/* * Copyright 1993-2021 NVIDIA Corporation. All rights reserved. * * NOTICE TO LICENSEE: * * This source code and/or documentation ("Licensed Deliverables") are * subject to NVIDIA intellectual property rights under U.S. and * international Copyright laws. * * These Licensed Deliverables contained herein is PROPRIETARY and * CONFIDENTIAL to NVIDIA and is being provided under the terms and * conditions of a form of NVIDIA software license agreement by and * between NVIDIA and Licensee ("License Agreement") or electronically * accepted by Licensee. Notwithstanding any terms or conditions to * the contrary in the License Agreement, reproduction or disclosure * of the Licensed Deliverables to any third party without the express * written consent of NVIDIA is prohibited. * * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE * LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE * SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS * PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. * NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED * DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, * NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE * LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY * SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, * WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE * OF THESE LICENSED DELIVERABLES. * * U.S. Government End Users. These Licensed Deliverables are a * "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT * 1995), consisting of "commercial computer software" and "commercial * computer software documentation" as such terms are used in 48 * C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government * only as a commercial end item. Consistent with 48 C.F.R.12.212 and * 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all * U.S. Government End Users acquire the Licensed Deliverables with * only those rights set forth herein. * * Any use of the Licensed Deliverables in individual and commercial * software must include, in the user documentation and internal * comments to the code, the above Disclaimer and U.S. Government End * Users Notice. */ #if !defined(__CUDA_BF16_HPP__) #define __CUDA_BF16_HPP__ #if !defined(__CUDA_BF16_H__) #error "Do not include this file directly. Instead, include cuda_bf16.h." #endif #if !defined(_MSC_VER) && __cplusplus >= 201103L # define __CPP_VERSION_AT_LEAST_11_BF16 #elif _MSC_FULL_VER >= 190024210 && _MSVC_LANG >= 201103L # define __CPP_VERSION_AT_LEAST_11_BF16 #endif /* C++11 header for std::move. * In RTC mode, std::move is provided implicitly; don't include the header */ #if defined(__CPP_VERSION_AT_LEAST_11_BF16) && !defined(__CUDACC_RTC__) #include #endif /* defined(__CPP_VERSION_AT_LEAST_11_BF16) && !defined(__CUDACC_RTC__) */ /* C++ header for std::memcpy (used for type punning in host-side implementations). * When compiling as a CUDA source file memcpy is provided implicitly. * !defined(__CUDACC__) implies !defined(__CUDACC_RTC__). */ #if defined(__cplusplus) && !defined(__CUDACC__) #include #endif /* defined(__cplusplus) && !defined(__CUDACC__) */ /* Set up function decorations */ #if defined(__CUDACC__) #define __CUDA_BF16_DECL__ static __device__ __inline__ #define __CUDA_HOSTDEVICE_BF16_DECL__ static __host__ __device__ __inline__ #define __VECTOR_FUNCTIONS_DECL__ static __inline__ __host__ __device__ #define __CUDA_HOSTDEVICE__ __host__ __device__ #else /* !defined(__CUDACC__) */ #if defined(__GNUC__) #define __CUDA_HOSTDEVICE_BF16_DECL__ static __attribute__ ((unused)) #else #define __CUDA_HOSTDEVICE_BF16_DECL__ static #endif /* defined(__GNUC__) */ #define __CUDA_HOSTDEVICE__ #endif /* defined(__CUDACC_) */ /* Set up structure-alignment attribute */ #if defined(__CUDACC__) #define __CUDA_ALIGN__(align) __align__(align) #else /* Define alignment macro based on compiler type (cannot assume C11 "_Alignas" is available) */ #if defined(__CPP_VERSION_AT_LEAST_11_BF16) #define __CUDA_ALIGN__(n) alignas(n) /* C++11 kindly gives us a keyword for this */ #else /* defined(__CPP_VERSION_AT_LEAST_11_BF16)*/ #if defined(__GNUC__) #define __CUDA_ALIGN__(n) __attribute__ ((aligned(n))) #elif defined(_MSC_VER) #define __CUDA_ALIGN__(n) __declspec(align(n)) #else #define __CUDA_ALIGN__(n) #endif /* defined(__GNUC__) */ #endif /* defined(__CPP_VERSION_AT_LEAST_11_BF16) */ #endif /* defined(__CUDACC__) */ /* Macros to allow nv_bfloat16 & nv_bfloat162 to be used by inline assembly */ #define __BFLOAT16_TO_US(var) *(reinterpret_cast(&(var))) #define __BFLOAT16_TO_CUS(var) *(reinterpret_cast(&(var))) #define __BFLOAT162_TO_UI(var) *(reinterpret_cast(&(var))) #define __BFLOAT162_TO_CUI(var) *(reinterpret_cast(&(var))) /** * Types which allow static initialization of "nv_bfloat16" and "nv_bfloat162" until * these become an actual builtin. Note this initialization is as a * bitfield representation of "nv_bfloat16", and not a conversion from short->nv_bfloat16. * Such a representation will be deprecated in a future version of CUDA. * (Note these are visible to non-nvcc compilers, including C-only compilation) */ typedef struct __CUDA_ALIGN__(2) { unsigned short x; } __nv_bfloat16_raw; typedef struct __CUDA_ALIGN__(4) { unsigned short x; unsigned short y; } __nv_bfloat162_raw; /* All other definitions in this file are only visible to C++ compilers */ #if defined(__cplusplus) /* Hide GCC member initialization list warnings because of host/device in-function init requirement */ #if defined(__GNUC__) #if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wstrict-aliasing" #pragma GCC diagnostic ignored "-Weffc++" #endif /* __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6) */ #endif /* defined(__GNUC__) */ /* class' : multiple assignment operators specified The class has multiple assignment operators of a single type. This warning is informational */ #if defined(_MSC_VER) && _MSC_VER >= 1500 #pragma warning( push ) #pragma warning( disable:4522 ) #endif /* defined(__GNUC__) */ struct __CUDA_ALIGN__(2) __nv_bfloat16 { protected: unsigned short __x; public: #if defined(__CPP_VERSION_AT_LEAST_11_BF16) __nv_bfloat16() = default; #else __CUDA_HOSTDEVICE__ __nv_bfloat16() { } #endif /* defined(__CPP_VERSION_AT_LEAST_11_BF16) */ /* Convert to/from __nv_bfloat16_raw */ __CUDA_HOSTDEVICE__ __nv_bfloat16(const __nv_bfloat16_raw &hr) : __x(hr.x) { } __CUDA_HOSTDEVICE__ __nv_bfloat16 &operator=(const __nv_bfloat16_raw &hr) { __x = hr.x; return *this; } __CUDA_HOSTDEVICE__ volatile __nv_bfloat16 &operator=(const __nv_bfloat16_raw &hr) volatile { __x = hr.x; return *this; } __CUDA_HOSTDEVICE__ volatile __nv_bfloat16 &operator=(const volatile __nv_bfloat16_raw &hr) volatile { __x = hr.x; return *this; } __CUDA_HOSTDEVICE__ operator __nv_bfloat16_raw() const { __nv_bfloat16_raw ret; ret.x = __x; return ret; } __CUDA_HOSTDEVICE__ operator __nv_bfloat16_raw() const volatile { __nv_bfloat16_raw ret; ret.x = __x; return ret; } #if !defined(__CUDA_NO_BFLOAT16_CONVERSIONS__) /* Construct from float/double */ __CUDA_HOSTDEVICE__ __nv_bfloat16(const float f) { __x = __float2bfloat16(f).__x; } __CUDA_HOSTDEVICE__ __nv_bfloat16(const double f) { __x = __double2bfloat16(f).__x; } __CUDA_HOSTDEVICE__ operator float() const { return __bfloat162float(*this); } __CUDA_HOSTDEVICE__ __nv_bfloat16 &operator=(const float f) { __x = __float2bfloat16(f).__x; return *this; } /* We omit "cast to double" operator, so as to not be ambiguous about up-cast */ __CUDA_HOSTDEVICE__ __nv_bfloat16 &operator=(const double f) { __x = __double2bfloat16(f).__x; return *this; } /* Member functions only available to nvcc compilation so far */ #if defined(__CUDACC__) && (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__)) /* Allow automatic construction from types supported natively in hardware */ /* Note we do avoid constructor init-list because of special host/device compilation rules */ __CUDA_HOSTDEVICE__ __nv_bfloat16(short val) { __x = __short2bfloat16_rn(val).__x; } __CUDA_HOSTDEVICE__ __nv_bfloat16(unsigned short val) { __x = __ushort2bfloat16_rn(val).__x; } __CUDA_HOSTDEVICE__ __nv_bfloat16(int val) { __x = __int2bfloat16_rn(val).__x; } __CUDA_HOSTDEVICE__ __nv_bfloat16(unsigned int val) { __x = __uint2bfloat16_rn(val).__x; } __CUDA_HOSTDEVICE__ __nv_bfloat16(long long val) { __x = __ll2bfloat16_rn(val).__x; } __CUDA_HOSTDEVICE__ __nv_bfloat16(unsigned long long val) { __x = __ull2bfloat16_rn(val).__x; } /* Allow automatic casts to supported builtin types, matching all that are permitted with float */ __CUDA_HOSTDEVICE__ operator short() const { return __bfloat162short_rz(*this); } __CUDA_HOSTDEVICE__ __nv_bfloat16 &operator=(short val) { __x = __short2bfloat16_rn(val).__x; return *this; } __CUDA_HOSTDEVICE__ operator unsigned short() const { return __bfloat162ushort_rz(*this); } __CUDA_HOSTDEVICE__ __nv_bfloat16 &operator=(unsigned short val) { __x = __ushort2bfloat16_rn(val).__x; return *this; } __CUDA_HOSTDEVICE__ operator int() const { return __bfloat162int_rz(*this); } __CUDA_HOSTDEVICE__ __nv_bfloat16 &operator=(int val) { __x = __int2bfloat16_rn(val).__x; return *this; } __CUDA_HOSTDEVICE__ operator unsigned int() const { return __bfloat162uint_rz(*this); } __CUDA_HOSTDEVICE__ __nv_bfloat16 &operator=(unsigned int val) { __x = __uint2bfloat16_rn(val).__x; return *this; } __CUDA_HOSTDEVICE__ operator long long() const { return __bfloat162ll_rz(*this); } __CUDA_HOSTDEVICE__ __nv_bfloat16 &operator=(long long val) { __x = __ll2bfloat16_rn(val).__x; return *this; } __CUDA_HOSTDEVICE__ operator unsigned long long() const { return __bfloat162ull_rz(*this); } __CUDA_HOSTDEVICE__ __nv_bfloat16 &operator=(unsigned long long val) { __x = __ull2bfloat16_rn(val).