&q__1, &q__2); c__.r = q__1.r, c__.i = q__1.i; q__3.r = -s.r, q__3.i = -s.i; q__2.r = q__3.r * dummy.r - q__3.i * dummy.i, q__2.i = q__3.r * dummy.i + q__3.i * dummy.r; r_cnjg(&q__1, &q__2); s.r = q__1.r, s.i = q__1.i; /* Computing MAX */ i__4 = 1, i__5 = jch - jku - jkl; icol = f2cmax(i__4,i__5); il = ic + 2 - icol; extra.r = 0.f, extra.i = 0.f; L__1 = jch > jku + jkl; clarot_(&c_true, &L__1, &c_true, &il, &c__, & s, &a[irow - iskew * icol + ioffst + icol * a_dim1], &ilda, &extra, &ctemp) ; ic = icol; ir = irow; } /* L50: */ } /* L60: */ } /* L70: */ } jku = uub; i__1 = llb; for (jkl = 1; jkl <= i__1; ++jkl) { /* Transform from bandwidth JKL-1, JKU to JKL, JKU */ /* Computing MIN */ i__3 = *n + jkl; i__2 = f2cmin(i__3,*m) + jku - 1; for (jc = 1; jc <= i__2; ++jc) { extra.r = 0.f, extra.i = 0.f; angle = slarnd_(&c__1, &iseed[1]) * 6.2831853071795864769252867663f; r__1 = cos(angle); //clarnd_(&q__2, &c__5, &iseed[1]); q__2=clarnd_(&c__5, &iseed[1]); q__1.r = r__1 * q__2.r, q__1.i = r__1 * q__2.i; c__.r = q__1.r, c__.i = q__1.i; r__1 = sin(angle); //clarnd_(&q__2, &c__5, &iseed[1]); q__2=clarnd_(&c__5, &iseed[1]); q__1.r = r__1 * q__2.r, q__1.i = r__1 * q__2.i; s.r = q__1.r, s.i = q__1.i; /* Computing MAX */ i__3 = 1, i__4 = jc - jku; irow = f2cmax(i__3,i__4); if (jc < *n) { /* Computing MIN */ i__3 = *m, i__4 = jc + jkl; il = f2cmin(i__3,i__4) + 1 - irow; L__1 = jc > jku; clarot_(&c_false, &L__1, &c_false, &il, &c__, &s, &a[irow - iskew * jc + ioffst + jc * a_dim1], &ilda, &extra, &dummy); } /* Chase "EXTRA" back up */ ic = jc; ir = irow; i__3 = -jkl - jku; for (jch = jc - jku; i__3 < 0 ? jch >= 1 : jch <= 1; jch += i__3) { if (ic < *n) { clartg_(&a[ir + 1 - iskew * (ic + 1) + ioffst + (ic + 1) * a_dim1], &extra, &realc, &s, &dummy); //clarnd_(&q__1, &c__5, &iseed[1]); q__1=clarnd_(&c__5, &iseed[1]); dummy.r = q__1.r, dummy.i = q__1.i; q__2.r = realc * dummy.r, q__2.i = realc * dummy.i; r_cnjg(&q__1, &q__2); c__.r = q__1.r, c__.i = q__1.i; q__3.r = -s.r, q__3.i = -s.i; q__2.r = q__3.r * dummy.r - q__3.i * dummy.i, q__2.i = q__3.r * dummy.i + q__3.i * dummy.r; r_cnjg(&q__1, &q__2); s.r = q__1.r, s.i = q__1.i; } /* Computing MAX */ i__4 = 1, i__5 = jch - jkl; icol = f2cmax(i__4,i__5); il = ic + 2 - icol; ctemp.r = 0.f, ctemp.i = 0.f; iltemp = jch > jkl; clarot_(&c_true, &iltemp, &c_true, &il, &c__, &s, &a[ir - iskew * icol + ioffst + icol * a_dim1], &ilda, &ctemp, &extra); if (iltemp) { clartg_(&a[ir + 1 - iskew * (icol + 1) + ioffst + (icol + 1) * a_dim1], &ctemp, &realc, &s, &dummy); //clarnd_(&q__1, &c__5, &iseed[1]); q__1=clarnd_(&c__5, &iseed[1]); dummy.r = q__1.r, dummy.i = q__1.i; q__2.r = realc * dummy.r, q__2.i = realc * dummy.i; r_cnjg(&q__1, &q__2); c__.r = q__1.r, c__.i = q__1.i; q__3.r = -s.r, q__3.i = -s.i; q__2.r = q__3.r * dummy.r - q__3.i * dummy.i, q__2.i = q__3.r * dummy.i + q__3.i * dummy.r; r_cnjg(&q__1, &q__2); s.r = q__1.r, s.i = q__1.i; /* Computing MAX */ i__4 = 1, i__5 = jch - jkl - jku; irow = f2cmax(i__4,i__5); il = ir + 2 - irow; extra.r = 0.f, extra.i = 0.f; L__1 = jch > jkl + jku; clarot_(&c_false, &L__1, &c_true, &il, &c__, & s, &a[irow - iskew * icol + ioffst + icol * a_dim1], &ilda, &extra, &ctemp) ; ic = icol; ir = irow; } /* L80: */ } /* L90: */ } /* L100: */ } } else { /* Bottom-Up -- Start at the bottom right. */ jkl = 0; i__1 = uub; for (jku = 1; jku <= i__1; ++jku) { /* Transform from bandwidth JKL, JKU-1 to JKL, JKU */ /* First row actually rotated is M */ /* First column actually rotated is MIN( M+JKU, N ) */ /* Computing MIN */ i__2 = *m, i__3 = *n + jkl; iendch = f2cmin(i__2,i__3) - 1; /* Computing MIN */ i__2 = *m + jku; i__3 = 1 - jkl; for (jc = f2cmin(i__2,*n) - 1; jc >= i__3; --jc) { extra.r = 0.f, extra.i = 0.f; angle = slarnd_(&c__1, &iseed[1]) * 6.2831853071795864769252867663f; r__1 = cos(angle); //clarnd_(&q__2, &c__5, &iseed[1]); q__2=clarnd_(&c__5, &iseed[1]); q__1.r = r__1 * q__2.r, q__1.i = r__1 * q__2.i; c__.r = q__1.r, c__.i = q__1.i; r__1 = sin(angle); //clarnd_(&q__2, &c__5, &iseed[1]); q__2=clarnd_(&c__5, &iseed[1]); q__1.r = r__1 * q__2.r, q__1.i = r__1 * q__2.i; s.r = q__1.r, s.i = q__1.i; /* Computing MAX */ i__2 = 1, i__4 = jc - jku + 1; irow = f2cmax(i__2,i__4); if (jc > 0) { /* Computing MIN */ i__2 = *m, i__4 = jc + jkl + 1; il = f2cmin(i__2,i__4) + 1 - irow; L__1 = jc + jkl < *m; clarot_(&c_false, &c_false, &L__1, &il, &c__, &s, &a[irow - iskew * jc + ioffst + jc * a_dim1], &ilda, &dummy, &extra); } /* Chase "EXTRA" back down */ ic = jc; i__2 = iendch; i__4 = jkl + jku; for (jch = jc + jkl; i__4 < 0 ? jch >= i__2 : jch <= i__2; jch += i__4) { ilextr = ic > 0; if (ilextr) { clartg_(&a[jch - iskew * ic + ioffst + ic * a_dim1], &extra, &realc, &s, &dummy); //clarnd_(&q__1, &c__5, &iseed[1]); q__1=clarnd_(&c__5, &iseed[1]); dummy.r = q__1.r, dummy.i = q__1.i; q__1.r = realc * dummy.r, q__1.i = realc * dummy.i; c__.r = q__1.r, c__.i = q__1.i; q__1.r = s.r * dummy.r - s.i * dummy.i, q__1.i = s.r * dummy.i + s.i * dummy.r; s.r = q__1.r, s.i = q__1.i; } ic = f2cmax(1,ic); /* Computing MIN */ i__5 = *n - 1, i__6 = jch + jku; icol = f2cmin(i__5,i__6); iltemp = jch + jku < *n; ctemp.r = 0.f, ctemp.i = 0.f; i__5 = icol + 2 - ic; clarot_(&c_true, &ilextr, &iltemp, &i__5, &c__, & s, &a[jch - iskew * ic + ioffst + ic * a_dim1], &ilda, &extra, &ctemp); if (iltemp) { clartg_(&a[jch - iskew * icol + ioffst + icol * a_dim1], &ctemp, &realc, &s, &dummy) ; //clarnd_(&q__1, &c__5, &iseed[1]); q__1=clarnd_(&c__5, &iseed[1]); dummy.r = q__1.r, dummy.i = q__1.i; q__1.r = realc * dummy.r, q__1.i = realc * dummy.i; c__.r = q__1.r, c__.i = q__1.i; q__1.r = s.r * dummy.r - s.i * dummy.i, q__1.i = s.r * dummy.i + s.i * dummy.r; s.r = q__1.r, s.i = q__1.i; /* Computing MIN */ i__5 = iendch, i__6 = jch + jkl + jku; il = f2cmin(i__5,i__6) + 2 - jch; extra.r = 0.f, extra.i = 0.f; L__1 = jch + jkl + jku <= iendch; clarot_(&c_false, &c_true, &L__1, &il, &c__, & s, &a[jch - iskew * icol + ioffst + icol * a_dim1], &ilda, &ctemp, &extra) ; ic = icol; } /* L110: */ } /* L120: */ } /* L130: */ } jku = uub; i__1 = llb; for (jkl = 1; jkl <= i__1; ++jkl) { /* Transform from bandwidth JKL-1, JKU to JKL, JKU */ /* First row actually rotated is MIN( N+JKL, M ) */ /* First column actually rotated is N */ /* Computing MIN */ i__3 = *n, i__4 = *m + jku; iendch = f2cmin(i__3,i__4) - 1; /* Computing MIN */ i__3 = *n + jkl; i__4 = 1 - jku; for (jr = f2cmin(i__3,*m) - 1; jr >= i__4; --jr) { extra.r = 0.f, extra.i = 0.f; angle = slarnd_(&c__1, &iseed[1]) * 6.2831853071795864769252867663f; r__1 = cos(angle); //clarnd_(&q__2, &c__5, &iseed[1]); q__2=clarnd_(&c__5, &iseed[1]); q__1.r = r__1 * q__2.r, q__1.i = r__1 * q__2.i; c__.r = q__1.r, c__.i = q__1.i; r__1 = sin(angle); //clarnd_(&q__2, &c__5, &iseed[1]); q__2=clarnd_(&c__5, &iseed[1]); q__1.r = r__1 * q__2.r, q__1.i = r__1 * q__2.i; s.r = q__1.r, s.i = q__1.i; /* Computing MAX */ i__3 = 1, i__2 = jr - jkl + 1; icol = f2cmax(i__3,i__2); if (jr > 0) { /* Computing MIN */ i__3 = *n, i__2 = jr + jku + 1; il = f2cmin(i__3,i__2) + 1 - icol; L__1 = jr + jku < *n; clarot_(&c_true, &c_false, &L__1, &il, &c__, &s, & a[jr - iskew * icol + ioffst + icol * a_dim1], &ilda, &dummy, &extra); } /* Chase "EXTRA" back down */ ir = jr; i__3 = iendch; i__2 = jkl + jku; for (jch = jr + jku; i__2 < 0 ? jch >= i__3 : jch <= i__3; jch += i__2) { ilextr = ir > 0; if (ilextr) { clartg_(&a[ir - iskew * jch + ioffst + jch * a_dim1], &extra, &realc, &s, &dummy); //clarnd_(&q__1, &c__5, &iseed[1]); q__1=clarnd_(&c__5, &iseed[1]); dummy.r = q__1.r, dummy.i = q__1.i; q__1.r = realc * dummy.r, q__1.i = realc * dummy.i; c__.r = q__1.r, c__.i = q__1.i; q__1.r = s.r * dummy.r - s.i * dummy.i, q__1.i = s.r * dummy.i + s.i * dummy.r; s.r = q__1.r, s.i = q__1.i; } ir = f2cmax(1,ir); /* Computing MIN */ i__5 = *m - 1, i__6 = jch + jkl; irow = f2cmin(i__5,i__6); iltemp = jch + jkl < *m; ctemp.r = 0.f, ctemp.i = 0.f; i__5 = irow + 2 - ir; clarot_(&c_false, &ilextr, &iltemp, &i__5, &c__, & s, &a[ir - iskew * jch + ioffst + jch * a_dim1], &ilda, &extra, &ctemp); if (iltemp) { clartg_(&a[irow - iskew * jch + ioffst + jch * a_dim1], &ctemp, &realc, &s, &dummy); //clarnd_(&q__1, &c__5, &iseed[1]); q__1=clarnd_(&c__5, &iseed[1]); dummy.r = q__1.r, dummy.i = q__1.i; q__1.r = realc * dummy.r, q__1.i = realc * dummy.i; c__.r = q__1.r, c__.i = q__1.i; q__1.r = s.r * dummy.r - s.i * dummy.i, q__1.i = s.r * dummy.i + s.i * dummy.r; s.r = q__1.r, s.i = q__1.i; /* Computing MIN */ i__5 = iendch, i__6 = jch + jkl + jku; il = f2cmin(i__5,i__6) + 2 - jch; extra.r = 0.f, extra.i = 0.f; L__1 = jch + jkl + jku <= iendch; clarot_(&c_true, &c_true, &L__1, &il, &c__, & s, &a[irow - iskew * jch + ioffst + jch * a_dim1], &ilda, &ctemp, &extra); ir = irow; } /* L140: */ } /* L150: */ } /* L160: */ } } } else { /* Symmetric -- A = U D U' */ /* Hermitian -- A = U D U* */ ipackg = ipack; ioffg = ioffst; if (topdwn) { /* Top-Down -- Generate Upper triangle only */ if (ipack >= 5) { ipackg = 6; ioffg = uub + 1; } else { ipackg = 1; } i__1 = mnmin; for (j = 1; j <= i__1; ++j) { i__4 = (1 - iskew) * j + ioffg + j * a_dim1; i__2 = j; q__1.r = d__[i__2], q__1.i = 0.f; a[i__4].r = q__1.r, a[i__4].i = q__1.i; /* L170: */ } i__1 = uub; for (k = 1; k <= i__1; ++k) { i__4 = *n - 1; for (jc = 1; jc <= i__4; ++jc) { /* Computing MAX */ i__2 = 1, i__3 = jc - k; irow = f2cmax(i__2,i__3); /* Computing MIN */ i__2 = jc + 1, i__3 = k + 2; il = f2cmin(i__2,i__3); extra.r = 0.f, extra.i = 0.f; i__2 = jc - iskew * (jc + 1) + ioffg + (jc + 1) * a_dim1; ctemp.r = a[i__2].r, ctemp.i = a[i__2].i; angle = slarnd_(&c__1, &iseed[1]) * 6.2831853071795864769252867663f; r__1 = cos(angle); //clarnd_(&q__2, &c__5, &iseed[1]); q__2=clarnd_(&c__5, &iseed[1]); q__1.r = r__1 * q__2.r, q__1.i = r__1 * q__2.i; c__.r = q__1.r, c__.i = q__1.i; r__1 = sin(angle); //clarnd_(&q__2, &c__5, &iseed[1]); q__2=clarnd_(&c__5, &iseed[1]); q__1.r = r__1 * q__2.r, q__1.i = r__1 * q__2.i; s.r = q__1.r, s.i = q__1.i; if (csym) { ct.r = c__.r, ct.i = c__.i; st.r = s.r, st.i = s.i; } else { r_cnjg(&q__1, &ctemp); ctemp.r = q__1.r, ctemp.i = q__1.i; r_cnjg(&q__1, &c__); ct.r = q__1.r, ct.i = q__1.i; r_cnjg(&q__1, &s); st.r = q__1.r, st.i = q__1.i; } L__1 = jc > k; clarot_(&c_false, &L__1, &c_true, &il, &c__, &s, &a[ irow - iskew * jc + ioffg + jc * a_dim1], & ilda, &extra, &ctemp); /* Computing MIN */ i__3 = k, i__5 = *n - jc; i__2 = f2cmin(i__3,i__5) + 1; clarot_(&c_true, &c_true, &c_false, &i__2, &ct, &st, & a[(1 - iskew) * jc + ioffg + jc * a_dim1], & ilda, &ctemp, &dummy); /* Chase EXTRA