#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle_() continue; #define myceiling_(w) {ceil(w)} #define myhuge_(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i \brief \b ZLATM6 */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* Definition: */ /* =========== */ /* SUBROUTINE ZLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA, */ /* BETA, WX, WY, S, DIF ) */ /* INTEGER LDA, LDX, LDY, N, TYPE */ /* COMPLEX*16 ALPHA, BETA, WX, WY */ /* DOUBLE PRECISION DIF( * ), S( * ) */ /* COMPLEX*16 A( LDA, * ), B( LDA, * ), X( LDX, * ), */ /* $ Y( LDY, * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZLATM6 generates test matrices for the generalized eigenvalue */ /* > problem, their corresponding right and left eigenvector matrices, */ /* > and also reciprocal condition numbers for all eigenvalues and */ /* > the reciprocal condition numbers of eigenvectors corresponding to */ /* > the 1th and 5th eigenvalues. */ /* > */ /* > Test Matrices */ /* > ============= */ /* > */ /* > Two kinds of test matrix pairs */ /* > (A, B) = inverse(YH) * (Da, Db) * inverse(X) */ /* > are used in the tests: */ /* > */ /* > Type 1: */ /* > Da = 1+a 0 0 0 0 Db = 1 0 0 0 0 */ /* > 0 2+a 0 0 0 0 1 0 0 0 */ /* > 0 0 3+a 0 0 0 0 1 0 0 */ /* > 0 0 0 4+a 0 0 0 0 1 0 */ /* > 0 0 0 0 5+a , 0 0 0 0 1 */ /* > and Type 2: */ /* > Da = 1+i 0 0 0 0 Db = 1 0 0 0 0 */ /* > 0 1-i 0 0 0 0 1 0 0 0 */ /* > 0 0 1 0 0 0 0 1 0 0 */ /* > 0 0 0 (1+a)+(1+b)i 0 0 0 0 1 0 */ /* > 0 0 0 0 (1+a)-(1+b)i, 0 0 0 0 1 . */ /* > */ /* > In both cases the same inverse(YH) and inverse(X) are used to compute */ /* > (A, B), giving the exact eigenvectors to (A,B) as (YH, X): */ /* > */ /* > YH: = 1 0 -y y -y X = 1 0 -x -x x */ /* > 0 1 -y y -y 0 1 x -x -x */ /* > 0 0 1 0 0 0 0 1 0 0 */ /* > 0 0 0 1 0 0 0 0 1 0 */ /* > 0 0 0 0 1, 0 0 0 0 1 , where */ /* > */ /* > a, b, x and y will have all values independently of each other. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] TYPE */ /* > \verbatim */ /* > TYPE is INTEGER */ /* > Specifies the problem type (see further details). */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > Size of the matrices A and B. */ /* > \endverbatim */ /* > */ /* > \param[out] A */ /* > \verbatim */ /* > A is COMPLEX*16 array, dimension (LDA, N). */ /* > On exit A N-by-N is initialized according to TYPE. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of A and of B. */ /* > \endverbatim */ /* > */ /* > \param[out] B */ /* > \verbatim */ /* > B is COMPLEX*16 array, dimension (LDA, N). */ /* > On exit B N-by-N is initialized according to TYPE. */ /* > \endverbatim */ /* > */ /* > \param[out] X */ /* > \verbatim */ /* > X is COMPLEX*16 array, dimension (LDX, N). */ /* > On exit X is the N-by-N matrix of right eigenvectors. */ /* > \endverbatim */ /* > */ /* > \param[in] LDX */ /* > \verbatim */ /* > LDX is INTEGER */ /* > The leading dimension