__x; return *this; } /* Boolean conversion - note both 0 and -0 must return false */ __CUDA_HOSTDEVICE__ operator bool() const { return (__x & 0x7FFF) != 0; } #endif /* defined(__CUDACC__) && (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__)) */ #endif /* !defined(__CUDA_NO_BFLOAT16_CONVERSIONS__) */ }; /* Global-space operator functions are only available to nvcc compilation */ #if defined(__CUDACC__) #if __CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__) #if !defined(__CUDA_NO_BFLOAT16_OPERATORS__) /* Some basic arithmetic operations expected of a builtin */ __device__ __forceinline__ __nv_bfloat16 operator+(const __nv_bfloat16 &lh, const __nv_bfloat16 &rh) { return __hadd(lh, rh); } __device__ __forceinline__ __nv_bfloat16 operator-(const __nv_bfloat16 &lh, const __nv_bfloat16 &rh) { return __hsub(lh, rh); } __device__ __forceinline__ __nv_bfloat16 operator*(const __nv_bfloat16 &lh, const __nv_bfloat16 &rh) { return __hmul(lh, rh); } __device__ __forceinline__ __nv_bfloat16 operator/(const __nv_bfloat16 &lh, const __nv_bfloat16 &rh) { return __hdiv(lh, rh); } __device__ __forceinline__ __nv_bfloat16 &operator+=(__nv_bfloat16 &lh, const __nv_bfloat16 &rh) { lh = __hadd(lh, rh); return lh; } __device__ __forceinline__ __nv_bfloat16 &operator-=(__nv_bfloat16 &lh, const __nv_bfloat16 &rh) { lh = __hsub(lh, rh); return lh; } __device__ __forceinline__ __nv_bfloat16 &operator*=(__nv_bfloat16 &lh, const __nv_bfloat16 &rh) { lh = __hmul(lh, rh); return lh; } __device__ __forceinline__ __nv_bfloat16 &operator/=(__nv_bfloat16 &lh, const __nv_bfloat16 &rh) { lh = __hdiv(lh, rh); return lh; } /* Note for increment and decrement we use the raw value 0x3F80 equating to nv_bfloat16(1.0f), to avoid the extra conversion */ __device__ __forceinline__ __nv_bfloat16 &operator++(__nv_bfloat16 &h) { __nv_bfloat16_raw one; one.x = 0x3F80; h += one; return h; } __device__ __forceinline__ __nv_bfloat16 &operator--(__nv_bfloat16 &h) { __nv_bfloat16_raw one; one.x = 0x3F80; h -= one; return h; } __device__ __forceinline__ __nv_bfloat16 operator++(__nv_bfloat16 &h, const int ignored) { // ignored on purpose. Parameter only needed to distinguish the function declaration from other types of operators. static_cast(ignored); const __nv_bfloat16 ret = h; __nv_bfloat16_raw one; one.x = 0x3F80; h += one; return ret; } __device__ __forceinline__ __nv_bfloat16 operator--(__nv_bfloat16 &h, const int ignored) { // ignored on purpose. Parameter only needed to distinguish the function declaration from other types of operators. static_cast(ignored); const __nv_bfloat16 ret = h; __nv_bfloat16_raw one; one.x = 0x3F80; h -= one; return ret; } /* Unary plus and inverse operators */ __device__ __forceinline__ __nv_bfloat16 operator+(const __nv_bfloat16 &h) { return h; } __device__ __forceinline__ __nv_bfloat16 operator-(const __nv_bfloat16 &h) { return __hneg(h); } /* Some basic comparison operations to make it look like a builtin */ __device__ __forceinline__ bool operator==(const __nv_bfloat16 &lh, const __nv_bfloat16 &rh) { return __heq(lh, rh); } __device__ __forceinline__ bool operator!=(const __nv_bfloat16 &lh, const __nv_bfloat16 &rh) { return __hneu(lh, rh); } __device__ __forceinline__ bool operator> (const __nv_bfloat16 &lh, const __nv_bfloat16 &rh) { return __hgt(lh, rh); } __device__ __forceinline__ bool operator< (const __nv_bfloat16 &lh, const __nv_bfloat16 &rh) { return __hlt(lh, rh); } __device__ __forceinline__ bool operator>=(const __nv_bfloat16 &lh, const __nv_bfloat16 &rh) { return __hge(lh, rh); } __device__ __forceinline__ bool operator<=(const __nv_bfloat16 &lh, const __nv_bfloat16 &rh) { return __hle(lh, rh); } #endif /* !defined(__CUDA_NO_BFLOAT16_OPERATORS__) */ #endif /* __CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__) */ #endif /* defined(__CUDACC__) */ /* __nv_bfloat162 is visible to non-nvcc host compilers */ struct __CUDA_ALIGN__(4) __nv_bfloat162 { __nv_bfloat16 x; __nv_bfloat16 y; // All construct/copy/assign/move public: #if defined(__CPP_VERSION_AT_LEAST_11_BF16) __nv_bfloat162() = default; __CUDA_HOSTDEVICE__ __nv_bfloat162(__nv_bfloat162 &&src) { __BFLOAT162_TO_UI(*this) = std::move(__BFLOAT162_TO_CUI(src)); } __CUDA_HOSTDEVICE__ __nv_bfloat162 &operator=(__nv_bfloat162 &&src) { __BFLOAT162_TO_UI(*this) = std::move(__BFLOAT162_TO_CUI(src)); return *this; } #else __CUDA_HOSTDEVICE__ __nv_bfloat162() { } #endif /* defined(__CPP_VERSION_AT_LEAST_11_BF16) */ __CUDA_HOSTDEVICE__ __nv_bfloat162(const __nv_bfloat16 &a, const __nv_bfloat16 &b) : x(a), y(b) { } __CUDA_HOSTDEVICE__ __nv_bfloat162(const __nv_bfloat162 &src) { __BFLOAT162_TO_UI(*this) = __BFLOAT162_TO_CUI(src); } __CUDA_HOSTDEVICE__ __nv_bfloat162 &operator=(const __nv_bfloat162 &src) { __BFLOAT162_TO_UI(*this) = __BFLOAT162_TO_CUI(src); return *this; } /* Convert to/from __nv_bfloat162_raw */ __CUDA_HOSTDEVICE__ __nv_bfloat162(const __nv_bfloat162_raw &h2r ) { __BFLOAT162_TO_UI(*this) = __BFLOAT162_TO_CUI(h2r); } __CUDA_HOSTDEVICE__ __nv_bfloat162 &operator=(const __nv_bfloat162_raw &h2r) { __BFLOAT162_TO_UI(*this) = __BFLOAT162_TO_CUI(h2r); return *this; } __CUDA_HOSTDEVICE__ operator __nv_bfloat162_raw() const { __nv_bfloat162_raw ret; ret.x = 0U; ret.y = 0U; __BFLOAT162_TO_UI(ret) = __BFLOAT162_TO_CUI(*this); return ret; } }; /* Global-space operator functions are only available to nvcc compilation */ #if defined(__CUDACC__) #if (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__)) && !defined(__CUDA_NO_BFLOAT162_OPERATORS__) __device__ __forceinline__ __nv_bfloat162 operator+(const __nv_bfloat162 &lh, const __nv_bfloat162 &rh) { return __hadd2(lh, rh); } __device__ __forceinline__ __nv_bfloat162 operator-(const __nv_bfloat162 &lh, const __nv_bfloat162 &rh) { return __hsub2(lh, rh); } __device__ __forceinline__ __nv_bfloat162 operator*(const __nv_bfloat162 &lh, const __nv_bfloat162 &rh) { return __hmul2(lh, rh); } __device__ __forceinline__ __nv_bfloat162 operator/(const __nv_bfloat162 &lh, const __nv_bfloat162 &rh) { return __h2div(lh, rh); } __device__ __forceinline__ __nv_bfloat162& operator+=(__nv_bfloat162 &lh, const __nv_bfloat162 &rh) { lh = __hadd2(lh, rh); return lh; } __device__ __forceinline__ __nv_bfloat162& operator-=(__nv_bfloat162 &lh, const __nv_bfloat162 &rh) { lh = __hsub2(lh, rh); return lh; } __device__ __forceinline__ __nv_bfloat162& operator*=(__nv_bfloat162 &lh, const __nv_bfloat162 &rh) { lh = __hmul2(lh, rh); return lh; } __device__ __forceinline__ __nv_bfloat162& operator/=(__nv_bfloat162 &lh, const __nv_bfloat162 &rh) { lh = __h2div(lh, rh); return lh; } __device__ __forceinline__ __nv_bfloat162 &operator++(__nv_bfloat162 &h) { __nv_bfloat162_raw one; one.x = 0x3F80; one.y = 0x3F80; h = __hadd2(h, one); return h; } __device__ __forceinline__ __nv_bfloat162 &operator--(__nv_bfloat162 &h) { __nv_bfloat162_raw one; one.x = 0x3F80; one.y = 0x3F80; h = __hsub2(h, one); return h; } __device__ __forceinline__ __nv_bfloat162 operator++(__nv_bfloat162 &h, const int ignored) { // ignored on purpose. Parameter only needed to distinguish the function declaration from other types of operators. static_cast(ignored); const __nv_bfloat162 ret = h; __nv_bfloat162_raw one; one.x = 0x3F80; one.y = 0x3F80; h = __hadd2(h, one); return ret; } __device__ __forceinline__ __nv_bfloat162 operator--(__nv_bfloat162 &h, const int ignored) { // ignored on purpose. Parameter only needed to distinguish the function declaration from other types of operators. static_cast(ignored); const __nv_bfloat162 ret = h; __nv_bfloat162_raw one; one.x = 0x3F80; one.y = 0x3F80; h = __hsub2(h, one); return ret; } __device__ __forceinline__ __nv_bfloat162 operator+(const __nv_bfloat162 &h) { return h; } __device__ __forceinline__ __nv_bfloat162 operator-(const __nv_bfloat162 &h) { return __hneg2(h); } __device__ __forceinline__ bool operator==(const __nv_bfloat162 &lh, const __nv_bfloat162 &rh) { return __hbeq2(lh, rh); } __device__ __forceinline__ bool operator!=(const __nv_bfloat162 &lh, const __nv_bfloat162 &rh) { return __hbneu2(lh, rh); } __device__ __forceinline__ bool operator>(const __nv_bfloat162 &lh, const __nv_bfloat162 &rh) { return __hbgt2(lh, rh); } __device__ __forceinline__ bool operator<(const __nv_bfloat162 &lh, const __nv_bfloat162 &rh) { return __hblt2(lh, rh); } __device__ __forceinline__ bool operator>=(const __nv_bfloat162 &lh, const __nv_bfloat162 &rh) { return __hbge2(lh, rh); } __device__ __forceinline__ bool operator<=(const __nv_bfloat162 &lh, const __nv_bfloat162 &rh) { return __hble2(lh, rh); } #endif /* __CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__) */ #endif /* defined(__CUDACC__) */ /* Restore warning for multiple assignment operators */ #if defined(_MSC_VER) && _MSC_VER >= 1500 #pragma warning( pop ) #endif /* defined(_MSC_VER) && _MSC_VER >= 1500 */ /* Restore -Weffc++ warnings from here on */ #if defined(__GNUC__) #if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6) #pragma GCC diagnostic pop #endif /* __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6) */ #endif /* defined(__GNUC__) */ #undef __CUDA_HOSTDEVICE__ #undef __CUDA_ALIGN__ __CUDA_HOSTDEVICE_BF16_DECL__ unsigned short __internal_float2bfloat16(const float f, unsigned int &sign, unsigned int &remainder) { unsigned int x; #if defined(__CUDA_ARCH__) x = __float_as_uint(f); #elif defined(__CUDACC__) (void)memcpy(&x, &f, sizeof(f)); #else (void)std::memcpy(&x, &f, sizeof(f)); #endif if ((x & 0x7fffffffU) > 0x7f800000U) { sign = 0U; remainder = 0U; return