back up the matrix */ icol = jc; i__2 = -k; for (jch = jc - k; i__2 < 0 ? jch >= 1 : jch <= 1; jch += i__2) { clartg_(&a[jch + 1 - iskew * (icol + 1) + ioffg + (icol + 1) * a_dim1], &extra, &realc, &s, &dummy); //clarnd_(&q__1, &c__5, &iseed[1]); q__1=clarnd_(&c__5, &iseed[1]); dummy.r = q__1.r, dummy.i = q__1.i; q__2.r = realc * dummy.r, q__2.i = realc * dummy.i; r_cnjg(&q__1, &q__2); c__.r = q__1.r, c__.i = q__1.i; q__3.r = -s.r, q__3.i = -s.i; q__2.r = q__3.r * dummy.r - q__3.i * dummy.i, q__2.i = q__3.r * dummy.i + q__3.i * dummy.r; r_cnjg(&q__1, &q__2); s.r = q__1.r, s.i = q__1.i; i__3 = jch - iskew * (jch + 1) + ioffg + (jch + 1) * a_dim1; ctemp.r = a[i__3].r, ctemp.i = a[i__3].i; if (csym) { ct.r = c__.r, ct.i = c__.i; st.r = s.r, st.i = s.i; } else { r_cnjg(&q__1, &ctemp); ctemp.r = q__1.r, ctemp.i = q__1.i; r_cnjg(&q__1, &c__); ct.r = q__1.r, ct.i = q__1.i; r_cnjg(&q__1, &s); st.r = q__1.r, st.i = q__1.i; } i__3 = k + 2; clarot_(&c_true, &c_true, &c_true, &i__3, &c__, & s, &a[(1 - iskew) * jch + ioffg + jch * a_dim1], &ilda, &ctemp, &extra); /* Computing MAX */ i__3 = 1, i__5 = jch - k; irow = f2cmax(i__3,i__5); /* Computing MIN */ i__3 = jch + 1, i__5 = k + 2; il = f2cmin(i__3,i__5); extra.r = 0.f, extra.i = 0.f; L__1 = jch > k; clarot_(&c_false, &L__1, &c_true, &il, &ct, &st, & a[irow - iskew * jch + ioffg + jch * a_dim1], &ilda, &extra, &ctemp); icol = jch; /* L180: */ } /* L190: */ } /* L200: */ } /* If we need lower triangle, copy from upper. Note that */ /* the order of copying is chosen to work for 'q' -> 'b' */ if (ipack != ipackg && ipack != 3) { i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { irow = ioffst - iskew * jc; if (csym) { /* Computing MIN */ i__2 = *n, i__3 = jc + uub; i__4 = f2cmin(i__2,i__3); for (jr = jc; jr <= i__4; ++jr) { i__2 = jr + irow + jc * a_dim1; i__3 = jc - iskew * jr + ioffg + jr * a_dim1; a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i; /* L210: */ } } else { /* Computing MIN */ i__2 = *n, i__3 = jc + uub; i__4 = f2cmin(i__2,i__3); for (jr = jc; jr <= i__4; ++jr) { i__2 = jr + irow + jc * a_dim1; r_cnjg(&q__1, &a[jc - iskew * jr + ioffg + jr * a_dim1]); a[i__2].r = q__1.r, a[i__2].i = q__1.i; /* L220: */ } } /* L230: */ } if (ipack == 5) { i__1 = *n; for (jc = *n - uub + 1; jc <= i__1; ++jc) { i__4 = uub + 1; for (jr = *n + 2 - jc; jr <= i__4; ++jr) { i__2 = jr + jc * a_dim1; a[i__2].r = 0.f, a[i__2].i = 0.f; /* L240: */ } /* L250: */ } } if (ipackg == 6) { ipackg = ipack; } else { ipackg = 0; } } } else { /* Bottom-Up -- Generate Lower triangle only */ if (ipack >= 5) { ipackg = 5; if (ipack == 6) { ioffg = 1; } } else { ipackg = 2; } i__1 = mnmin; for (j = 1; j <= i__1; ++j) { i__4 = (1 - iskew) * j + ioffg + j * a_dim1; i__2 = j; q__1.r = d__[i__2], q__1.i = 0.f; a[i__4].r = q__1.r, a[i__4].i = q__1.i; /* L260: */ } i__1 = uub; for (k = 1; k <= i__1; ++k) { for (jc = *n - 1; jc >= 1; --jc) { /* Computing MIN */ i__4 = *n + 1 - jc, i__2 = k + 2; il = f2cmin(i__4,i__2); extra.r = 0.f, extra.i = 0.f; i__4 = (1 - iskew) * jc + 1 + ioffg + jc * a_dim1; ctemp.r = a[i__4].r, ctemp.i = a[i__4].i; angle = slarnd_(&c__1, &iseed[1]) * 6.2831853071795864769252867663f; r__1 = cos(angle); //clarnd_(&q__2, &c__5, &iseed[1]); q__2=clarnd_(&c__5, &iseed[1]); q__1.r = r__1 * q__2.r, q__1.i = r__1 * q__2.i; c__.r = q__1.r, c__.i = q__1.i; r__1 = sin(angle); //clarnd_(&q__2, &c__5, &iseed[1]); q__2=clarnd_(&c__5, &iseed[1]); q__1.r = r__1 * q__2.r, q__1.i = r__1 * q__2.i; s.r = q__1.r, s.i = q__1.i; if (csym) { ct.r = c__.r, ct.i = c__.i; st.r = s.r, st.i = s.i; } else { r_cnjg(&q__1, &ctemp); ctemp.r = q__1.r, ctemp.i = q__1.i; r_cnjg(&q__1, &c__); ct.r = q__1.r, ct.i = q__1.i; r_cnjg(&q__1, &s); st.r = q__1.r, st.i = q__1.i; } L__1 = *n - jc > k; clarot_(&c_false, &c_true, &L__1, &il, &c__, &s, &a[( 1 - iskew) * jc + ioffg + jc * a_dim1], &ilda, &ctemp, &extra); /* Computing MAX */ i__4 = 1, i__2 = jc - k + 1; icol = f2cmax(i__4,i__2); i__4 = jc + 2 - icol; clarot_(&c_true, &c_false, &c_true, &i__4, &ct, &st, & a[jc - iskew * icol + ioffg + icol * a_dim1], &ilda, &dummy, &ctemp); /* Chase EXTRA back down the matrix */ icol = jc; i__4 = *n - 1; i__2 = k; for (jch = jc + k; i__2 < 0 ? jch >= i__4 : jch <= i__4; jch += i__2) { clartg_(&a[jch - iskew * icol + ioffg + icol * a_dim1], &extra, &realc, &s, &dummy); //clarnd_(&q__1, &c__5, &iseed[1]); q__1=clarnd_(&c__5, &iseed[1]); dummy.r = q__1.r, dummy.i = q__1.i; q__1.r = realc * dummy.r, q__1.i = realc * dummy.i; c__.r = q__1.r, c__.i = q__1.i; q__1.r = s.r * dummy.r - s.i * dummy.i, q__1.i = s.r * dummy.i + s.i * dummy.r; s.r = q__1.r, s.i = q__1.i; i__3 = (1 - iskew) * jch + 1 + ioffg + jch * a_dim1; ctemp.r = a[i__3].r, ctemp.i = a[i__3].i; if (csym) { ct.r = c__.r, ct.i = c__.i; st.r = s.r, st.i = s.i; } else { r_cnjg(&q__1, &ctemp); ctemp.r = q__1.r, ctemp.i = q__1.i; r_cnjg(&q__1, &c__); ct.r = q__1.r, ct.i = q__1.i; r_cnjg(&q__1, &s); st.r = q__1.r, st.i = q__1.i; } i__3 = k + 2; clarot_(&c_true, &c_true, &c_true, &i__3, &c__, & s, &a[jch - iskew * icol + ioffg + icol * a_dim1], &ilda, &extra, &ctemp); /* Computing MIN */ i__3 = *n + 1 - jch, i__5 = k + 2; il = f2cmin(i__3,i__5); extra.r = 0.f, extra.i = 0.f; L__1 = *n - jch > k; clarot_(&c_false, &c_true, &L__1, &il, &ct, &st, & a[(1 - iskew) * jch + ioffg + jch * a_dim1], &ilda, &ctemp, &extra); icol = jch; /* L270: */ } /* L280: */ } /* L290: */ } /* If we need upper triangle, copy from lower. Note that */ /* the order of copying is chosen to work for 'b' -> 'q' */ if (ipack != ipackg && ipack != 4) { for (jc = *n; jc >= 1; --jc) { irow = ioffst - iskew * jc; if (csym) { /* Computing MAX */ i__2 = 1, i__4 = jc - uub; i__1 = f2cmax(i__2,i__4); for (jr = jc; jr >= i__1; --jr) { i__2 = jr + irow + jc * a_dim1; i__4 = jc - iskew * jr + ioffg + jr * a_dim1; a[i__2].r = a[i__4].r, a[i__2].i = a[i__4].i; /* L300: */ } } else { /* Computing MAX */ i__2 = 1, i__4 = jc - uub; i__1 = f2cmax(i__2,i__4); for (jr = jc; jr >= i__1; --jr) { i__2 = jr + irow + jc * a_dim1; r_cnjg(&q__1, &a[jc - iskew * jr + ioffg + jr * a_dim1]); a[i__2].r = q__1.r, a[i__2].i = q__1.i; /* L310: */ } } /* L320: */ } if (ipack == 6) { i__1 = uub; for (jc = 1; jc <= i__1; ++jc) { i__2 = uub + 1 - jc; for (jr = 1; jr <= i__2; ++jr) { i__4 = jr + jc * a_dim1; a[i__4].r = 0.f, a[i__4].i = 0.f; /* L330: */ } /* L340: */ } } if (ipackg == 5) { ipackg = ipack; } else { ipackg = 0; } } } /* Ensure that the diagonal is real if Hermitian */ if (! csym) { i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { irow = ioffst + (1 - iskew) * jc; i__2 = irow + jc * a_dim1; i__4 = irow + jc * a_dim1; r__1 = a[i__4].r; q__1.r = r__1, q__1.i = 0.f; a[i__2].r = q__1.r, a[i__2].i = q__1.i; /* L350: */ } } } } else { /* 4) Generate Banded Matrix by first */ /* Rotating by random Unitary matrices, */ /* then reducing the bandwidth using Householder */ /* transformations. */ /* Note: we should get here only if LDA .ge. N */ if (isym == 1) { /* Non-symmetric -- A = U D V */ clagge_(&mr, &nc, &llb, &uub, &d__[1], &a[a_offset], lda, &iseed[ 1], &work[1], &iinfo); } else { /* Symmetric -- A = U D U' or */ /* Hermitian -- A = U D U* */ if (csym) { clagsy_(m, &llb, &d__[1], &a[a_offset], lda, &iseed[1], &work[ 1], &iinfo); } else { claghe_(m, &llb, &d__[1], &a[a_offset], lda, &iseed[1], &work[ 1], &iinfo); } } if (iinfo != 0) { *info = 3; return 0; } } /* 5) Pack the matrix */ if (ipack != ipackg) { if (ipack == 1) { /* 'U' -- Upper triangular, not packed */ i__1 = *m; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = j + 1; i__ <= i__2; ++i__) { i__4 = i__ + j * a_dim1; a[i__4].r = 0.f, a[i__4].i = 0.f; /* L360: */ } /* L370: */ } } else if (ipack == 2) { /* 'L' -- Lower triangular, not packed */ i__1 = *m; for (j = 2; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__4 = i__ + j * a_dim1; a[i__4].r = 0.f, a[i__4].i = 0.f; /* L380: */ } /* L390: */ } } else if (ipack == 3) { /* 'C' -- Upper triangle packed Columnwise. */ icol = 1; irow = 0; i__1 = *m; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { ++irow; if (irow > *lda) { irow = 1; ++icol; } i__4 = irow + icol * a_dim1; i__3 = i__ + j * a_dim1; a[i__4].r = a[i__3].r, a[i__4].i = a[i__3].i; /* L400: */ } /* L410: */ } } else if (ipack == 4) { /* 'R' -- Lower triangle packed Columnwise. */ icol = 1; irow = 0; i__1 = *m; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = j; i__ <= i__2; ++i__) { ++irow; if (irow > *lda) { irow = 1; ++icol; } i__4 = irow + icol * a_dim1; i__3 = i__ + j * a_dim1; a[i__4].r = a[i__3].r, a[i__4].i = a[i__3].i; /* L420: */ } /* L430: */ } } else if (ipack >= 5) { /* 'B' -- The lower triangle is packed as a band matrix. */ /* 'Q' -- The upper triangle is packed as a band matrix. */ /* 'Z' -- The whole matrix is packed as a band matrix. */ if (ipack == 5) { uub = 0; } if (ipack == 6) { llb = 0; } i__1 = uub; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__2 = j + llb; for (i__ = f2cmin(i__2,*m); i__ >= 1; --i__) { i__2 = i__ - j + uub + 1 + j * a_dim1; i__4 = i__ + j * a_dim1; a[i__2].r = a[i__4].r, a[i__2].i = a[i__4].i; /* L440: */ } /* L450: */ } i__1 = *n; for (j = uub + 2; j <= i__1; ++j) { /* Computing MIN */ i__4 = j + llb; i__2 = f2cmin(i__4,*m); for (i__ = j - uub; i__ <= i__2; ++i__) { i__4 = i__ - j + uub + 1 + j * a_dim1; i__3 = i__ + j * a_dim1; a[i__4].r = a[i__3].r, a[i__4].i = a[i__3].i; /* L460: */ } /* L470: */ } } /* If packed, zero out extraneous elements. */ /* Symmetric/Triangular Packed -- */ /* zero out everything after A(IROW,ICOL) */ if (ipack == 3 || ipack == 4) { i__1 = *m; for (jc = icol; jc <= i__1; ++jc) { i__2 = *lda; for (jr = irow + 1; jr <= i__2; ++jr) { i__4 = jr + jc * a_dim1; a[i__4].r = 0.f, a[i__4].i = 0.f; /* L480: */ } irow = 0; /* L490: */ } } else if (ipack >= 5) { /* Packed Band -- */ /* 1st row is now in A( UUB+2-j, j), zero above it */ /* m-th row is now in A( M+UUB-j,j), zero below it */ /* last non-zero diagonal is now in A( UUB+LLB+1,j ), */ /* zero below it, too. */ ir1 = uub + llb + 2; ir2 = uub + *m + 2; i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { i__2 = uub + 1 - jc; for (jr = 1; jr <= i__2; ++jr) { i__4 = jr + jc * a_dim1; a[i__4].r = 0.f, a[i__4].i = 0.f; /* L500: */ } /* Computing MAX */ /* Computing MIN */ i__3 = ir1, i__5 = ir2 - jc; i__2 = 1, i__4 = f2cmin(i__3,i__5); i__6 = *lda; for (jr = f2cmax(i__2,i__4); jr <= i__6; ++jr) { i__2 = jr + jc * a_dim1; a[i__2].r = 0.f, a[i__2].i = 0.f; /* L510: */ } /* L520: */ } } } return 0; /* End of CLATMS */ } /* clatms_ */