of X. */ /* > \endverbatim */ /* > */ /* > \param[out] Y */ /* > \verbatim */ /* > Y is COMPLEX*16 array, dimension (LDY, N). */ /* > On exit Y is the N-by-N matrix of left eigenvectors. */ /* > \endverbatim */ /* > */ /* > \param[in] LDY */ /* > \verbatim */ /* > LDY is INTEGER */ /* > The leading dimension of Y. */ /* > \endverbatim */ /* > */ /* > \param[in] ALPHA */ /* > \verbatim */ /* > ALPHA is COMPLEX*16 */ /* > \endverbatim */ /* > */ /* > \param[in] BETA */ /* > \verbatim */ /* > BETA is COMPLEX*16 */ /* > \verbatim */ /* > Weighting constants for matrix A. */ /* > \endverbatim */ /* > */ /* > \param[in] WX */ /* > \verbatim */ /* > WX is COMPLEX*16 */ /* > Constant for right eigenvector matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] WY */ /* > \verbatim */ /* > WY is COMPLEX*16 */ /* > Constant for left eigenvector matrix. */ /* > \endverbatim */ /* > */ /* > \param[out] S */ /* > \verbatim */ /* > S is DOUBLE PRECISION array, dimension (N) */ /* > S(i) is the reciprocal condition number for eigenvalue i. */ /* > \endverbatim */ /* > */ /* > \param[out] DIF */ /* > \verbatim */ /* > DIF is DOUBLE PRECISION array, dimension (N) */ /* > DIF(i) is the reciprocal condition number for eigenvector i. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup complex16_matgen */ /* ===================================================================== */ /* Subroutine */ int zlatm6_(integer *type__, integer *n, doublecomplex *a, integer *lda, doublecomplex *b, doublecomplex *x, integer *ldx, doublecomplex *y, integer *ldy, doublecomplex *alpha, doublecomplex * beta, doublecomplex *wx, doublecomplex *wy, doublereal *s, doublereal *dif) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2, i__3; doublereal d__1, d__2; doublecomplex z__1, z__2, z__3, z__4; /* Local variables */ integer info; doublecomplex work[26]; integer i__, j; doublecomplex z__[64] /* was [8][8] */; doublereal rwork[50]; extern /* Subroutine */ int zlakf2_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zgesvd_(char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); /* -- LAPACK computational routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Generate test problem ... */ /* (Da, Db) ... */ /* Parameter adjustments */ b_dim1 = *lda; b_offset = 1 + b_dim1 * 1; b -= b_offset; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; y_dim1 = *ldy; y_offset = 1 + y_dim1 * 1; y -= y_offset; --s; --dif; /* Function Body */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n; for (j = 1; j <= i__2; ++j) { if (i__ == j) { i__3 = i__ + i__ * a_dim1; z__2.r = (doublereal) i__, z__2.i = 0.; z__1.r = z__2.r + alpha->r, z__1.i = z__2.i + alpha->i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; i__3 = i__ + i__ * b_dim1; b[i__3].r = 1., b[i__3].i = 0.; } else { i__3 = i__ + j * a_dim1; a[i__3].r = 0., a[i__3].i = 0.; i__3 = i__ + j * b_dim1; b[i__3].r = 0., b[i__3].i = 0.; } /* L10: */ } /* L20: */ } if (*type__ == 2) { i__1 = a_dim1 + 1; a[i__1].r = 1., a[i__1].i = 1.; i__1 = (a_dim1 << 1) + 2; d_cnjg(&z__1, &a[a_dim1 + 1]); a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = a_dim1 * 3 + 3; a[i__1].r = 1., a[i__1].i = 0.; i__1 = (a_dim1 << 2) + 4; z__2.r = alpha->r + 1., z__2.i = alpha->i + 0.; d__1 = z__2.r; z__3.r = beta->r + 1., z__3.i = beta->i + 0.; d__2 = z__3.r; z__1.r = d__1, z__1.i = d__2; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = a_dim1 * 5 + 5; d_cnjg(&z__1, &a[(a_dim1 << 2) + 4]); a[i__1].r = z__1.r, a[i__1].i = z__1.i; } /* Form X and Y */ zlacpy_("F", n, n, &b[b_offset], lda, &y[y_offset], ldy); i__1 = y_dim1 + 3; d_cnjg(&z__2, wy); z__1.r = -z__2.r, z__1.i = -z__2.i; y[i__1].r = z__1.r, y[i__1].i = z__1.i; i__1 = y_dim1 + 4; d_cnjg(&z__1, wy); y[i__1].r = z__1.r, y[i__1].i = z__1.i; i__1 = y_dim1 + 5; d_cnjg(&z__2, wy); z__1.r = -z__2.r, z__1.i = -z__2.i; y[i__1].r = z__1.r, y[i__1].i = z__1.i; i__1 = (y_dim1 << 1) + 3; d_cnjg(&z__2, wy); z__1.r = -z__2.r, z__1.i = -z__2.i; y[i__1].r = z__1.r, y[i__1].i = z__1.i; i__1 = (y_dim1 << 1) + 4; d_cnjg(&z__1, wy); y[i__1].r = z__1.r, y[i__1].i = z__1.i; i__1 = (y_dim1 << 1) + 5; d_cnjg(&z__2, wy); z__1.r = -z__2.r, z__1.i = -z__2.i; y[i__1].r = z__1.r, y[i__1].i = z__1.i; zlacpy_("F", n, n, &b[b_offset], lda, &x[x_offset], ldx); i__1 = x_dim1 * 3 + 1; z__1.r = -wx->r, z__1.i = -wx->i; x[i__1].r = z__1.r, x[i__1].i = z__1.i; i__1 = (x_dim1 << 2) + 1; z__1.r = -wx->r, z__1.i = -wx->i; x[i__1].r = z__1.r, x[i__1].i = z__1.i; i__1 = x_dim1 * 5 + 1; x[i__1].r = wx->r, x[i__1].i = wx->i; i__1 = x_dim1 * 3 + 2; x[i__1].r = wx->r, x[i__1].i = wx->i; i__1 = (x_dim1 << 2) + 2; z__1.r = -wx->r, z__1.i = -wx->i; x[i__1].r = z__1.r, x[i__1].i = z__1.i; i__1 = x_dim1 * 5 + 2; z__1.r = -wx->r, z__1.i = -wx->i; x[i__1].r = z__1.r, x[i__1].i = z__1.i; /* Form (A, B) */ i__1 = b_dim1 * 3 + 1; z__1.r = wx->r + wy->r, z__1.i = wx->i + wy->i; b[i__1].r = z__1.r, b[i__1].i = z__1.i; i__1 = b_dim1 * 3 + 2; z__2.r = -wx->r, z__2.i = -wx->i; z__1.r = z__2.r + wy->r, z__1.i = z__2.i + wy->i; b[i__1].r = z__1.r, b[i__1].i = z__1.i; i__1 = (b_dim1 << 2) + 1; z__1.r = wx->r - wy->r, z__1.i = wx->i - wy->i; b[i__1].r = z__1.r, b[i__1].i = z__1.i; i__1 = (b_dim1 << 2) + 2; z__1.r = wx->r - wy->r, z__1.i = wx->i - wy->i; b[i__1].r = z__1.r, b[i__1].i = z__1.i; i__1 = b_dim1 * 5 + 1; z__2.r = -wx->r, z__2.i = -wx->i; z__1.r = z__2.r + wy->r, z__1.i = z__2.i + wy->i; b[i__1].r = z__1.r, b[i__1].i = z__1.i; i__1 = b_dim1 * 5 + 2; z__1.r = wx->r + wy->r, z__1.i = wx->i + wy->i; b[i__1].r = z__1.r, b[i__1].i = z__1.i; i__1 = a_dim1 * 3 + 1; i__2 = a_dim1 + 1; z__2.r = wx->r * a[i__2].r - wx->i * a[i__2].i, z__2.i = wx->r * a[i__2] .i + wx->i * a[i__2].r; i__3 = a_dim1 * 3 + 3; z__3.r = wy->r * a[i__3].r - wy->i * a[i__3].i, z__3.i = wy->r * a[i__3] .i + wy->i * a[i__3].r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = a_dim1 * 3 + 2; z__3.r = -wx->r, z__3.i = -wx->i; i__2 = (a_dim1 << 1) + 2; z__2.r = z__3.r * a[i__2].r - z__3.i * a[i__2].i, z__2.i = z__3.r * a[ i__2].i + z__3.i * a[i__2].r; i__3 = a_dim1 * 3 + 3; z__4.r = wy->r * a[i__3].r - wy->i * a[i__3].i, z__4.i = wy->r * a[i__3] .i + wy->i * a[i__3].r; z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = (a_dim1 << 2) + 1; i__2 = a_dim1 + 1; z__2.r = wx->r * a[i__2].r - wx->i * a[i__2].i, z__2.i = wx->r * a[i__2] .i + wx->i * a[i__2].r; i__3 = (a_dim1 << 2) + 4; z__3.r = wy->r * a[i__3].r - wy->i * a[i__3].i, z__3.i = wy->r * a[i__3] .i + wy->i * a[i__3].r; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = (a_dim1 << 2) + 2; i__2 = (a_dim1 << 1) + 2; z__2.r = wx->r * a[i__2].r - wx->i * a[i__2].i, z__2.i = wx->r * a[i__2] .i + wx->i * a[i__2].r; i__3 = (a_dim1 << 2) + 4; z__3.r = wy->r * a[i__3].r - wy->i * a[i__3].i, z__3.i = wy->r * a[i__3] .i + wy->i * a[i__3].r; z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = a_dim1 * 5 + 1; z__3.r = -wx->r, z__3.i = -wx->i; i__2 = a_dim1 + 1; z__2.r = z__3.r * a[i__2].r - z__3.i * a[i__2].i, z__2.i = z__3.r * a[ i__2].i + z__3.i * a[i__2].r; i__3 = a_dim1 * 5 + 5; z__4.r = wy->r * a[i__3].r - wy->i * a[i__3].i, z__4.i = wy->r * a[i__3] .i + wy->i * a[i__3].r; z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = a_dim1 * 5 + 2; i__2 = (a_dim1 << 1) + 2; z__2.r = wx->r * a[i__2].r - wx->i * a[i__2].i, z__2.i = wx->r * a[i__2] .i + wx->i * a[i__2].r; i__3 = a_dim1 * 5 + 5; z__3.r = wy->r * a[i__3].r - wy->i * a[i__3].i, z__3.i = wy->r * a[i__3] .i + wy->i * a[i__3].r; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; /* Compute condition numbers */ s[1] = 1. / sqrt((z_abs(wy) * 3. * z_abs(wy) + 1.) / (z_abs(&a[a_dim1 + 1] ) * z_abs(&a[a_dim1 + 1]) + 1.)); s[2] = 1. / sqrt((z_abs(wy) * 3. * z_abs(wy) + 1.) / (z_abs(&a[(a_dim1 << 1) + 2]) * z_abs(&a[(a_dim1 << 1) + 2]) + 1.)); s[3] = 1. / sqrt((z_abs(wx) * 2. * z_abs(wx) + 1.) / (z_abs(&a[a_dim1 * 3 + 3]) * z_abs(&a[a_dim1 * 3 + 3]) + 1.)); s[4] = 1. / sqrt((z_abs(wx) * 2. * z_abs(wx) + 1.) / (z_abs(&a[(a_dim1 << 2) + 4]) * z_abs(&a[(a_dim1 << 2) + 4]) + 1.)); s[5] = 1. / sqrt((z_abs(wx) * 2. * z_abs(wx) + 1.) / (z_abs(&a[a_dim1 * 5 + 5]) * z_abs(&a[a_dim1 * 5 + 5]) + 1.)); zlakf2_(&c__1, &c__4, &a[a_offset], lda, &a[(a_dim1 << 1) + 2], &b[ b_offset], &b[(b_dim1 << 1) + 2], z__, &c__8); zgesvd_("N", "N", &c__8, &c__8, z__, &c__8, rwork, work, &c__1, &work[1], &c__1, &work[2], &c__24, &rwork[8], &info); dif[1] = rwork[7]; zlakf2_(&c__4, &c__1, &a[a_offset], lda, &a[a_dim1 * 5 + 5], &b[b_offset], &b[b_dim1 * 5 + 5], z__, &c__8); zgesvd_("N", "N", &c__8, &c__8, z__, &c__8, rwork, work, &c__1, &work[1], &c__1, &work[2], &c__24, &rwork[8], &info); dif[5] = rwork[7]; return 0; /* End of ZLATM6 */ } /* zlatm6_ */