static_cast(0x7fffU); } sign = x >> 31U; remainder = x << 16U; return static_cast(x >> 16U); } __CUDA_HOSTDEVICE_BF16_DECL__ __nv_bfloat16 __double2bfloat16(const double x) { float f = static_cast(x); const double d = static_cast(f); unsigned int u; #if defined(__CUDA_ARCH__) u = __float_as_uint(f); #elif defined(__CUDACC__) (void)memcpy(&u, &f, sizeof(f)); #else (void)std::memcpy(&u, &f, sizeof(f)); #endif bool x_is_not_nan = ((u << (unsigned)1U) <= (unsigned)0xFF000000U); if ((x > 0.0) && (d > x)) { u--; } if ((x < 0.0) && (d < x)) { u--; } if ((d != x) && x_is_not_nan) { u |= 1U; } #if defined(__CUDA_ARCH__) f = __int_as_float(static_cast(u)); #elif defined(__CUDACC__) (void)memcpy(&f, &u, sizeof(f)); #else (void)std::memcpy(&f, &u, sizeof(f)); #endif return __float2bfloat16(f); } __CUDA_HOSTDEVICE_BF16_DECL__ __nv_bfloat16 __float2bfloat16(const float a) { __nv_bfloat16 val; #if __CUDA_ARCH__ >= 800 asm("{ cvt.rn.bf16.f32 %0, %1;}\n" : "=h"(__BFLOAT16_TO_US(val)) : "f"(a)); #else __nv_bfloat16_raw r; unsigned int sign = 0U; unsigned int remainder = 0U; r.x = __internal_float2bfloat16(a, sign, remainder); if ((remainder > 0x80000000U) || ((remainder == 0x80000000U) && ((r.x & 0x1U) != 0U))) { r.x++; } val = r; #endif return val; } __CUDA_HOSTDEVICE_BF16_DECL__ __nv_bfloat16 __float2bfloat16_rn(const float a) { __nv_bfloat16 val; #if __CUDA_ARCH__ >= 800 asm("{ cvt.rn.bf16.f32 %0, %1;}\n" : "=h"(__BFLOAT16_TO_US(val)) : "f"(a)); #else __nv_bfloat16_raw r; unsigned int sign = 0U; unsigned int remainder = 0U; r.x = __internal_float2bfloat16(a, sign, remainder); if ((remainder > 0x80000000U) || ((remainder == 0x80000000U) && ((r.x & 0x1U) != 0U))) { r.x++; } val = r; #endif return val; } __CUDA_HOSTDEVICE_BF16_DECL__ __nv_bfloat16 __float2bfloat16_rz(const float a) { __nv_bfloat16 val; #if __CUDA_ARCH__ >= 800 asm("{ cvt.rz.bf16.f32 %0, %1;}\n" : "=h"(__BFLOAT16_TO_US(val)) : "f"(a)); #else __nv_bfloat16_raw r; unsigned int sign = 0U; unsigned int remainder = 0U; r.x = __internal_float2bfloat16(a, sign, remainder); val = r; #endif return val; } __CUDA_HOSTDEVICE_BF16_DECL__ __nv_bfloat16 __float2bfloat16_rd(const float a) { __nv_bfloat16 val; __nv_bfloat16_raw r; unsigned int sign = 0U; unsigned int remainder = 0U; r.x = __internal_float2bfloat16(a, sign, remainder); if ((remainder != 0U) && (sign != 0U)) { r.x++; } val = r; return val; } __CUDA_HOSTDEVICE_BF16_DECL__ __nv_bfloat16 __float2bfloat16_ru(const float a) { __nv_bfloat16 val; __nv_bfloat16_raw r; unsigned int sign = 0U; unsigned int remainder = 0U; r.x = __internal_float2bfloat16(a, sign, remainder); if ((remainder != 0U) && (sign == 0U)) { r.x++; } val = r; return val; } __CUDA_HOSTDEVICE_BF16_DECL__ __nv_bfloat162 __float2bfloat162_rn(const float a) { __nv_bfloat162 val; #if __CUDA_ARCH__ >= 800 asm("{.reg .b16 low;\n" " cvt.rn.bf16.f32 low, %1;\n" " mov.b32 %0, {low,low};}\n" : "=r"(__BFLOAT162_TO_UI(val)) : "f"(a)); #else val = __nv_bfloat162(__float2bfloat16_rn(a), __float2bfloat16_rn(a)); #endif return val; } __CUDA_HOSTDEVICE_BF16_DECL__ __nv_bfloat162 __floats2bfloat162_rn(const float a, const float b) { __nv_bfloat162 val; #if __CUDA_ARCH__ >= 800 asm("{.reg .b16 low,high;\n" " cvt.rn.bf16.f32 low, %1;\n" " cvt.rn.bf16.f32 high, %2;\n" " mov.b32 %0, {low,high};}\n" : "=r"(__BFLOAT162_TO_UI(val)) : "f"(a), "f"(b)); #else val = __nv_bfloat162(__float2bfloat16_rn(a), __float2bfloat16_rn(b)); #endif return val; } __CUDA_HOSTDEVICE_BF16_DECL__ float __internal_bfloat162float(const unsigned short h) { float f; #if defined(__CUDA_ARCH__) asm("{ mov.b32 %0, {0,%1};}\n" : "=f"(f) : "h"(h)); #else unsigned int u = static_cast(h) << 16; #if defined(__CUDACC__) (void)memcpy(&f, &u, sizeof(f)); #else (void)std::memcpy(&f, &u, sizeof(f)); #endif #endif return f; } __CUDA_HOSTDEVICE_BF16_DECL__ float __bfloat162float(const __nv_bfloat16 a) { return __internal_bfloat162float(static_cast<__nv_bfloat16_raw>(a).x); } __CUDA_HOSTDEVICE_BF16_DECL__ float __low2float(const __nv_bfloat162 a) { return __internal_bfloat162float(static_cast<__nv_bfloat162_raw>(a).x); } __CUDA_HOSTDEVICE_BF16_DECL__ float __high2float(const __nv_bfloat162 a) { return __internal_bfloat162float(static_cast<__nv_bfloat162_raw>(a).y); } #if defined(__CUDACC__) && (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__)) /* CUDA vector-types compatible vector creation function (note returns __nv_bfloat162, not nv_bfloat162) */ __VECTOR_FUNCTIONS_DECL__ __nv_bfloat162 make_bfloat162(const __nv_bfloat16 x, const __nv_bfloat16 y) { __nv_bfloat162 t; t.x = x; t.y = y; return t; } #undef __VECTOR_FUNCTIONS_DECL__ /* Definitions of intrinsics */ __CUDA_HOSTDEVICE_BF16_DECL__ __nv_bfloat162 __float22bfloat162_rn(const float2 a) { __nv_bfloat162 val = __floats2bfloat162_rn(a.x, a.y); return val; } __CUDA_HOSTDEVICE_BF16_DECL__ float2 __bfloat1622float2(const __nv_bfloat162 a) { float hi_float; float lo_float; lo_float = __internal_bfloat162float(((__nv_bfloat162_raw)a).x); hi_float = __internal_bfloat162float(((__nv_bfloat162_raw)a).y); return make_float2(lo_float, hi_float); } __CUDA_BF16_DECL__ int __bfloat162int_rn(const __nv_bfloat16 h) { return __float2int_rn(__bfloat162float(h)); } __CUDA_HOSTDEVICE_BF16_DECL__ int __bfloat162int_rz(const __nv_bfloat16 h) { const float f = __bfloat162float(h); int i; i = static_cast(f); #if !(defined __CUDA_ARCH__) const int max_val = (int)0x7fffffffU; const int min_val = (int)0x80000000U; const unsigned short bits = static_cast(static_cast<__nv_bfloat16_raw>(h).x << 1U); // saturation fixup if (bits > (unsigned short)0xFF00U) { // NaN i = 0; } else if (f >= static_cast(max_val)) { // saturate maximum i = max_val; } else if (f < static_cast(min_val)) { // saturate minimum i = min_val; } #endif return i; } __CUDA_BF16_DECL__ int __bfloat162int_rd(const __nv_bfloat16 h) { return __float2int_rd(__bfloat162float(h)); } __CUDA_BF16_DECL__ int __bfloat162int_ru(const __nv_bfloat16 h) { return __float2int_ru(__bfloat162float(h)); } __CUDA_HOSTDEVICE_BF16_DECL__ __nv_bfloat16 __int2bfloat16_rn(const int i) { #if (defined __CUDA_ARCH__) const float ru = __int2float_ru(i); const float rd = __int2float_rd(i); float rz = __int2float_rz(i); if (ru != rd) { rz = __uint_as_float(__float_as_uint(rz) | 1U); } return __float2bfloat16_rn(rz); #else const double d = static_cast(i); return __double2bfloat16(d); #endif } __CUDA_BF16_DECL__ __nv_bfloat16 __int2bfloat16_rz(const int i) { return __float2bfloat16_rz(__int2float_rz(i)); } __CUDA_BF16_DECL__ __nv_bfloat16 __int2bfloat16_rd(const int i) { return __float2bfloat16_rd(__int2float_rd(i)); } __CUDA_BF16_DECL__ __nv_bfloat16 __int2bfloat16_ru(const int i) { return __float2bfloat16_ru(__int2float_ru(i)); } __CUDA_BF16_DECL__ short int __bfloat162short_rn(const __nv_bfloat16 h) { short int val; asm("{ .reg.f32 f;\n" " mov.b32 f, {0,%1};\n" " cvt.rni.s16.f32 %0,f;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(h))); return val; } __CUDA_HOSTDEVICE_BF16_DECL__ short int __bfloat162short_rz(const __nv_bfloat16 h) { short int val; #if (defined __CUDA_ARCH__) asm("{ .reg.f32 f;\n" " mov.b32 f, {0,%1};\n" " cvt.rzi.s16.f32 %0,f;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(h))); #else const float f = __bfloat162float(h); val = static_cast(f); const short int max_val = (short int)0x7fffU; const short int min_val = (short int)0x8000U; const unsigned short bits = static_cast(static_cast<__nv_bfloat16_raw>(h).x << 1U); // saturation fixup if (bits > (unsigned short)0xFF00U) { // NaN val = 0; } else if (f > static_cast(max_val)) { // saturate maximum val = max_val; } else if (f < static_cast(min_val)) { // saturate minimum val = min_val; } #endif return val; } __CUDA_BF16_DECL__ short int __bfloat162short_rd(const __nv_bfloat16 h) { short int val; asm("{ .reg.f32 f;\n" " mov.b32 f, {0,%1};\n" " cvt.rmi.s16.f32 %0,f;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(h))); return val; } __CUDA_BF16_DECL__ short int __bfloat162short_ru(const __nv_bfloat16 h) { short int val; asm("{ .reg.f32 f;\n" " mov.b32 f, {0,%1};\n" " cvt.rpi.s16.f32 %0,f;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(h))); return val; } __CUDA_HOSTDEVICE_BF16_DECL__ __nv_bfloat16 __short2bfloat16_rn(const short int i) { const float f = static_cast(i); return __float2bfloat16_rn(f); } __CUDA_BF16_DECL__ __nv_bfloat16 __short2bfloat16_rz(const short int i) { return __float2bfloat16_rz(__int2float_rz(static_cast(i))); } __CUDA_BF16_DECL__ __nv_bfloat16 __short2bfloat16_rd(const short int i) { return __float2bfloat16_rd(__int2float_rd(static_cast(i))); } __CUDA_BF16_DECL__ __nv_bfloat16 __short2bfloat16_ru(const short int i) { return __float2bfloat16_ru(__int2float_ru(static_cast(i))); } __CUDA_BF16_DECL__ unsigned int __bfloat162uint_rn(const __nv_bfloat16 h) { return __float2uint_rn(__bfloat162float(h)); } __CUDA_HOSTDEVICE_BF16_DECL__ unsigned int __bfloat162uint_rz(const __nv_bfloat16 h) { const float f = __bfloat162float(h); unsigned int i; i = static_cast(f); #if !(defined __CUDA_ARCH__) const unsigned int max_val = 0xffffffffU; const unsigned int min_val = 0U; const unsigned short bits = static_cast(static_cast<__nv_bfloat16_raw>(h).x << 1U); // saturation fixup if (bits > (unsigned short)0xFF00U) { // NaN i = 0U; } else if (f >= static_cast(max_val)) { // saturate maximum i = max_val; } else if (f < static_cast(min_val)) { // saturate minimum i = min_val; } #endif return i; } __CUDA_BF16_DECL__ unsigned int __bfloat162uint_rd(const __nv_bfloat16 h) { return __float2uint_rd(__bfloat162float(h)); } __CUDA_BF16_DECL__ unsigned int __bfloat162uint_ru(const __nv_bfloat16 h) { return __float2uint_ru(__bfloat162float(h)); } __CUDA_HOSTDEVICE_BF16_DECL__ __nv_bfloat16 __uint2bfloat16_rn(const unsigned int i) { #if (defined __CUDA_ARCH__) const float ru = __uint2float_ru(i); const float rd = __uint2float_rd(i); float rz = __uint2float_rz(i); if (ru != rd) { rz = __uint_as_float(__float_as_uint(rz) | 1U); } return __float2bfloat16_rn(rz); #else const double d = static_cast(i); return __double2bfloat16(d); #endif } __CUDA_BF16_DECL__ __nv_bfloat16 __uint2bfloat16_rz(const unsigned int i) { return __float2bfloat16_rz(__uint2float_rz(i)); } __CUDA_BF16_DECL__ __nv_bfloat16 __uint2bfloat16_rd(const unsigned int i) { return __float2bfloat16_rd(__uint2float_rd(i)); } __CUDA_BF16_DECL__ __nv_bfloat16 __uint2bfloat16_ru(const unsigned int i) { return __float2bfloat16_ru(__uint2float_ru(i)); } __CUDA_BF16_DECL__ unsigned short int __bfloat162ushort_rn(const __nv_bfloat16 h) { unsigned short int val; asm("{ .reg.f32 f;\n" " mov.b32 f, {0,%1};\n" " cvt.rni.u16.f32 %0,f;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(h))); return val; } __CUDA_HOSTDEVICE_BF16_DECL__ unsigned short int __bfloat162ushort_rz(const __nv_bfloat16 h) { unsigned short int val; #if (defined __CUDA_ARCH__) asm("{ .reg.f32 f;\n" " mov.b32 f, {0,%1};\n" " cvt.rzi.u16.f32 %0,f;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(h))); #else const float f = __bfloat162float(h); val = static_cast(f); const unsigned short int max_val = 0xffffU; const unsigned short int min_val = 0U; const unsigned short bits = static_cast(static_cast<__nv_bfloat16_raw>(h).x << 1U); // saturation fixup if (bits > (unsigned short)0xFF00U) { // NaN val = 0U; } else if (f > static_cast(max_val)) { // saturate maximum val = max_val; } else if (f < static_cast(min_val)) { // saturate minimum val = min_val; } #endif return val; } __CUDA_BF16_DECL__ unsigned short int __bfloat162ushort_rd(const __nv_bfloat16 h) { unsigned short int val; asm("{ .reg.f32 f;\n" " mov.b32 f, {0,%1};\n" " cvt.rmi.u16.f32 %0,f;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(h))); return val; } __CUDA_BF16_DECL__ unsigned short int __bfloat162ushort_ru(const __nv_bfloat16 h) { unsigned short int val; asm("{ .reg.f32 f;\n" " mov.b32 f, {0,%1};\n" " cvt.rpi.u16.f32 %0,f;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(h))); return val; } __CUDA_HOSTDEVICE_BF16_DECL__ __nv_bfloat16 __ushort2bfloat16_rn(const unsigned short int i) { const float f = static_cast(i); return __float2bfloat16_rn(f); } __CUDA_BF16_DECL__ __nv_bfloat16 __ushort2bfloat16_rz(const unsigned short int i) { return __float2bfloat16_rz(__uint2float_rz(static_cast(i))); } __CUDA_BF16_DECL__ __nv_bfloat16 __ushort2bfloat16_rd(const unsigned short int i) { return __float2bfloat16_rd(__uint2float_rd(static_cast(i))); } __CUDA_BF16_DECL__ __nv_bfloat16 __ushort2bfloat16_ru(const unsigned short int i) { return __float2bfloat16_ru(__uint2float_ru(static_cast(i))); } __CUDA_BF16_DECL__ unsigned long long int __bfloat162ull_rn(const __nv_bfloat16 h) { return __float2ull_rn(__bfloat162float(h)); } __CUDA_HOSTDEVICE_BF16_DECL__ unsigned long long int __bfloat162ull_rz(const __nv_bfloat16 h) { const float f = __bfloat162float(h); unsigned long long int i; i = static_cast(f); #if !(defined __CUDA_ARCH__) const unsigned long long int max_val = 0xffffffffffffffffULL; const unsigned long long int min_val = 0ULL; const unsigned short bits = static_cast(static_cast<__nv_bfloat16_raw>(h).x << 1U); // saturation fixup if (bits > (unsigned short)0xFF00U) { // NaN i = 0x8000000000000000ULL; } else if (f >= static_cast(max_val)) { // saturate maximum i = max_val; } else if (f < static_cast(min_val)) { // saturate minimum i = min_val; } #endif return i; } __CUDA_BF16_DECL__ unsigned long long int __bfloat162ull_rd(const __nv_bfloat16 h) { return __float2ull_rd(__bfloat162float(h)); } __CUDA_BF16_DECL__ unsigned long long int __bfloat162ull_ru(const __nv_bfloat16 h) { return __float2ull_ru(__bfloat162float(h)); } __CUDA_HOSTDEVICE_BF16_DECL__ __nv_bfloat16 __ull2bfloat16_rn(const unsigned long long int i) { #if (defined __CUDA_ARCH__) const float ru = __ull2float_ru(i); const float rd = __ull2float_rd(i); float rz = __ull2float_rz(i); if (ru != rd) { rz = __uint_as_float(__float_as_uint(rz) | 1U); } return __float2bfloat16_rn(rz); #else float f = static_cast(i); const unsigned long long int uf = static_cast(f); unsigned int u; #if defined(__CUDA_ARCH__) u = __float_as_uint(f); #elif defined(__CUDACC__) (void)memcpy(&u, &f, sizeof(f)); #else (void)std::memcpy(&u, &f, sizeof(f)); #endif // round up happened here // note: no need to handle round up to f == 0x1.p64 specially if (uf > i) { u--; } if (uf != i) { u |= 1U; } #if defined(__CUDA_ARCH__) f = __int_as_float(static_cast(u)); #elif defined(__CUDACC__) (void)memcpy(&f, &u, sizeof(f)); #else (void)std::memcpy(&f, &u, sizeof(f)); #endif return __float2bfloat16_rn(f); #endif } __CUDA_BF16_DECL__ __nv_bfloat16 __ull2bfloat16_rz(const unsigned long long int i) { return __float2bfloat16_rz(__ull2float_rz(i)); } __CUDA_BF16_DECL__ __nv_bfloat16 __ull2bfloat16_rd(const unsigned long long int i) { return __float2bfloat16_rd(__ull2float_rd(i)); } __CUDA_BF16_DECL__ __nv_bfloat16 __ull2bfloat16_ru(const unsigned long long int i) { return __float2bfloat16_ru(__ull2float_ru(i)); } __CUDA_BF16_DECL__ long long int __bfloat162ll_rn(const __nv_bfloat16 h) { return __float2ll_rn(__bfloat162float(h)); } __CUDA_HOSTDEVICE_BF16_DECL__ long long int __bfloat162ll_rz(const __nv_bfloat16 h) { const float f = __bfloat162float(h); long long int i; i = static_cast(f); #if !(defined __CUDA_ARCH__) const long long int max_val = (long long int)0x7fffffffffffffffULL; const long long int min_val = (long long int)0x8000000000000000ULL; const unsigned short bits = static_cast(static_cast<__nv_bfloat16_raw>(h).x << 1U); // saturation fixup if (bits > (unsigned short)0xFF00U) { // NaN i = min_val; } else if (f >= static_cast(max_val)) { // saturate maximum i = max_val; } else if (f < static_cast(min_val)) { // saturate minimum i = min_val; } #endif return i; } __CUDA_BF16_DECL__ long long int __bfloat162ll_rd(const __nv_bfloat16 h) { return __float2ll_rd(__bfloat162float(h)); } __CUDA_BF16_DECL__ long long int __bfloat162ll_ru(const __nv_bfloat16 h) { return __float2ll_ru(__bfloat162float(h)); } __CUDA_HOSTDEVICE_BF16_DECL__ __nv_bfloat16 __ll2bfloat16_rn(const long long int i) { #if (defined __CUDA_ARCH__) const float ru = __ll2float_ru(i); const float rd = __ll2float_rd(i); float rz = __ll2float_rz(i); if (ru != rd) { rz = __uint_as_float(__float_as_uint(rz) | 1U); } return __float2bfloat16_rn(rz); #else float f = static_cast(i); const long long int lf = static_cast(f); unsigned int u; #if defined(__CUDA_ARCH__) u = __float_as_uint(f); #elif defined(__CUDACC__) (void)memcpy(&u, &f, sizeof(f)); #else (void)std::memcpy(&u, &f, sizeof(f)); #endif if ((f > 0.0f) && (lf > i)) { u--; } if ((f < 0.0f) && (lf < i)) { u--; } if (lf != i) { u |= 1U; } #if defined(__CUDA_ARCH__) f = __int_as_float(static_cast(u)); #elif defined(__CUDACC__) (void)memcpy(&f, &u, sizeof(f)); #else (void)std::memcpy(&f, &u, sizeof(f)); #endif return __float2bfloat16_rn(f); #endif } __CUDA_BF16_DECL__ __nv_bfloat16 __ll2bfloat16_rz(const long long int i) { return __float2bfloat16_rz(__ll2float_rz(i)); } __CUDA_BF16_DECL__ __nv_bfloat16 __ll2bfloat16_rd(const long long int i) { return __float2bfloat16_rd(__ll2float_rd(i)); } __CUDA_BF16_DECL__ __nv_bfloat16 __ll2bfloat16_ru(const long long int i) { return __float2bfloat16_ru(__ll2float_ru(i)); } __CUDA_BF16_DECL__ __nv_bfloat16 htrunc(const __nv_bfloat16 h) { return __float2bfloat16_rz(truncf(__bfloat162float(h))); } __CUDA_BF16_DECL__ __nv_bfloat16 hceil(const __nv_bfloat16 h) { return __float2bfloat16_ru(ceilf(__bfloat162float(h))); } __CUDA_BF16_DECL__ __nv_bfloat16 hfloor(const __nv_bfloat16 h) { return __float2bfloat16_rd(floorf(__bfloat162float(h))); } __CUDA_BF16_DECL__ __nv_bfloat16 hrint(const __nv_bfloat16 h) { return __float2bfloat16_rn(rintf(__bfloat162float(h))); } __CUDA_BF16_DECL__ __nv_bfloat162 h2trunc(const __nv_bfloat162 h) { const __nv_bfloat16 low = __float2bfloat16_rz(truncf(__low2float(h))); const __nv_bfloat16 high = __float2bfloat16_rz(truncf(__high2float(h))); return __nv_bfloat162(low, high); } __CUDA_BF16_DECL__ __nv_bfloat162 h2ceil(const __nv_bfloat162 h) { const __nv_bfloat16 low = __float2bfloat16_ru(ceilf(__low2float(h))); const __nv_bfloat16 high = __float2bfloat16_ru(ceilf(__high2float(h))); return __nv_bfloat162(low, high); } __CUDA_BF16_DECL__ __nv_bfloat162 h2floor(const __nv_bfloat162 h) { const __nv_bfloat16 low = __float2bfloat16_rd(floorf(__low2float(h))); const __nv_bfloat16 high = __float2bfloat16_rd(floorf(__high2float(h))); return __nv_bfloat162(low, high); } __CUDA_BF16_DECL__ __nv_bfloat162 h2rint(const __nv_bfloat162 h) { return __halves2bfloat162(hrint(__low2bfloat16(h)), hrint(__high2bfloat16(h))); } __CUDA_BF16_DECL__ __nv_bfloat162 __lows2bfloat162(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat162 val; asm("{.reg .b16 alow,ahigh,blow,bhigh;\n" " mov.b32 {alow,ahigh}, %1;\n" " mov.b32 {blow,bhigh}, %2;\n" " mov.b32 %0, {alow,blow};}\n" : "=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)), "r"(__BFLOAT162_TO_CUI(b))); return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __highs2bfloat162(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat162 val; asm("{.reg .b16 alow,ahigh,blow,bhigh;\n" " mov.b32 {alow,ahigh}, %1;\n" " mov.b32 {blow,bhigh}, %2;\n" " mov.b32 %0, {ahigh,bhigh};}\n" : "=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)), "r"(__BFLOAT162_TO_CUI(b))); return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __low2bfloat16(const __nv_bfloat162 a) { __nv_bfloat16 ret; asm("{.reg .b16 low,high;\n" " mov.b32 {low,high}, %1;\n" " mov.b16 %0, low;}" : "=h"(__BFLOAT16_TO_US(ret)) : "r"(__BFLOAT162_TO_CUI(a))); return ret; } __CUDA_BF16_DECL__ int __hisinf(const __nv_bfloat16 a) { int retval; if (__BFLOAT16_TO_CUS(a) == 0xFF80U) { retval = -1; } else if (__BFLOAT16_TO_CUS(a) == 0x7F80U) { retval = 1; } else { retval = 0; } return retval; } __CUDA_BF16_DECL__ __nv_bfloat162 __low2bfloat162(const __nv_bfloat162 a) { __nv_bfloat162 val; asm("{.reg .b16 low,high;\n" " mov.b32 {low,high}, %1;\n" " mov.b32 %0, {low,low};}\n" : "=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a))); return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __high2bfloat162(const __nv_bfloat162 a) { __nv_bfloat162 val; asm("{.reg .b16 low,high;\n" " mov.b32 {low,high}, %1;\n" " mov.b32 %0, {high,high};}\n" : "=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a))); return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __high2bfloat16(const __nv_bfloat162 a) { __nv_bfloat16 ret; asm("{.reg .b16 low,high;\n" " mov.b32 {low,high}, %1;\n" " mov.b16 %0, high;}" : "=h"(__BFLOAT16_TO_US(ret)) : "r"(__BFLOAT162_TO_CUI(a))); return ret; } __CUDA_BF16_DECL__ __nv_bfloat162 __halves2bfloat162(const __nv_bfloat16 a, const __nv_bfloat16 b) { __nv_bfloat162 val; asm("{ mov.b32 %0, {%1,%2};}\n" : "=r"(__BFLOAT162_TO_UI(val)) : "h"(__BFLOAT16_TO_CUS(a)), "h"(__BFLOAT16_TO_CUS(b))); return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __bfloat162bfloat162(const __nv_bfloat16 a) { __nv_bfloat162 val; asm("{ mov.b32 %0, {%1,%1};}\n" : "=r"(__BFLOAT162_TO_UI(val)) : "h"(__BFLOAT16_TO_CUS(a))); return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __lowhigh2highlow(const __nv_bfloat162 a) { __nv_bfloat162 val; asm("{.reg .b16 low,high;\n" " mov.b32 {low,high}, %1;\n" " mov.b32 %0, {high,low};}\n" : "=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a))); return val; } __CUDA_BF16_DECL__ short int __bfloat16_as_short(const __nv_bfloat16 h) { return static_cast(__BFLOAT16_TO_CUS(h)); } __CUDA_BF16_DECL__ unsigned short int __bfloat16_as_ushort(const __nv_bfloat16 h) { return __BFLOAT16_TO_CUS(h); } __CUDA_BF16_DECL__ __nv_bfloat16 __short_as_bfloat16(const short int i) { __nv_bfloat16 h; __BFLOAT16_TO_US(h) = static_cast(i); return h; } __CUDA_BF16_DECL__ __nv_bfloat16 __ushort_as_bfloat16(const unsigned short int i) { __nv_bfloat16 h; __BFLOAT16_TO_US(h) = i; return h; } /****************************************************************************** * __nv_bfloat16, __nv_bfloat162 warp shuffle * ******************************************************************************/ #define __SHUFFLE_SYNC_BFLOAT162_MACRO(name) /* do */ {\ __nv_bfloat162 r; \ asm volatile ("{"#name" %0,%1,%2,%3,%4;\n}" \ :"=r"(__BFLOAT162_TO_UI(r)): "r"(__BFLOAT162_TO_CUI(var)), "r"(delta), "r"(c), "r"(mask)); \ return r; \ } /* while(0) */ __CUDA_BF16_DECL__ __nv_bfloat162 __shfl_sync(const unsigned mask, const __nv_bfloat162 var, const int delta, const int width) { unsigned int warp_size; asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size)); const unsigned int c = ((warp_size - static_cast(width)) << 8U) | 0x1fU; __SHUFFLE_SYNC_BFLOAT162_MACRO(shfl.sync.idx.b32) } __CUDA_BF16_DECL__ __nv_bfloat162 __shfl_up_sync(const unsigned mask, const __nv_bfloat162 var, const unsigned int delta, const int width) { unsigned int warp_size; asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size)); const unsigned int c = (warp_size - static_cast(width)) << 8U; __SHUFFLE_SYNC_BFLOAT162_MACRO(shfl.sync.up.b32) } __CUDA_BF16_DECL__ __nv_bfloat162 __shfl_down_sync(const unsigned mask, const __nv_bfloat162 var, const unsigned int delta, const int width) { unsigned int warp_size; asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size)); const unsigned int c = ((warp_size - static_cast(width)) << 8U) | 0x1fU; __SHUFFLE_SYNC_BFLOAT162_MACRO(shfl.sync.down.b32) } __CUDA_BF16_DECL__ __nv_bfloat162 __shfl_xor_sync(const unsigned mask, const __nv_bfloat162 var, const int delta, const int width) { unsigned int warp_size; asm("{mov.u32 %0, WARP_SZ;\n}" : "=r"(warp_size)); const unsigned int c = ((warp_size - static_cast(width)) << 8U) | 0x1fU; __SHUFFLE_SYNC_BFLOAT162_MACRO(shfl.sync.bfly.b32) } #undef __SHUFFLE_SYNC_BFLOAT162_MACRO __CUDA_BF16_DECL__ __nv_bfloat16 __shfl_sync(const unsigned mask, const __nv_bfloat16 var, const int delta, const int width) { const __nv_bfloat162 temp1 = __halves2bfloat162(var, var); const __nv_bfloat162 temp2 = __shfl_sync(mask, temp1, delta, width); return __low2bfloat16(temp2); } __CUDA_BF16_DECL__ __nv_bfloat16 __shfl_up_sync(const unsigned mask, const __nv_bfloat16 var, const unsigned int delta, const int width) { const __nv_bfloat162 temp1 = __halves2bfloat162(var, var); const __nv_bfloat162 temp2 = __shfl_up_sync(mask, temp1, delta, width); return __low2bfloat16(temp2); } __CUDA_BF16_DECL__ __nv_bfloat16 __shfl_down_sync(const unsigned mask, const __nv_bfloat16 var, const unsigned int delta, const int width) { const __nv_bfloat162 temp1 = __halves2bfloat162(var, var); const __nv_bfloat162 temp2 = __shfl_down_sync(mask, temp1, delta, width); return __low2bfloat16(temp2); } __CUDA_BF16_DECL__ __nv_bfloat16 __shfl_xor_sync(const unsigned mask, const __nv_bfloat16 var, const int delta, const int width) { const __nv_bfloat162 temp1 = __halves2bfloat162(var, var); const __nv_bfloat162 temp2 = __shfl_xor_sync(mask, temp1, delta, width); return __low2bfloat16(temp2); } /****************************************************************************** * __nv_bfloat16 and __nv_bfloat162 __ldg,__ldcg,__ldca,__ldcs * ******************************************************************************/ #if defined(__cplusplus) #if (defined(_MSC_VER) && defined(_WIN64)) || defined(__LP64__) || defined(__CUDACC_RTC__) #define __LDG_PTR "l" #else #define __LDG_PTR "r" #endif /*(defined(_MSC_VER) && defined(_WIN64)) || defined(__LP64__) || defined(__CUDACC_RTC__)*/ __CUDA_BF16_DECL__ __nv_bfloat162 __ldg(const __nv_bfloat162 *const ptr) { __nv_bfloat162 ret; asm ("ld.global.nc.b32 %0, [%1];" : "=r"(__BFLOAT162_TO_UI(ret)) : __LDG_PTR(ptr)); return ret; } __CUDA_BF16_DECL__ __nv_bfloat16 __ldg(const __nv_bfloat16 *const ptr) { __nv_bfloat16 ret; asm ("ld.global.nc.b16 %0, [%1];" : "=h"(__BFLOAT16_TO_US(ret)) : __LDG_PTR(ptr)); return ret; } __CUDA_BF16_DECL__ __nv_bfloat162 __ldcg(const __nv_bfloat162 *const ptr) { __nv_bfloat162 ret; asm ("ld.global.cg.b32 %0, [%1];" : "=r"(__BFLOAT162_TO_UI(ret)) : __LDG_PTR(ptr)); return ret; } __CUDA_BF16_DECL__ __nv_bfloat16 __ldcg(const __nv_bfloat16 *const ptr) { __nv_bfloat16 ret; asm ("ld.global.cg.b16 %0, [%1];" : "=h"(__BFLOAT16_TO_US(ret)) : __LDG_PTR(ptr)); return ret; } __CUDA_BF16_DECL__ __nv_bfloat162 __ldca(const __nv_bfloat162 *const ptr) { __nv_bfloat162 ret; asm ("ld.global.ca.b32 %0, [%1];" : "=r"(__BFLOAT162_TO_UI(ret)) : __LDG_PTR(ptr)); return ret; } __CUDA_BF16_DECL__ __nv_bfloat16 __ldca(const __nv_bfloat16 *const ptr) { __nv_bfloat16 ret; asm ("ld.global.ca.b16 %0, [%1];" : "=h"(__BFLOAT16_TO_US(ret)) : __LDG_PTR(ptr)); return ret; } __CUDA_BF16_DECL__ __nv_bfloat162 __ldcs(const __nv_bfloat162 *const ptr) { __nv_bfloat162 ret; asm ("ld.global.cs.b32 %0, [%1];" : "=r"(__BFLOAT162_TO_UI(ret)) : __LDG_PTR(ptr)); return ret; } __CUDA_BF16_DECL__ __nv_bfloat16 __ldcs(const __nv_bfloat16 *const ptr) { __nv_bfloat16 ret; asm ("ld.global.cs.b16 %0, [%1];" : "=h"(__BFLOAT16_TO_US(ret)) : __LDG_PTR(ptr)); return ret; } __CUDA_BF16_DECL__ __nv_bfloat162 __ldlu(const __nv_bfloat162 *const ptr) { __nv_bfloat162 ret; asm ("ld.global.lu.b32 %0, [%1];" : "=r"(__BFLOAT162_TO_UI(ret)) : __LDG_PTR(ptr) : "memory"); return ret; } __CUDA_BF16_DECL__ __nv_bfloat16 __ldlu(const __nv_bfloat16 *const ptr) { __nv_bfloat16 ret; asm ("ld.global.lu.b16 %0, [%1];" : "=h"(__BFLOAT16_TO_US(ret)) : __LDG_PTR(ptr) : "memory"); return ret; } __CUDA_BF16_DECL__ __nv_bfloat162 __ldcv(const __nv_bfloat162 *const ptr) { __nv_bfloat162 ret; asm ("ld.global.cv.b32 %0, [%1];" : "=r"(__BFLOAT162_TO_UI(ret)) : __LDG_PTR(ptr) : "memory"); return ret; } __CUDA_BF16_DECL__ __nv_bfloat16 __ldcv(const __nv_bfloat16 *const ptr) { __nv_bfloat16 ret; asm ("ld.global.cv.b16 %0, [%1];" : "=h"(__BFLOAT16_TO_US(ret)) : __LDG_PTR(ptr) : "memory"); return ret; } __CUDA_BF16_DECL__ void __stwb(__nv_bfloat162 *const ptr, const __nv_bfloat162 value) { asm ("st.global.wb.b32 [%0], %1;" :: __LDG_PTR(ptr), "r"(__BFLOAT162_TO_CUI(value)) : "memory"); } __CUDA_BF16_DECL__ void __stwb(__nv_bfloat16 *const ptr, const __nv_bfloat16 value) { asm ("st.global.wb.b16 [%0], %1;" :: __LDG_PTR(ptr), "h"(__BFLOAT16_TO_CUS(value)) : "memory"); } __CUDA_BF16_DECL__ void __stcg(__nv_bfloat162 *const ptr, const __nv_bfloat162 value) { asm ("st.global.cg.b32 [%0], %1;" :: __LDG_PTR(ptr), "r"(__BFLOAT162_TO_CUI(value)) : "memory"); } __CUDA_BF16_DECL__ void __stcg(__nv_bfloat16 *const ptr, const __nv_bfloat16 value) { asm ("st.global.cg.b16 [%0], %1;" :: __LDG_PTR(ptr), "h"(__BFLOAT16_TO_CUS(value)) : "memory"); } __CUDA_BF16_DECL__ void __stcs(__nv_bfloat162 *const ptr, const __nv_bfloat162 value) { asm ("st.global.cs.b32 [%0], %1;" :: __LDG_PTR(ptr), "r"(__BFLOAT162_TO_CUI(value)) : "memory"); } __CUDA_BF16_DECL__ void __stcs(__nv_bfloat16 *const ptr, const __nv_bfloat16 value) { asm ("st.global.cs.b16 [%0], %1;" :: __LDG_PTR(ptr), "h"(__BFLOAT16_TO_CUS(value)) : "memory"); } __CUDA_BF16_DECL__ void __stwt(__nv_bfloat162 *const ptr, const __nv_bfloat162 value) { asm ("st.global.wt.b32 [%0], %1;" :: __LDG_PTR(ptr), "r"(__BFLOAT162_TO_CUI(value)) : "memory"); } __CUDA_BF16_DECL__ void __stwt(__nv_bfloat16 *const ptr, const __nv_bfloat16 value) { asm ("st.global.wt.b16 [%0], %1;" :: __LDG_PTR(ptr), "h"(__BFLOAT16_TO_CUS(value)) : "memory"); } #undef __LDG_PTR #endif /*defined(__cplusplus) */ /****************************************************************************** * __nv_bfloat162 comparison * ******************************************************************************/ #define __COMPARISON_OP_BFLOAT162_MACRO(name) /* do */ {\ __nv_bfloat162 val; \ asm( "{.reg .b32 low_a,low_b,high_a,high_b,high_res,low_res;\n"\ " and.b32 high_a, %1, 0xffff0000U;\n"\ " and.b32 high_b, %2, 0xffff0000U;\n"\ " shl.b32 low_a, %1, 16;\n"\ " shl.b32 low_b, %2, 16;\n"\ " "#name".f32.f32 low_res, low_a, low_b;\n"\ " "#name".f32.f32 high_res, high_a, high_b;\n"\ " shr.u32 low_res, low_res, 16;\n"\ " or.b32 %0, high_res, low_res;}\n"\ :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); \ return val; \ } /* while(0) */ __CUDA_BF16_DECL__ __nv_bfloat162 __heq2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __COMPARISON_OP_BFLOAT162_MACRO(set.eq) } __CUDA_BF16_DECL__ __nv_bfloat162 __hne2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __COMPARISON_OP_BFLOAT162_MACRO(set.ne) } __CUDA_BF16_DECL__ __nv_bfloat162 __hle2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __COMPARISON_OP_BFLOAT162_MACRO(set.le) } __CUDA_BF16_DECL__ __nv_bfloat162 __hge2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __COMPARISON_OP_BFLOAT162_MACRO(set.ge) } __CUDA_BF16_DECL__ __nv_bfloat162 __hlt2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __COMPARISON_OP_BFLOAT162_MACRO(set.lt) } __CUDA_BF16_DECL__ __nv_bfloat162 __hgt2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __COMPARISON_OP_BFLOAT162_MACRO(set.gt) } __CUDA_BF16_DECL__ __nv_bfloat162 __hequ2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __COMPARISON_OP_BFLOAT162_MACRO(set.equ) } __CUDA_BF16_DECL__ __nv_bfloat162 __hneu2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __COMPARISON_OP_BFLOAT162_MACRO(set.neu) } __CUDA_BF16_DECL__ __nv_bfloat162 __hleu2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __COMPARISON_OP_BFLOAT162_MACRO(set.leu) } __CUDA_BF16_DECL__ __nv_bfloat162 __hgeu2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __COMPARISON_OP_BFLOAT162_MACRO(set.geu) } __CUDA_BF16_DECL__ __nv_bfloat162 __hltu2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __COMPARISON_OP_BFLOAT162_MACRO(set.ltu) } __CUDA_BF16_DECL__ __nv_bfloat162 __hgtu2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __COMPARISON_OP_BFLOAT162_MACRO(set.gtu) } #undef __COMPARISON_OP_BFLOAT162_MACRO #define __BOOL_COMPARISON_OP_BFLOAT162_MACRO(name) /* do */ {\ unsigned int val; \ asm( "{.reg .b32 low_a,low_b,high_a,high_b,high_res,low_res;\n"\ " and.b32 high_a, %1, 0xffff0000U;\n"\ " and.b32 high_b, %2, 0xffff0000U;\n"\ " shl.b32 low_a, %1, 16;\n"\ " shl.b32 low_b, %2, 16;\n"\ " "#name".f32.f32 low_res, low_a, low_b;\n"\ " "#name".f32.f32 high_res, high_a, high_b;\n"\ " and.b32 %0, high_res, low_res;}\n"\ :"=r"(val) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); \ return (val != 0U) ? true : false; \ } /* while(0) */ __CUDA_BF16_DECL__ bool __hbeq2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __BOOL_COMPARISON_OP_BFLOAT162_MACRO(set.eq) } __CUDA_BF16_DECL__ bool __hbne2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __BOOL_COMPARISON_OP_BFLOAT162_MACRO(set.ne) } __CUDA_BF16_DECL__ bool __hble2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __BOOL_COMPARISON_OP_BFLOAT162_MACRO(set.le) } __CUDA_BF16_DECL__ bool __hbge2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __BOOL_COMPARISON_OP_BFLOAT162_MACRO(set.ge) } __CUDA_BF16_DECL__ bool __hblt2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __BOOL_COMPARISON_OP_BFLOAT162_MACRO(set.lt) } __CUDA_BF16_DECL__ bool __hbgt2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __BOOL_COMPARISON_OP_BFLOAT162_MACRO(set.gt) } __CUDA_BF16_DECL__ bool __hbequ2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __BOOL_COMPARISON_OP_BFLOAT162_MACRO(set.equ) } __CUDA_BF16_DECL__ bool __hbneu2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __BOOL_COMPARISON_OP_BFLOAT162_MACRO(set.neu) } __CUDA_BF16_DECL__ bool __hbleu2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __BOOL_COMPARISON_OP_BFLOAT162_MACRO(set.leu) } __CUDA_BF16_DECL__ bool __hbgeu2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __BOOL_COMPARISON_OP_BFLOAT162_MACRO(set.geu) } __CUDA_BF16_DECL__ bool __hbltu2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __BOOL_COMPARISON_OP_BFLOAT162_MACRO(set.ltu) } __CUDA_BF16_DECL__ bool __hbgtu2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __BOOL_COMPARISON_OP_BFLOAT162_MACRO(set.gtu) } #undef __BOOL_COMPARISON_OP_BFLOAT162_MACRO /****************************************************************************** * __nv_bfloat16 comparison * ******************************************************************************/ #define __COMPARISON_OP_BFLOAT16_MACRO(name) /* do */ {\ unsigned int val; \ asm( "{.reg .b32 a,b;\n"\ " mov.b32 a, {0, %1};\n"\ " mov.b32 b, {0, %2};\n"\ " set."#name".f32.f32 %0, a, b;}\n"\ :"=r"(val) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b))); \ return (val != 0U) ? true : false; \ } /* while(0) */ __CUDA_BF16_DECL__ bool __heq(const __nv_bfloat16 a, const __nv_bfloat16 b) { __COMPARISON_OP_BFLOAT16_MACRO(eq) } __CUDA_BF16_DECL__ bool __hne(const __nv_bfloat16 a, const __nv_bfloat16 b) { __COMPARISON_OP_BFLOAT16_MACRO(ne) } __CUDA_BF16_DECL__ bool __hle(const __nv_bfloat16 a, const __nv_bfloat16 b) { __COMPARISON_OP_BFLOAT16_MACRO(le) } __CUDA_BF16_DECL__ bool __hge(const __nv_bfloat16 a, const __nv_bfloat16 b) { __COMPARISON_OP_BFLOAT16_MACRO(ge) } __CUDA_BF16_DECL__ bool __hlt(const __nv_bfloat16 a, const __nv_bfloat16 b) { __COMPARISON_OP_BFLOAT16_MACRO(lt) } __CUDA_BF16_DECL__ bool __hgt(const __nv_bfloat16 a, const __nv_bfloat16 b) { __COMPARISON_OP_BFLOAT16_MACRO(gt) } __CUDA_BF16_DECL__ bool __hequ(const __nv_bfloat16 a, const __nv_bfloat16 b) { __COMPARISON_OP_BFLOAT16_MACRO(equ) } __CUDA_BF16_DECL__ bool __hneu(const __nv_bfloat16 a, const __nv_bfloat16 b) { __COMPARISON_OP_BFLOAT16_MACRO(neu) } __CUDA_BF16_DECL__ bool __hleu(const __nv_bfloat16 a, const __nv_bfloat16 b) { __COMPARISON_OP_BFLOAT16_MACRO(leu) } __CUDA_BF16_DECL__ bool __hgeu(const __nv_bfloat16 a, const __nv_bfloat16 b) { __COMPARISON_OP_BFLOAT16_MACRO(geu) } __CUDA_BF16_DECL__ bool __hltu(const __nv_bfloat16 a, const __nv_bfloat16 b) { __COMPARISON_OP_BFLOAT16_MACRO(ltu) } __CUDA_BF16_DECL__ bool __hgtu(const __nv_bfloat16 a, const __nv_bfloat16 b) { __COMPARISON_OP_BFLOAT16_MACRO(gtu) } #undef __COMPARISON_OP_BFLOAT16_MACRO /****************************************************************************** * __nv_bfloat162 arithmetic * ******************************************************************************/ #define __BINARY_OP_BFLOAT162_MACRO(name) /* do */ {\ __nv_bfloat162 val; \ asm( "{.reg .b32 low_a,low_b,high_a,high_b,high_res,low_res;\n"\ " .reg .b16 low,high;\n"\ " and.b32 high_a, %1, 0xffff0000U;\n"\ " and.b32 high_b, %2, 0xffff0000U;\n"\ " shl.b32 low_a, %1, 16;\n"\ " shl.b32 low_b, %2, 16;\n"\ " "#name".f32 low_res, low_a, low_b;\n"\ " "#name".f32 high_res, high_a, high_b;\n"\ " cvt.rn.bf16.f32 low, low_res;\n"\ " cvt.rn.bf16.f32 high, high_res;\n"\ " mov.b32 %0, {low,high};}\n"\ :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); \ return val; \ } /* while(0) */ __CUDA_BF16_DECL__ __nv_bfloat162 __hadd2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat162 val; asm( "{.reg .b32 c;\n" " mov.b32 c, 0x3f803f80U;\n" " fma.rn.bf16x2 %0,%1,c,%2;}\n" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); \ return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __hsub2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat162 val; asm( "{.reg .b32 c;\n" " mov.b32 c, 0xbf80bf80U;\n" " fma.rn.bf16x2 %0,%2,c,%1;}\n" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); \ return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __hmul2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat162 val; asm( "{.reg .b32 c;\n" " mov.b32 c, 0x80008000U;\n" " fma.rn.bf16x2 %0,%1,%2,c;}\n" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); \ return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __hadd2_rn(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat162 val; asm( "{.reg .b32 c;\n" " mov.b32 c, 0x3f803f80U;\n" " fma.rn.bf16x2 %0,%1,c,%2;}\n" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); \ return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __hsub2_rn(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat162 val; asm( "{.reg .b32 c;\n" " mov.b32 c, 0xbf80bf80U;\n" " fma.rn.bf16x2 %0,%2,c,%1;}\n" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); \ return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __hmul2_rn(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat162 val; asm( "{.reg .b32 c;\n" " mov.b32 c, 0x80008000U;\n" " fma.rn.bf16x2 %0,%1,%2,c;}\n" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); \ return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __hadd2_sat(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat162 val; asm( "{.reg .b32 f, one, zero;\n" " mov.b32 one, 0x3f803f80U;\n" " mov.b32 zero, 0;\n" " fma.rn.bf16x2 f,%1,one,%2;\n" " max.bf16x2 f, f, zero;\n" " min.bf16x2 %0, f, one;\n}" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); \ return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __hsub2_sat(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat162 val; asm( "{.reg .b32 f, one, zero, mone;\n" " mov.b32 one, 0x3f803f80U;\n" " mov.b32 zero, 0;\n" " mov.b32 mone, 0xbf80bf80U;\n" " fma.rn.bf16x2 f,%2,mone,%1;\n" " max.bf16x2 f, f, zero;\n" " min.bf16x2 %0, f, one;\n}" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); \ return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __hmul2_sat(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat162 val; asm( "{.reg .b32 f, one, zero, mzero;\n" " mov.b32 one, 0x3f803f80U;\n" " mov.b32 zero, 0;\n" " mov.b32 mzero, 0x80008000U;\n" " fma.rn.bf16x2 f,%1,%2,mzero;\n" " max.bf16x2 f, f, zero;\n" " min.bf16x2 %0, f, one;\n}" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); \ return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __hfma2(const __nv_bfloat162 a, const __nv_bfloat162 b, const __nv_bfloat162 c) { __nv_bfloat162 val; asm( "{fma.rn.bf16x2 %0,%1,%2,%3;\n}" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b)),"r"(__BFLOAT162_TO_CUI(c))); return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __hfma2_sat(const __nv_bfloat162 a, const __nv_bfloat162 b, const __nv_bfloat162 c) { __nv_bfloat162 val; asm( "{ .reg .b32 f, one, zero;\n" " mov.b32 one, 0x3f803f80U;\n" " mov.b32 zero, 0;\n" " fma.rn.bf16x2 f, %1, %2, %3;\n" " max.bf16x2 f, f, zero;\n" " min.bf16x2 %0, f, one;\n}" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b)),"r"(__BFLOAT162_TO_CUI(c))); return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __h2div(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat16 ha, hb; ha = __low2bfloat16(a); hb = __low2bfloat16(b); const __nv_bfloat16 v1 = __hdiv(ha, hb); ha = __high2bfloat16(a); hb = __high2bfloat16(b); const __nv_bfloat16 v2 = __hdiv(ha, hb); return __halves2bfloat162(v1, v2); } /****************************************************************************** * __nv_bfloat16 arithmetic * ******************************************************************************/ #define __BINARY_OP_BFLOAT16_MACRO(name) /* do */ {\ __nv_bfloat16 val; \ asm( "{.reg .b32 a,b,res;\n"\ " mov.b32 a, {0,%1};\n"\ " mov.b32 b, {0,%2};\n"\ " "#name".f32 res, a, b;\n"\ " cvt.rn.bf16.f32 %0, res;}\n"\ :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b))); \ return val; \ } /* while(0) */ __CUDA_BF16_DECL__ __nv_bfloat16 __hadd(const __nv_bfloat16 a, const __nv_bfloat16 b) { __nv_bfloat16 val; asm( "{.reg .b16 c;\n" " mov.b16 c, 0x3f80U;\n" " fma.rn.bf16 %0,%1,c,%2;}\n" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b))); \ return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __hsub(const __nv_bfloat16 a, const __nv_bfloat16 b) { __nv_bfloat16 val; asm( "{.reg .b16 c;\n" " mov.b16 c, 0xbf80U;\n" " fma.rn.bf16 %0,%2,c,%1;}\n" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b))); \ return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __hmul(const __nv_bfloat16 a, const __nv_bfloat16 b) { __nv_bfloat16 val; asm( "{.reg .b16 c;\n" " mov.b16 c, 0x8000U;\n" " fma.rn.bf16 %0,%1,%2,c;}\n" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b))); \ return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __hadd_rn(const __nv_bfloat16 a, const __nv_bfloat16 b) { __nv_bfloat16 val; asm( "{.reg .b16 c;\n" " mov.b16 c, 0x3f80U;\n" " fma.rn.bf16 %0,%1,c,%2;}\n" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b))); \ return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __hsub_rn(const __nv_bfloat16 a, const __nv_bfloat16 b) { __nv_bfloat16 val; asm( "{.reg .b16 c;\n" " mov.b16 c, 0xbf80U;\n" " fma.rn.bf16 %0,%2,c,%1;}\n" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b))); \ return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __hmul_rn(const __nv_bfloat16 a, const __nv_bfloat16 b) { __nv_bfloat16 val; asm( "{.reg .b16 c;\n" " mov.b16 c, 0x8000U;\n" " fma.rn.bf16 %0,%1,%2,c;}\n" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b))); \ return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __hadd_sat(const __nv_bfloat16 a, const __nv_bfloat16 b) { __nv_bfloat16 val; asm( "{ .reg .b16 f, one, zero;\n" " mov.b16 one, 0x3f80U;\n" " mov.b16 zero, 0;\n" " fma.rn.bf16 f, %1, one, %2;\n" " max.bf16 f, f, zero;\n" " min.bf16 %0, f, one;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b))); return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __hsub_sat(const __nv_bfloat16 a, const __nv_bfloat16 b) { __nv_bfloat16 val; asm( "{ .reg .b16 f, one, zero, mone;\n" " mov.b16 one, 0x3f80U;\n" " mov.b16 zero, 0;\n" " mov.b16 mone, 0xbf80U;\n" " fma.rn.bf16 f, %2, mone, %1;\n" " max.bf16 f, f, zero;\n" " min.bf16 %0, f, one;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b))); return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __hmul_sat(const __nv_bfloat16 a, const __nv_bfloat16 b) { __nv_bfloat16 val; asm( "{ .reg .b16 f, one, zero, mzero;\n" " mov.b16 one, 0x3f80U;\n" " mov.b16 zero, 0;\n" " mov.b16 mzero, 0x8000U;\n" " fma.rn.bf16 f, %1, %2, mzero;\n" " max.bf16 f, f, zero;\n" " min.bf16 %0, f, one;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b))); return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __hfma(const __nv_bfloat16 a, const __nv_bfloat16 b, const __nv_bfloat16 c) { __nv_bfloat16 val; asm( "{fma.rn.bf16 %0,%1,%2,%3;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b)),"h"(__BFLOAT16_TO_CUS(c))); return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __hfma_sat(const __nv_bfloat16 a, const __nv_bfloat16 b, const __nv_bfloat16 c) { __nv_bfloat16 val; asm( "{ .reg .b16 f, one, zero;\n" " mov.b16 one, 0x3f80U;\n" " mov.b16 zero, 0;\n" " fma.rn.bf16 f, %1, %2, %3;\n" " max.bf16 f, f, zero;\n" " min.bf16 %0, f, one;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b)),"h"(__BFLOAT16_TO_CUS(c))); return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __hdiv(const __nv_bfloat16 a, const __nv_bfloat16 b) { __BINARY_OP_BFLOAT16_MACRO(div.rn) } /****************************************************************************** * __nv_bfloat162 functions * ******************************************************************************/ #define __APPROX_FCAST(fun) /* do */ {\ __nv_bfloat16 val;\ asm("{.reg.b32 f; \n"\ " .reg.b16 r; \n"\ " mov.b16 r,%1; \n"\ " mov.b32 f,{0,r}; \n"\ " "#fun".approx.f32 f,f; \n"\ " cvt.rn.bf16.f32 r,f; \n"\ " mov.b16 %0,r; \n"\ "}": "=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)));\ return val;\ } /* while(0) */ #define __APPROX_FCAST2(fun) /* do */ {\ __nv_bfloat162 val;\ asm("{.reg.b16 hl, hu; \n"\ " .reg.b32 fl, fu; \n"\ " mov.b32 {hl, hu}, %1; \n"\ " mov.b32 fl, {0,hl}; \n"\ " mov.b32 fu, {0,hu}; \n"\ " "#fun".approx.f32 fl, fl; \n"\ " "#fun".approx.f32 fu, fu; \n"\ " cvt.rn.bf16.f32 hl, fl; \n"\ " cvt.rn.bf16.f32 hu, fu; \n"\ " mov.b32 %0, {hl, hu}; \n"\ "}":"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a))); \ return val;\ } /* while(0) */ __CUDA_BF16_DECL__ __nv_bfloat16 __hsin_internal(const __nv_bfloat16 a) { float f = __bfloat162float(a); f = sinf(f); return __float2bfloat16_rn(f); } __CUDA_BF16_DECL__ __nv_bfloat16 hsin(const __nv_bfloat16 a) { return __hsin_internal(a); } __CUDA_BF16_DECL__ __nv_bfloat162 h2sin(const __nv_bfloat162 a) { const __nv_bfloat16 l = __low2bfloat16(a); const __nv_bfloat16 h = __high2bfloat16(a); return __halves2bfloat162(__hsin_internal(l), __hsin_internal(h)); } __CUDA_BF16_DECL__ __nv_bfloat16 __hcos_internal(const __nv_bfloat16 a) { float f = __bfloat162float(a); f = cosf(f); return __float2bfloat16_rn(f); } __CUDA_BF16_DECL__ __nv_bfloat16 hcos(const __nv_bfloat16 a) { return __hcos_internal(a); } __CUDA_BF16_DECL__ __nv_bfloat162 h2cos(const __nv_bfloat162 a) { const __nv_bfloat16 l = __low2bfloat16(a); const __nv_bfloat16 h = __high2bfloat16(a); return __halves2bfloat162(__hcos_internal(l), __hcos_internal(h)); } #define __BF16_SPEC_CASE2(i,r, spc, ulp) \ "{.reg.b32 spc, ulp, p;\n"\ " mov.b32 spc," __CUDA_BF16_STRINGIFY(spc) ";\n"\ " mov.b32 ulp," __CUDA_BF16_STRINGIFY(ulp) ";\n"\ " set.eq.f16x2.f16x2 p," __CUDA_BF16_STRINGIFY(i) ", spc;\n"\ " fma.rn.bf16x2 " __CUDA_BF16_STRINGIFY(r) ",p,ulp," __CUDA_BF16_STRINGIFY(r) ";\n}\n" #define __BF16_SPEC_CASE(i,r, spc, ulp) \ "{.reg.b16 spc, ulp, p;\n"\ " mov.b16 spc," __CUDA_BF16_STRINGIFY(spc) ";\n"\ " mov.b16 ulp," __CUDA_BF16_STRINGIFY(ulp) ";\n"\ " set.eq.f16.f16 p," __CUDA_BF16_STRINGIFY(i) ", spc;\n"\ " fma.rn.bf16 " __CUDA_BF16_STRINGIFY(r) ",p,ulp," __CUDA_BF16_STRINGIFY(r) ";\n}\n" __CUDA_BF16_DECL__ __nv_bfloat16 hexp(const __nv_bfloat16 a) { __nv_bfloat16 val; asm("{.reg.b32 f, C; \n" " .reg.b16 h,r; \n" " mov.b16 h,%1; \n" " mov.b32 f,{0,h}; \n" " mov.b32 C, 0x3fb8aa3cU; \n" " mul.f32 f,f,C; \n" " ex2.approx.f32 f,f; \n" " cvt.rn.bf16.f32 r,f; \n" " mov.b16 %0,r; \n" "}": "=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a))); return val; } __CUDA_BF16_DECL__ __nv_bfloat162 h2exp(const __nv_bfloat162 a) { __nv_bfloat162 val; asm("{.reg.b16 hl, hu; \n" " .reg.b32 h,r,fl,fu, C; \n" " mov.b32 {hl, hu}, %1; \n" " mov.b32 h, %1; \n" " mov.b32 fl, {0,hl}; \n" " mov.b32 fu, {0,hu}; \n" " mov.b32 C, 0x3fb8aa3cU; \n" " mul.f32 fl,fl,C; \n" " mul.f32 fu,fu,C; \n" " ex2.approx.f32 fl, fl; \n" " ex2.approx.f32 fu, fu; \n" " cvt.rn.bf16.f32 hl, fl; \n" " cvt.rn.bf16.f32 hu, fu; \n" " mov.b32 r, {hl, hu}; \n" " mov.b32 %0, r; \n" "}":"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a))); return val; } __CUDA_BF16_DECL__ __nv_bfloat16 hexp2(const __nv_bfloat16 a) { __APPROX_FCAST(ex2) } __CUDA_BF16_DECL__ __nv_bfloat162 h2exp2(const __nv_bfloat162 a) { __APPROX_FCAST2(ex2) } __CUDA_BF16_DECL__ __nv_bfloat16 hexp10(const __nv_bfloat16 a) { __nv_bfloat16 val; asm("{.reg.b16 h, r; \n" " .reg.b32 f, C; \n" " mov.b16 h, %1; \n" " mov.b32 f, {0,h}; \n" " mov.b32 C, 0x40549A78U; \n" " mul.f32 f,f,C; \n" " ex2.approx.f32 f, f; \n" " cvt.rn.bf16.f32 r, f; \n" __BF16_SPEC_CASE(%1, r, 0xBC95U,0xbf00U) " mov.b16 %0, r; \n" "}":"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a))); return val; } __CUDA_BF16_DECL__ __nv_bfloat162 h2exp10(const __nv_bfloat162 a) { __nv_bfloat162 val; asm("{.reg.b16 hl, hu; \n" " .reg.b32 h,r,fl,fu, C; \n" " mov.b32 {hl, hu}, %1; \n" " mov.b32 fl, {0,hl}; \n" " mov.b32 fu, {0,hu}; \n" " mov.b32 C, 0x40549A78U; \n" " mul.f32 fl,fl,C; \n" " mul.f32 fu,fu,C; \n" " ex2.approx.f32 fl, fl; \n" " ex2.approx.f32 fu, fu; \n" " cvt.rn.bf16.f32 hl, fl; \n" " cvt.rn.bf16.f32 hu, fu; \n" " mov.b32 r, {hl, hu}; \n" __BF16_SPEC_CASE2(%1, r, 0xBC95BC95U,0xbf00bf00U) " mov.b32 %0, r; \n" "}":"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a))); return val; } __CUDA_BF16_DECL__ __nv_bfloat16 hlog2(const __nv_bfloat16 a) { __APPROX_FCAST(lg2) } __CUDA_BF16_DECL__ __nv_bfloat162 h2log2(const __nv_bfloat162 a) { __APPROX_FCAST2(lg2) } __CUDA_BF16_DECL__ __nv_bfloat16 hlog(const __nv_bfloat16 a) { __nv_bfloat16 val; asm("{.reg.b32 f, C; \n" " .reg.b16 r,h; \n" " mov.b16 h,%1; \n" " mov.b32 f,{0,h}; \n" " lg2.approx.f32 f,f; \n" " mov.b32 C, 0x3f317218U; \n" " mul.f32 f,f,C; \n" " cvt.rn.bf16.f32 r,f; \n" " mov.b16 %0,r; \n" "}": "=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a))); return val; } __CUDA_BF16_DECL__ __nv_bfloat162 h2log(const __nv_bfloat162 a) { __nv_bfloat162 val; asm("{.reg.b16 hl, hu; \n" " .reg.b32 r, fl, fu, C, h; \n" " mov.b32 {hl, hu}, %1; \n" " mov.b32 h, %1; \n" " mov.b32 fl, {0,hl}; \n" " mov.b32 fu, {0,hu}; \n" " lg2.approx.f32 fl, fl; \n" " lg2.approx.f32 fu, fu; \n" " mov.b32 C, 0x3f317218U; \n" " mul.f32 fl,fl,C; \n" " mul.f32 fu,fu,C; \n" " cvt.rn.bf16.f32 hl, fl; \n" " cvt.rn.bf16.f32 hu, fu; \n" " mov.b32 r, {hl, hu}; \n" " mov.b32 %0, r; \n" "}":"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a))); return val; } __CUDA_BF16_DECL__ __nv_bfloat16 hlog10(const __nv_bfloat16 a) { __nv_bfloat16 val; asm("{.reg.b16 h, r; \n" " .reg.b32 f, C; \n" " mov.b16 h, %1; \n" " mov.b32 f, {0,h}; \n" " lg2.approx.f32 f, f; \n" " mov.b32 C, 0x3E9A209BU; \n" " mul.f32 f,f,C; \n" " cvt.rn.bf16.f32 r, f; \n" " mov.b16 %0, r; \n" "}":"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a))); return val; } __CUDA_BF16_DECL__ __nv_bfloat162 h2log10(const __nv_bfloat162 a) { __nv_bfloat162 val; asm("{.reg.b16 hl, hu; \n" " .reg.b32 r, fl, fu, C, h; \n" " mov.b32 {hl, hu}, %1; \n" " mov.b32 h, %1; \n" " mov.b32 fl, {0,hl}; \n" " mov.b32 fu, {0,hu}; \n" " lg2.approx.f32 fl, fl; \n" " lg2.approx.f32 fu, fu; \n" " mov.b32 C, 0x3E9A209BU; \n" " mul.f32 fl,fl,C; \n" " mul.f32 fu,fu,C; \n" " cvt.rn.bf16.f32 hl, fl; \n" " cvt.rn.bf16.f32 hu, fu; \n" " mov.b32 r, {hl, hu}; \n" " mov.b32 %0, r; \n" "}":"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a))); return val; } #undef __BF16_SPEC_CASE2 #undef __BF16_SPEC_CASE __CUDA_BF16_DECL__ __nv_bfloat162 h2rcp(const __nv_bfloat162 a) { __APPROX_FCAST2(rcp) } __CUDA_BF16_DECL__ __nv_bfloat16 hrcp(const __nv_bfloat16 a) { __APPROX_FCAST(rcp) } __CUDA_BF16_DECL__ __nv_bfloat162 h2rsqrt(const __nv_bfloat162 a) { __APPROX_FCAST2(rsqrt) } __CUDA_BF16_DECL__ __nv_bfloat16 hrsqrt(const __nv_bfloat16 a) { __APPROX_FCAST(rsqrt) } __CUDA_BF16_DECL__ __nv_bfloat162 h2sqrt(const __nv_bfloat162 a) { __APPROX_FCAST2(sqrt) } __CUDA_BF16_DECL__ __nv_bfloat16 hsqrt(const __nv_bfloat16 a) { __APPROX_FCAST(sqrt) } #undef __APPROX_FCAST #undef __APPROX_FCAST2 __CUDA_BF16_DECL__ __nv_bfloat162 __hisnan2(const __nv_bfloat162 a) { const __nv_bfloat162 b = a; __BINARY_OP_BFLOAT162_MACRO(set.nan.f32) } __CUDA_BF16_DECL__ bool __hisnan(const __nv_bfloat16 a) { unsigned int r; asm( "{.reg .b32 a;\n" " mov.b32 a, {0,%1};\n" " set.nan.f32.f32 %0, a, a;}\n" :"=r"(r) : "h"(__BFLOAT16_TO_CUS(a))); return r != 0U; } __CUDA_BF16_DECL__ __nv_bfloat162 __hneg2(const __nv_bfloat162 a) { __nv_bfloat162 r; asm("{neg.bf16x2 %0,%1;\n}" :"=r"(__BFLOAT162_TO_UI(r)) : "r"(__BFLOAT162_TO_CUI(a))); return r; } __CUDA_BF16_DECL__ __nv_bfloat16 __hneg(const __nv_bfloat16 a) { __nv_bfloat16 r; asm("{neg.bf16 %0,%1;\n}" :"=h"(__BFLOAT16_TO_US(r)) : "h"(__BFLOAT16_TO_CUS(a))); return r; } __CUDA_BF16_DECL__ __nv_bfloat162 __habs2(const __nv_bfloat162 a) { __nv_bfloat162 r; asm("{abs.bf16x2 %0,%1;\n}" :"=r"(__BFLOAT162_TO_UI(r)) : "r"(__BFLOAT162_TO_CUI(a))); return r; } __CUDA_BF16_DECL__ __nv_bfloat16 __habs(const __nv_bfloat16 a) { __nv_bfloat16 r; asm("{abs.bf16 %0,%1;\n}" :"=h"(__BFLOAT16_TO_US(r)) : "h"(__BFLOAT16_TO_CUS(a))); return r; } /****************************************************************************** * __nv_bfloat16 arithmetic * ******************************************************************************/ __CUDA_BF16_DECL__ __nv_bfloat16 __hmax(const __nv_bfloat16 a, const __nv_bfloat16 b) { __nv_bfloat16 val; asm( "{ max.bf16 %0,%1,%2;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b))); return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __hmin(const __nv_bfloat16 a, const __nv_bfloat16 b) { __nv_bfloat16 val; asm( "{ min.bf16 %0,%1,%2;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b))); return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __hmax_nan(const __nv_bfloat16 a, const __nv_bfloat16 b) { __nv_bfloat16 val; asm( "{ max.NaN.bf16 %0,%1,%2;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b))); return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __hmin_nan(const __nv_bfloat16 a, const __nv_bfloat16 b) { __nv_bfloat16 val; asm( "{ min.NaN.bf16 %0,%1,%2;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b))); return val; } __CUDA_BF16_DECL__ __nv_bfloat16 __hfma_relu(const __nv_bfloat16 a, const __nv_bfloat16 b, const __nv_bfloat16 c) { __nv_bfloat16 val; asm( "{ fma.rn.relu.bf16 %0,%1,%2,%3;\n}" :"=h"(__BFLOAT16_TO_US(val)) : "h"(__BFLOAT16_TO_CUS(a)),"h"(__BFLOAT16_TO_CUS(b)),"h"(__BFLOAT16_TO_CUS(c))); return val; } /****************************************************************************** * __nv_bfloat162 arithmetic * ******************************************************************************/ __CUDA_BF16_DECL__ __nv_bfloat162 __hmax2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat162 val; asm( "{ max.bf16x2 %0,%1,%2;\n}" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __hmin2(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat162 val; asm( "{ min.bf16x2 %0,%1,%2;\n}" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __hmax2_nan(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat162 val; asm( "{ max.NaN.bf16x2 %0,%1,%2;\n}" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __hmin2_nan(const __nv_bfloat162 a, const __nv_bfloat162 b) { __nv_bfloat162 val; asm( "{ min.NaN.bf16x2 %0,%1,%2;\n}" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b))); return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __hfma2_relu(const __nv_bfloat162 a, const __nv_bfloat162 b, const __nv_bfloat162 c) { __nv_bfloat162 val; asm( "{ fma.rn.relu.bf16x2 %0,%1,%2,%3;\n}" :"=r"(__BFLOAT162_TO_UI(val)) : "r"(__BFLOAT162_TO_CUI(a)),"r"(__BFLOAT162_TO_CUI(b)),"r"(__BFLOAT162_TO_CUI(c))); return val; } __CUDA_BF16_DECL__ __nv_bfloat162 __hcmadd(const __nv_bfloat162 a, const __nv_bfloat162 b, const __nv_bfloat162 c) { // fast version of complex multiply-accumulate // (a.re, a.im) * (b.re, b.im) + (c.re, c.im) // acc.re = (c.re + a.re*b.re) - a.im*b.im // acc.im = (c.im + a.re*b.im) + a.im*b.re __nv_bfloat16 real_tmp = __hfma(a.x, b.x, c.x); __nv_bfloat16 img_tmp = __hfma(a.x, b.y, c.y); real_tmp = __hfma(__hneg(a.y), b.y, real_tmp); img_tmp = __hfma(a.y, b.x, img_tmp); return make_bfloat162(real_tmp, img_tmp); } __CUDA_BF16_DECL__ __nv_bfloat162 atomicAdd(__nv_bfloat162 *const address, const __nv_bfloat162 val) { unsigned int* address_as_uint = (unsigned int*)address; unsigned int old = *address_as_uint, assumed; do { assumed = old; __nv_bfloat162 new_val = __hadd2(val, *(__nv_bfloat162*)&assumed); old = atomicCAS(address_as_uint, assumed, *(unsigned int*)&new_val); } while (assumed != old); return *(__nv_bfloat162*)&old; } __CUDA_BF16_DECL__ __nv_bfloat16 atomicAdd(__nv_bfloat16 *const address, const __nv_bfloat16 val) { unsigned short int* address_as_us = (unsigned short int*)address; unsigned short int old = *address_as_us, assumed; do { assumed = old; old = atomicCAS(address_as_us, assumed, __bfloat16_as_ushort(__hadd(val, __ushort_as_bfloat16(assumed)))); } while (assumed != old); return __ushort_as_bfloat16(old); } #undef __CUDA_BF16_DECL__ #endif /* defined(__CUDACC__) && (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__)) */ #endif /* defined(__cplusplus) */ #undef __BINARY_OP_BFLOAT162_MACRO #undef __BINARY_OP_BFLOAT16_MACRO #undef __CUDA_HOSTDEVICE_BF16_DECL__ #undef __CUDA_BF16_DECL__ /* Define first-class types "nv_bfloat16" and "nv_bfloat162", unless user specifies otherwise via "#define CUDA_NO_BFLOAT16" */ /* C cannot ever have these types defined here, because __nv_bfloat16 and __nv_bfloat162 are C++ classes */ #if defined(__cplusplus) && !defined(CUDA_NO_BFLOAT16) typedef __nv_bfloat16 nv_bfloat16; typedef __nv_bfloat162 nv_bfloat162; #endif /* defined(__cplusplus) && !defined(CUDA_NO_BFLOAT16) */ #if defined(__CPP_VERSION_AT_LEAST_11_BF16) #undef __CPP_VERSION_AT_LEAST_11_BF16 #endif /* defined(__CPP_VERSION_AT_LEAST_11_BF16) */ #endif /* end of include guard: __CUDA_BF16_HPP__ */